JPS59194362A - Air electrode - Google Patents

Air electrode

Info

Publication number
JPS59194362A
JPS59194362A JP58068874A JP6887483A JPS59194362A JP S59194362 A JPS59194362 A JP S59194362A JP 58068874 A JP58068874 A JP 58068874A JP 6887483 A JP6887483 A JP 6887483A JP S59194362 A JPS59194362 A JP S59194362A
Authority
JP
Japan
Prior art keywords
air electrode
acid dichloride
transition metal
carbon material
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58068874A
Other languages
Japanese (ja)
Inventor
Katsuo Deguchi
勝男 出口
Denkichi Sasage
捧 伝吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP58068874A priority Critical patent/JPS59194362A/en
Publication of JPS59194362A publication Critical patent/JPS59194362A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To improve durability and activity of an air electrode catalyst by containing condensation type phthalocyanine obtained by dimerizing polyaminophthalocyanine or transition metal with dibasic chloride. CONSTITUTION:Carbon material is immersed in hydrochloric acid solution prepared by dissolving polyphthaloaminocyanine containing transition metal such as Cu, Ni, Cr, Co, Fe, and Mn, then dried. The carbon material is immersed in benzene solution of dibasic chloride to undergo condensation reaction. Thereby, an electrode for air cell or fuel cell comprising carbon material on which condensation type phthalocyanine containing corresponding metal is carried is obtained.

Description

【発明の詳細な説明】 本発明は空気電池や燃料電池などに使用する空気極に関
するものである。従来空気電池や燃料電池の空気極はカ
ーボンブラック活性炭などの炭素体に酸素還元能力を高
めるために、金属フタロシアニンなどの触媒を用いてい
たが、金属フタロシアニンの付着は次のような困難さが
あった。即ち ■ 金属フタロシアニンは一般に、有機溶媒に難溶であ
るだめ、触媒として有効な量を付着せしめることは困難
でおった。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air electrode used in air cells, fuel cells, and the like. Conventionally, the air electrodes of air cells and fuel cells have used catalysts such as metal phthalocyanines to increase the oxygen reduction ability of carbon bodies such as carbon black activated carbon, but the attachment of metal phthalocyanines has the following difficulties. Ta. Namely: (1) Since metal phthalocyanines are generally poorly soluble in organic solvents, it has been difficult to deposit them in an amount effective as a catalyst.

■ 壕だ金属フタロシアニンを水に可溶とするために、
スルホン基などを導入して使用することもあるが、アル
カリ電解質を用いた電池では、この種の触媒が溶出して
しまい、触媒の効果がなくなる問題があった。
■ In order to make the metal phthalocyanine soluble in water,
Sulfone groups and the like are sometimes introduced and used, but in batteries using alkaline electrolytes, this type of catalyst tends to elute, causing the problem that the catalyst becomes ineffective.

■ さらに触媒の耐久性や活性をより強化するために金
属フタロシアニンの高分子量化したものを使用する例も
散見されるが、高分子量化の方法や炭素体への付着方法
が確立されていない。
■ Furthermore, there are some cases where high molecular weight metal phthalocyanines are used to further strengthen the durability and activity of catalysts, but the method for increasing the molecular weight and the method for attaching them to carbon bodies has not been established.

我々はかかる問題点を改良すべく、鋭意研究した結果容
易に金属を含有する縮合型フタロシアニンを付着せしめ
た空気極を得ることを見出しだのである。即ち本発明は
炭素体に予め遷移金属である銅、ニッケル、クロム、コ
バルト。
In order to improve this problem, we conducted extensive research and found that it was possible to easily obtain an air electrode to which condensed phthalocyanine containing metal was attached. That is, the present invention uses transition metals such as copper, nickel, chromium, and cobalt in advance in the carbon body.

鉄、マンガンを含有するポリアミノフタロシアニン(ア
ミン基は1分子あたり2ケ以上含1れる)を付着せしめ
9次に二塩基酸・・ライド(特に塩化物)1例えばホス
ゲン、マロン酸ジクロライド、コハク酸ジクロライド、
ゲルタール酸クロライド、アジピン酸クロライド、フタ
ール酸ジクロライド、テレフタール酸ジクロライド。
Polyaminophthalocyanine (containing 2 or more amine groups per molecule) containing iron and manganese is attached to it. ,
Geltaric acid chloride, adipic acid chloride, phthalic acid dichloride, terephthalic acid dichloride.

キノリン酸クロライドにて処理することによって遷移金
属の縮合型フタロンアニンに変えることが可能となり、
触媒としての耐久性および活性が良好な空気極を提供す
ることに至ったものである。
By treating with quinolinic acid chloride, it is possible to convert it into a condensed transition metal phthalonanine.
This has led to the provision of an air electrode with good durability and activity as a catalyst.

本発明に使用する遷移金属のボリア≧ノックロシアニン
は常法通り遷移金属の粉末または塩化物、硫酸塩などと
、3−二トロフクール酸または4−ニトロフクール酸と
尿素、モリブデン酸アンモン、沸点200℃以上の有機
溶剤中加熱して、相当する金属を含むポリニトロフクロ
シアニンを合成して還元するか、遷移金属のフタロシア
ニンを濃硫酸中ヒドロキシルアミン。
The transition metal boria≧knockcyanine used in the present invention is prepared by combining transition metal powder, chloride, sulfate, etc., 3-nitrophucuric acid or 4-nitrophucuric acid, urea, ammonium molybdate, boiling point 200°C, as usual. Either synthesize and reduce polynitrofuccyanine containing the corresponding metal by heating in the above organic solvent, or convert transition metal phthalocyanine to hydroxylamine in concentrated sulfuric acid.

モノクロルアミンなどによりアミン化することにより得
られる。
Obtained by amination with monochloroamine or the like.

この遷移金属を含むポリアミノフタロシアニンを塩酸水
溶液に溶解し、炭素極に含浸させ乾燥する。次て二塩基
酸クロライドのインゼン溶液に炭素極をつけて縮合反応
をさせ、相当する金属を含む縮合型フタロシアニンの付
着した空気極を得る。
This polyaminophthalocyanine containing a transition metal is dissolved in an aqueous hydrochloric acid solution, impregnated into a carbon electrode, and dried. Next, a carbon electrode is attached to an inzene solution of dibasic acid chloride to cause a condensation reaction, thereby obtaining an air electrode to which a condensed phthalocyanine containing the corresponding metal is attached.

次に触媒を付着せしめる炭素体はファーネスブランク、
チャンネルブラック、サーマルブラックなどのカーボン
ブラックや、木炭、ヤシ殻炭、パーム核炭1石炭1石油
残渣2合成樹脂。
Next, the carbon body to which the catalyst is attached is a furnace blank.
Carbon black such as channel black and thermal black, charcoal, coconut shell charcoal, palm nuclear charcoal 1 coal 1 petroleum residue 2 synthetic resin.

有機廃棄物などを使用して作られた活性炭および黒鉛な
どから常法通り作られる。どの炭素体への触媒の付着量
は、空気極としての性能9強度を考慮すれば01〜10
重量係が好ましい。
It is made in the usual way from activated carbon and graphite made from organic waste. The amount of catalyst attached to which carbon body is 01 to 10, considering the performance 9 strength as an air electrode.
Weight clerk is preferred.

以下実施例に従い本発明の詳細な説明するが実施例中「
部」とあるのは「重量部」を示す。
The present invention will be described in detail below according to Examples.
"Parts" indicates "parts by weight."

(炭素体の製造) 粒径01〜1μのヤシ殻活性炭10部7粒径01〜05
μの黒鉛10部、熱可塑性樹脂(塩化ビニル樹脂)5部
と混合し、押出成型によシ直径10冠の丸棒を作る。こ
れを200℃に加熱し、更にi、 o o o℃まで熱
処理し熱可塑性樹脂を分解して炭素体としだ。
(Manufacture of carbon body) 10 parts of coconut shell activated carbon with a particle size of 01 to 1μ, 7 parts with a particle size of 01 to 05
10 parts of μ graphite and 5 parts of thermoplastic resin (vinyl chloride resin) were mixed and extruded to form a round bar with a diameter of 10 crowns. This was heated to 200°C and further heat-treated to 1,000°C to decompose the thermoplastic resin and produce a carbon body.

実施例1 炭素体に4.41 、4 II、  4 Ill  −
テトラアミノ鉄フタロシアニンを2重量%付着せしめ9
次にアジピン酸ジクロライドの2重量%ベンゼン溶液に
て処理することによシ鉄フタロシアニン縮合物を付着せ
しめた空気極を得る。
Example 1 Carbon body has 4.41, 4 II, 4 Ill −
Deposit 2% by weight of tetraaminoiron phthalocyanine9
Next, by treating with a 2% by weight solution of adipic acid dichloride in benzene, an air electrode to which the iron phthalocyanine condensate is adhered is obtained.

比較例1 炭素体に鉄フタロシアニンを2重量%付着せしめて空気
極を得る。
Comparative Example 1 An air electrode was obtained by depositing 2% by weight of iron phthalocyanine on a carbon body.

実施例2 炭素体に3,3’、4.4’−テトラアミノクロムフタ
ロシアニンを1重量%付着せしめ9次にテレフタール酸
ジクロライドのインゼン溶液にて処理することにより、
クロムフタロシアニン縮合物を付着せしめた空気極を得
る。
Example 2 1% by weight of 3,3',4,4'-tetraaminochrome phthalocyanine was attached to the carbon body, and then treated with an inzene solution of terephthalic acid dichloride.
An air electrode to which a chromium phthalocyanine condensate is attached is obtained.

比較例2 炭素体にクロムフタロシアニンを1重量%付着せしめて
空気極を得る。
Comparative Example 2 An air electrode was obtained by depositing 1% by weight of chromium phthalocyanine on a carbon body.

実施例6 炭素体にポリアミノ銅フタロシアニン(銅フタロシアニ
ンを100%硫酸に溶かし、とドロキシルアミンを加え
てアミン化をすることで得られる)を0.5重量係付着
せしめ9次にマレイン酸ジクロライドのインゼン溶液に
て処理すること尾より、銅フタロシアニン縮合物を付着
せしめた空気極を得る。
Example 6 0.5 weight percent of polyamino copper phthalocyanine (obtained by dissolving copper phthalocyanine in 100% sulfuric acid and adding droxylamine for amination) was attached to a carbon body, and then 90% of maleic acid dichloride was attached. After treatment with an inzene solution, an air electrode to which a copper phthalocyanine condensate is attached is obtained.

比較例3 炭素体罠銅フタロシアニンを0.5重量係付着せしめて
空気極を得る。
Comparative Example 3 An air electrode was obtained by depositing 0.5 weight percent of carbon trapping copper phthalocyanine.

実施例1,2.3および比較例1,2.3の空気極の分
極特性を第1図、第2図、第6図に示す。
The polarization characteristics of the air electrodes of Examples 1 and 2.3 and Comparative Examples 1 and 2.3 are shown in FIGS. 1, 2, and 6.

以上のように本発明の空気極は、優れた分極特性を示し
、空気電池、燃料電池の空気極として好適なものである
As described above, the air electrode of the present invention exhibits excellent polarization characteristics and is suitable as an air electrode for air cells and fuel cells.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1.比較例1で得られた空気極の分極
曲線であシ、第2図は実施例2.比較例2で得られた空
気極の分極曲線であり、第6図は実施例6.比較例6で
得られた分極曲線であり、■〜■は順に実施例1.比較
例1.実施例2.比較例2.実施例6.比較例6で得ら
れ九分極曲線を示し、縦軸は、電流密度(mA/cr&
 ) 、横軸は電位(V/5OE)を示すものである。 特許出願人 ぺんてる株式会社
FIG. 1 shows Example 1. The polarization curve of the air electrode obtained in Comparative Example 1 is shown in FIG. FIG. 6 shows the polarization curve of the air electrode obtained in Comparative Example 2, and FIG. 6 shows the polarization curve of the air electrode obtained in Comparative Example 2. These are the polarization curves obtained in Comparative Example 6, and ■ to ■ are the polarization curves obtained in Example 1. Comparative example 1. Example 2. Comparative example 2. Example 6. The nine polarization curves obtained in Comparative Example 6 are shown, and the vertical axis is the current density (mA/cr&
), the horizontal axis indicates the potential (V/5OE). Patent applicant Pentel Co., Ltd.

Claims (1)

【特許請求の範囲】 1)遷移金属のポリアミノフタロシアニンを二塩基酸ク
ロライドにて三量化した締金型フタロシアニンを含有し
てなることを特徴とする空気極。 2)前記二塩基酸クロライドが、ホスゲン、マロン酸ジ
クロライド、マレイン酸ジクロライド、コハク酸ジクロ
ライド、ゲルタール酸ジクロライド、アジピン酸ジクロ
ライド、フタール酸ジクロライド、キノリン酸ジクロラ
イドであることを特徴とする特許請求の範囲第1項記載
の空気極。 3 )  @ Re /la 金型ンタロンアニンがM
、=ッヶル。 クロム・ コバルト、鉄、マンガンの縮合型フタロンア
ニンであることを特徴とする特許請求の範囲第1項記載
の空気極。
[Scope of Claims] 1) An air electrode comprising a clamp-type phthalocyanine obtained by trimerizing a transition metal polyaminophthalocyanine with a dibasic acid chloride. 2) Claim No. 2, characterized in that the dibasic acid chloride is phosgene, malonic acid dichloride, maleic acid dichloride, succinic acid dichloride, geltaric acid dichloride, adipic acid dichloride, phthalic acid dichloride, and quinolinic acid dichloride. The air electrode described in item 1. 3) @Re/la Mold talonanine is M
,=kgal. The air electrode according to claim 1, wherein the air electrode is a condensed phthalonanine of chromium-cobalt, iron, and manganese.
JP58068874A 1983-04-19 1983-04-19 Air electrode Pending JPS59194362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58068874A JPS59194362A (en) 1983-04-19 1983-04-19 Air electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58068874A JPS59194362A (en) 1983-04-19 1983-04-19 Air electrode

Publications (1)

Publication Number Publication Date
JPS59194362A true JPS59194362A (en) 1984-11-05

Family

ID=13386240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58068874A Pending JPS59194362A (en) 1983-04-19 1983-04-19 Air electrode

Country Status (1)

Country Link
JP (1) JPS59194362A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111569A1 (en) * 2007-03-09 2008-09-18 National Institute Of Advanced Industrial Science And Technology Electrode catalyst for fuel cell
JP2008258150A (en) * 2007-03-09 2008-10-23 Sumitomo Chemical Co Ltd Electrode catalyst for fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111569A1 (en) * 2007-03-09 2008-09-18 National Institute Of Advanced Industrial Science And Technology Electrode catalyst for fuel cell
JP2008258150A (en) * 2007-03-09 2008-10-23 Sumitomo Chemical Co Ltd Electrode catalyst for fuel cell

Similar Documents

Publication Publication Date Title
Hawecker et al. Electrocatalytic reduction of carbon dioxide mediated by Re (bipy)(CO) 3 Cl (bipy= 2, 2′-bipyridine)
CN110773156B (en) Transition metal monatomic catalyst, preparation method and application thereof
CN111359651B (en) Transition metal-nitrogen coordinated carbon gel electrocatalyst and preparation method and application thereof
CN109680299B (en) Three-dimensional self-supporting gamma-Fe2O3-NC/CF electrode and preparation method and application thereof
CN108615904B (en) Nickel cobaltate hollow sphere/carbon nitride quantum dot composite material and preparation method and application thereof
CN113526622B (en) Foamed nickel loaded porous carbon coated nickel tin-iron nickel alloy electrode material and preparation method and application thereof
Chen et al. Heterojunctions of silver–iron oxide on graphene for laser-coupled oxygen reduction reactions
CN112427046A (en) Preparation method of monatomic oxygen reduction catalyst
Li et al. Rational design on photo (electro) catalysts for artificial nitrogen looping
JPS59194362A (en) Air electrode
JPH01252666A (en) Electron conductive polymer having heteropolyanion added thereto, production thereof, and chemical and electrochemical catalyst
CN109926082A (en) A kind of carbon coating nickel oxide molybdenum composite material and preparation method thereof
Xu et al. In situ chemical fabrication of polyaniline/multi-walled carbon nanotubes composites as supports of Pt for methanol electrooxidation
CN107754782B (en) Self-supporting VO2Preparation method and product of Fenton-like catalytic material
JPS5875775A (en) Air electrode
JPS58186169A (en) Air pole
Zhang et al. Carbon nitride photocatalysts
JP6490667B2 (en) Electrode catalyst and method for producing the same
CN113941324A (en) Bone-supported catalyst for producing succinic acid and preparation method thereof
CN111068729A (en) Phosphorus-doped or nitrogen-doped multiwalled carbon nanotube catalyst and preparation method and application thereof
Asami et al. Catalytic behavior of iron in the gasification of coal with hydogen
US3778313A (en) Method of making an oxygen electrode for fuel cells
JPS6074357A (en) Air electrode
JPS6247063B2 (en)
JPS58209867A (en) Manufacture of air electrode