JPS59193226A - Denitrification of molten metal in vacuum induction melting furnace - Google Patents

Denitrification of molten metal in vacuum induction melting furnace

Info

Publication number
JPS59193226A
JPS59193226A JP58067821A JP6782183A JPS59193226A JP S59193226 A JPS59193226 A JP S59193226A JP 58067821 A JP58067821 A JP 58067821A JP 6782183 A JP6782183 A JP 6782183A JP S59193226 A JPS59193226 A JP S59193226A
Authority
JP
Japan
Prior art keywords
molten metal
melting furnace
gas
lance
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58067821A
Other languages
Japanese (ja)
Inventor
Kiminari Kawakami
川上 公成
Yoshiro Hosoda
細田 義郎
Kenji Takahashi
謙治 高橋
Yoshiteru Kikuchi
良輝 菊地
Hideaki Tenma
天満 英昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP58067821A priority Critical patent/JPS59193226A/en
Publication of JPS59193226A publication Critical patent/JPS59193226A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To promote denitrification without obstructing melting work, in a vacuum induction melting furnace, by blowing gas into a molten metal by immersing a lance in said molten metal from the upper part thereof. CONSTITUTION:A base material is melted in a vacuum induction melting furnace 2 or a molten bath is supplied to said furnace 2 from a laddle and maintained at a predetermined temp. while a vacuum tank 1 is evacuated. A lance 3 is immersed in the molten metal in the melting furnace 2 from the upper part of the vacuum tank 1 to blow inert gas such as argon, CO-gas or a gaseous mixture thereof into said molten metal to promote the denitrification of the molten metal under stirring. By this method, the extremely low nitrificaion of the molten metal can be realized and adverse affect is not exerted on furnace refractory. In addition, because the immersion depth of the lance 3 and gas flowing can be arbitrarily set, stirring can be arbitrarily controlled.

Description

【発明の詳細な説明】 この発明は真空誘導溶解炉における溶融金属の脱窒方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for denitrifying molten metal in a vacuum induction melting furnace.

近年鋼の高級化にともない、不純物を゛著しく低くした
清浄鋼の幾求が増大しているρべその中で鋼中の窒素を
極力低減することにより特に薄板において優れた超深絞
り性を有することが知られている。
In recent years, as steel has become more sophisticated, there has been an increasing demand for clean steel with extremely low impurities.By reducing nitrogen in the steel as much as possible, it has excellent ultra-deep drawability, especially in thin sheets. It is known.

ところで溶鉄中の窒素溶解度C%N″lは下式で示され
る。
By the way, the nitrogen solubility C%N''l in molten iron is expressed by the following formula.

〔チN] −に//Nめ外q 但し、PN2  :雰囲気中の窒素分圧LogK  −
−”−1,248 tgg/N==Σe4[%1l el:溶鉄中の1成分のNに及ぼ す相互作用助係数 したがって極低窒素鋼を製造するためには、雰囲気中の
窒素分圧PN2を極力下げることが肝要であるが、この
几めの極低窒素鋼の溶製技術の一つとして真空誘導溶解
炉により脱窒促進を図ることが行なわれている。
[CHN] − to//N outside q However, PN2: Nitrogen partial pressure in the atmosphere LogK −
−”−1,248 tgg/N==Σe4[%1l el: Coefficient of interaction on N of one component in molten iron Therefore, in order to manufacture ultra-low nitrogen steel, the nitrogen partial pressure PN2 in the atmosphere must be It is important to reduce the nitrogen content as much as possible, and one method of melting this extremely low nitrogen steel is to promote denitrification using a vacuum induction melting furnace.

この真空誘導溶解炉は、誘導電流を溶湯に付加して溶湯
を加熱保持すると同時に誘導攪拌力を与えた状態で低P
N、下で脱窒効果を狙ったものである。
This vacuum induction melting furnace heats and maintains the molten metal by applying an induced current to the molten metal, and at the same time applies an induction stirring force to achieve a low P.
This is aimed at the denitrification effect under N.

しかし、この方法においては溶湯の攪拌が弱い定め脱窒
速度が遅く長時間処理しても極低窒化は困難である。そ
のため真空溶解炉の炉底にポーラスプラグを埋め込んで
攪拌を強化する方法も提案されているが、この方法の場
合、一定の脱窒効果はあるものの、ポーラスプラグの構
造上吹き込みガスを広い範囲にわ之って制御することは
難しく、ガスを大量に溶湯に吹き込んで強攪拌すること
が難しい。
However, in this method, the stirring of the molten metal is weak and the denitrification rate is slow, making it difficult to achieve extremely low nitridation even if the treatment is carried out for a long time. For this reason, a method has been proposed in which a porous plug is embedded in the bottom of the vacuum melting furnace to strengthen stirring. However, although this method has a certain denitrification effect, the structure of the porous plug means that the blown gas cannot be spread over a wide range. Therefore, it is difficult to control and it is difficult to blow a large amount of gas into the molten metal and stir it strongly.

そのため十分な脱窒効果を得られない。また溶湯のプラ
グへの差し込みを防止する丸め、溶湯がある間は絶えず
ガスを吹き込んでおかねばならず、ガスの消費量も甚大
なものとなる。更に炉底にポーラスプラグを埋め込む几
め、埋め込み箇所の溶損が激しく、溶解作業に支障をき
たす虞れが大きい等の欠点がある。
Therefore, sufficient denitrification effect cannot be obtained. Furthermore, it is necessary to round the plug to prevent the molten metal from being inserted into the plug, and to constantly blow gas while the molten metal is present, resulting in an enormous amount of gas consumption. Furthermore, there are drawbacks such as the carefulness of embedding the porous plug in the bottom of the furnace, and the possibility of severe melting and damage at the embedding location, which may interfere with the melting work.

本発明は上記した従来技術の問題点を解決すべくなされ
次もので、真空誘導溶解炉において溶融金属を精錬する
にあたり、溶融金属上部よりランスを浸漬し、このラン
スからガス−を吹き込むことを基本的な特徴とするもの
である。
The present invention has been made to solve the problems of the prior art described above, and the basic principle is that when refining molten metal in a vacuum induction melting furnace, a lance is immersed from above the molten metal and gas is blown through the lance. This is a unique feature.

第1図は本発明方法の概要を示す説明図であり、(1)
は真空槽、(2)は誘導溶解炉、(3)はランス、(4
)はランス取替装置、(5)はランス昇降装置、(6)
は圧力計、(7)は流量計、(8)はガス供給装置であ
る。
FIG. 1 is an explanatory diagram showing an overview of the method of the present invention, (1)
is a vacuum chamber, (2) is an induction melting furnace, (3) is a lance, (4
) is a lance replacement device, (5) is a lance lifting device, (6)
is a pressure gauge, (7) is a flow meter, and (8) is a gas supply device.

まず溶解炉(2)内で素材を溶解するか、或は取鍋より
溶湯を供給し、所定の温度に維持し真空槽(1)内を減
圧する。そして真空槽(1)上部からガス吹き込み用の
ランス(3)を溶解炉(2)中の溶融金属に浸漬し、ガ
ー、を吹き込み溶融金属の攪拌を促進する。この吹き込
みガスとしてはアルゴンガス等の不活性ガスやCOガス
或はこれらを混合したガスを用いることができる。この
ガス吹き込みにより脱窒が促進される。
First, the material is melted in the melting furnace (2), or molten metal is supplied from a ladle, maintained at a predetermined temperature, and the pressure inside the vacuum chamber (1) is reduced. A lance (3) for blowing gas from the top of the vacuum chamber (1) is immersed in the molten metal in the melting furnace (2), and gas is blown into the melting furnace (2) to promote stirring of the molten metal. As this blowing gas, an inert gas such as argon gas, CO gas, or a mixture thereof can be used. This gas blowing promotes denitrification.

次に実施例を示す。Next, examples will be shown.

〔実施例〕〔Example〕

下記条件により真空誘導溶解炉により炭素鋼の脱窒を行
ない下掲表に示す結果を得た0第2図にこの結果をグラ
フ化したものを、ガス吹き込み金行わず減圧保持した場
合の結果と対比して示す。グラフ中(ロ)は本発明法の
他の結果である。
Denitrification of carbon steel was carried out in a vacuum induction melting furnace under the following conditions, and the results shown in the table below were obtained. The results are graphed in Figure 2 and compared with the results when the denitrification was maintained at reduced pressure without gas injection. and show. (b) in the graph shows other results of the method of the present invention.

X 空K  2.3”rr 吹き込みガス量 Atガス 7−5 NL/mtn−T
oN溶解量 4 TON 温   度   1600〜1620°O上記結果から
れかるように浸漬ランスによるガス吹き込み効果は顕著
であり、[N]<t。
X Empty K 2.3”rr Blow gas amount At gas 7-5 NL/mtn-T
Amount of dissolved oN: 4 TON Temperature: 1600-1620°O As can be seen from the above results, the effect of gas injection by the immersion lance is significant, and [N]<t.

p−pmの極低窒素鋼の溶製が可能となる。It becomes possible to produce ultra-low nitrogen steel of p-pm.

なお、本発明法は炭素鋼に限らず、窒素溶解度の高い高
Cr含有鋼等高合金鋼或は合金系の低窒素化にも適用で
き、十分な効果を得ることができる。
The method of the present invention is not limited to carbon steel, but can also be applied to high-alloy steels such as high Cr-containing steels with high nitrogen solubility, or alloy systems to reduce nitrogen content, and sufficient effects can be obtained.

以上述べたように本発明法によれば溶融金属の極低窒素
化を実現でき、しかも炉底にポーラスプラグを埋め込む
方法のように炉体耐大物に対して悪影響を及ぼすことが
なく、操業中でもランスの交換が容易である。
As described above, according to the method of the present invention, it is possible to realize extremely low nitrogen content in the molten metal, and it does not have an adverse effect on large materials in the furnace body unlike the method of embedding a porous plug in the bottom of the furnace, and even during operation. It is easy to replace the lance.

またランスの溶湯への浸漬深さ、ガス流通を任意に設定
することができ、これにより攪拌を任意に制御すること
が可能である等の効果がある。
Further, the depth of immersion of the lance into the molten metal and the gas flow can be set arbitrarily, which has the effect that stirring can be controlled arbitrarily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の説明図、第2図は[N)の推移を
示すグラフである。 図中、(1)は真空槽、(2)は誘導溶解炉、(3)は
ランスを各示す。 特許出願人  日本鋼管株式会社
FIG. 1 is an explanatory diagram of the method of the present invention, and FIG. 2 is a graph showing changes in [N). In the figure, (1) shows a vacuum chamber, (2) shows an induction melting furnace, and (3) shows a lance. Patent applicant Nippon Kokan Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 真空誘導溶解炉において溶融金属を精錬するにあたり、
溶融金属上部よりランスを浸漬し、該ランスからガスを
吹込むことを特徴とする真空誘導溶解炉における溶融金
属の脱窒方法。
When refining molten metal in a vacuum induction melting furnace,
A method for denitrifying molten metal in a vacuum induction melting furnace, characterized by immersing a lance from above the molten metal and blowing gas through the lance.
JP58067821A 1983-04-19 1983-04-19 Denitrification of molten metal in vacuum induction melting furnace Pending JPS59193226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58067821A JPS59193226A (en) 1983-04-19 1983-04-19 Denitrification of molten metal in vacuum induction melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58067821A JPS59193226A (en) 1983-04-19 1983-04-19 Denitrification of molten metal in vacuum induction melting furnace

Publications (1)

Publication Number Publication Date
JPS59193226A true JPS59193226A (en) 1984-11-01

Family

ID=13355987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58067821A Pending JPS59193226A (en) 1983-04-19 1983-04-19 Denitrification of molten metal in vacuum induction melting furnace

Country Status (1)

Country Link
JP (1) JPS59193226A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287011A (en) * 1986-06-04 1987-12-12 Kawasaki Steel Corp Refining method for molten metal
CN112813279A (en) * 2020-12-27 2021-05-18 上海交通大学安徽(淮北)陶铝新材料研究院 System for controlling in-situ authigenic aluminum-based composite material through melt with continuous treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287011A (en) * 1986-06-04 1987-12-12 Kawasaki Steel Corp Refining method for molten metal
CN112813279A (en) * 2020-12-27 2021-05-18 上海交通大学安徽(淮北)陶铝新材料研究院 System for controlling in-situ authigenic aluminum-based composite material through melt with continuous treatment

Similar Documents

Publication Publication Date Title
DE60014802D1 (en) Pressure control of a direct melting process
CA2024466A1 (en) Method of operating in-bath smelting reduction furnace
US2665982A (en) Desulfurization and decarburization of iron and iron alloys
JPS59193226A (en) Denitrification of molten metal in vacuum induction melting furnace
US4615730A (en) Method for refining molten metal bath to control nitrogen
US3867135A (en) Metallurgical process
US3305352A (en) Process of producing alloys
AU8055582A (en) Pneumatically stirring metal baths
JPS5757819A (en) Converter steel making method
JPS60141818A (en) Production of dead soft steel by vacuum degassing treatment
FR2448572A1 (en) Low carbon steel prodn. in bottom blown vessel - using hydrocarbon shielding fluid and oxygen mixed with progressively larger amts. of argon
JPH0361725B2 (en)
SU1120022A1 (en) Method of alloying steel with nitrogen
US4130419A (en) Process for the purification, modification and heating of a cast-iron melt
JP2897647B2 (en) Melting method of low hydrogen extremely low sulfur steel
JP3800866B2 (en) Hot metal desiliconization method
JPH0741828A (en) Method for vacuum-refining molten steel
KR860003353A (en) Method of refining molten steel by arc processing
Nazyuta et al. Reducing the Consumption of Deoxidants When Melting Killed Steels in Open Hearth Furnaces
JPH01234513A (en) Method for blowing oxygen
RU2161205C1 (en) Method of rail steel production
US1171066A (en) Process of uniting copper to ferrous metals.
DE60036228D1 (en) METHOD AND DEVICE FOR PRODUCING A METALLURGICALLY IMPROVED METAL MELT
JPH09287017A (en) Method for melting high purity steel
SU962323A1 (en) Method for making stainless steel with niobium