JPS59193205A - Waste heat recovery equipment of cooling water of shaft furnace body - Google Patents

Waste heat recovery equipment of cooling water of shaft furnace body

Info

Publication number
JPS59193205A
JPS59193205A JP6703883A JP6703883A JPS59193205A JP S59193205 A JPS59193205 A JP S59193205A JP 6703883 A JP6703883 A JP 6703883A JP 6703883 A JP6703883 A JP 6703883A JP S59193205 A JPS59193205 A JP S59193205A
Authority
JP
Japan
Prior art keywords
cooling
cooling water
low
water
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6703883A
Other languages
Japanese (ja)
Inventor
Naoto Kishikawa
岸川 直人
Akiyoshi Shimauchi
島内 明美
Shinichi Yamashita
伸一 山下
Yuzuru Ikezaki
池崎 譲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP6703883A priority Critical patent/JPS59193205A/en
Publication of JPS59193205A publication Critical patent/JPS59193205A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/10Cooling; Devices therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To recover the heat possessed by relatively low temp. waste cooling water in good efficiency, by providing a heat pump and low b.p. heating medium generation equipment in the recirculation route of cooling water and waste water in the cooling system of a shaft furnace body. CONSTITUTION:The waste cooling water having a relatively low temp. of 60 deg.C or less issued from cooling disks divided into plural sets for cooling a shaft furnace body 1 is gathered to a main drain pipe 4 and raised in temp. by an absorbing type heat pump 18 while a part of the waste water is taken out as high temp. water at 70 deg.C or more. The remainder of the waste water is cooled and taken out as low temp. cooling water 24. The high temp. cooling water having a temp. of 70 deg.C or more is introduced into the low b.p. heating medium steam generator of low b.p. heating medium turbine generation equipment 23 to generate low b.p. steam and a turbine is operated to generate electricity. The low temp. cooling water 24 from one outlet of the heat pump 18 and the cooling water 25 cooled by the low b.p. heating medium steam generator are again recirculated to the cooling disks 2 of the shaft furnace to be used as cooling water.

Description

【発明の詳細な説明】 近年、省エネルギiが叫ばれ各種設備の中低温排熱利用
が実施されている。
DETAILED DESCRIPTION OF THE INVENTION In recent years, there has been a demand for energy saving, and the use of medium and low temperature waste heat from various types of equipment has been implemented.

高炉の炉体冷却システムにおいては、オーにステーブク
ーラー、冷却盤等の冷却体の高炉炉内高温下での破損を
防止するため多量の冷却水が使用されること。オニに冷
却体破損時の同一冷却系統冷却体の連鎖反応的破損をさ
ける目的で、冷却系統が数個のセクションに分割されて
いることの理由により冷却排水の温度は約50℃以丁と
低い。
In the blast furnace body cooling system, a large amount of cooling water is used to prevent cooling bodies such as stave coolers and cooling plates from being damaged at high temperatures inside the blast furnace. The temperature of the cooling waste water is as low as about 50℃ or less because the cooling system is divided into several sections to avoid chain reaction failure of cooling bodies in the same cooling system when the cooling body is damaged. .

このため低沸点熱媒体タービン発電システム等で熱エネ
ルギー回収を行なうにしても熱交換器の容量が大きくな
り、かつ低沸点熱媒の発生蒸気圧が低いため発電量が小
さい。
For this reason, even if thermal energy is recovered using a low boiling point heat medium turbine power generation system or the like, the capacity of the heat exchanger is large and the generated steam pressure of the low boiling point heat medium is low, resulting in a small amount of power generation.

従って経済性に乏しい現状である。Therefore, the current situation is that it is not economically viable.

また、一方冷却水を再循環使用するだめ、排水温度を望
ましい給水温度に下げるため、海水利用クーラー等で冷
却されている。この冷却設備のため膨大な設備費と運転
費が必要である。
On the other hand, in order to reduce the temperature of the waste water to the desired temperature of the water supply, since the cooling water cannot be recirculated, it is cooled using a seawater cooler or the like. This cooling equipment requires enormous equipment and operating costs.

本発明はか\る不利を解決するための排水熱エネルギー
の回収方法に関する高炉炉体冷却水の排熱回収設備であ
れ、その要旨は、高炉炉体冷却システムに於ける冷却水
及び排水の循環経路中に、ヒートポンプと低沸点熱媒体
発電設備を設けたものである。
The present invention is a waste heat recovery equipment for blast furnace body cooling water related to a method for recovering waste water thermal energy to solve such disadvantages, and its gist is the circulation of cooling water and waste water in a blast furnace body cooling system. A heat pump and low boiling point heat medium power generation equipment are installed in the route.

即ち、本発明は冷却水排水温度を、低沸点熱媒体タービ
ン発電を経済的に行なうに必要な温度約70℃以上に上
げるため吸収式、圧縮式等のヒートポンプを利用する。
That is, the present invention utilizes an absorption-type heat pump, a compression-type heat pump, or the like in order to raise the cooling water drainage temperature to about 70° C. or higher, which is necessary for economical low-boiling point heat medium turbine power generation.

しかる後、低沸点熱媒体と熱交換させ、圧力蒸気を得て
タービンを駆動、発電1し排水熱エネルギーを回収せん
とするものである。
Thereafter, heat is exchanged with a low boiling point heat medium to obtain pressure steam to drive a turbine, generate electricity 1, and recover waste water thermal energy.

以下図面によって説明を行なう。The explanation will be given below with reference to the drawings.

第1図は冷却盤方式の炉体冷却システムの系統図を示す
Figure 1 shows a system diagram of a cooling plate type furnace body cooling system.

高炉炉壁1には冷却体である冷却盤2が高さ方向に多数
挿入され、炉壁レンガを冷却保護している。冷却盤2は
、その1ケが炉内高温によシ破損しその発見がおくれた
場合、同一冷却系統の他の冷却盤も断水状態となるため
連鎖的に破損する。そのため通常3〜5個の冷却盤を1
ケの冷却系統として接続している。
A large number of cooling plates 2, which are cooling bodies, are inserted in the blast furnace wall 1 in the height direction to cool and protect the furnace wall bricks. If one of the cooling panels 2 is damaged due to the high temperature inside the furnace and it is discovered too late, other cooling panels in the same cooling system will also be damaged due to water cutoff. Therefore, usually 3 to 5 cooling plates are installed in one
It is connected as a cooling system.

一方冷却盤には、炉内高温から破損を防止するため約7
5〜1007/minの大量の水を流している。
On the other hand, the cooling plate is equipped with approximately 7 lb.
A large amount of water is flowing at a rate of 5 to 1007/min.

従って、温度上昇量は小さく従って排水温度は約6ρ℃
以下である。
Therefore, the amount of temperature rise is small and the wastewater temperature is approximately 6ρ℃.
It is as follows.

各系統からの排水は各床に設けられた排水環状管3に集
められ、更に排水本管4を経て排′水タンク5に集合す
る。こ\で、空冷式または海水冷却式の冷却設備6によ
シ冷却され、ポンプ7、給水本管8、給水環状管9を経
由して冷却盤2へ再び給水される。
Drainage from each system is collected in a drainage annular pipe 3 provided on each floor, and further collected in a drainage tank 5 via a drainage main pipe 4. The water is then cooled by an air-cooled or seawater-cooled cooling equipment 6, and water is again supplied to the cooling board 2 via a pump 7, a main water supply pipe 8, and an annular water supply pipe 9.

第2図はステープクーラ一方式の炉体冷却システムの系
統図を示す。
FIG. 2 shows a system diagram of a one-type staple cooler type furnace body cooling system.

高さ方向で必要給水量が異なるため3つのセクションに
分割され、ステープクーラー10をそれぞれ直列に1つ
の管で連結し、排水は排水環状管11、排水本管12を
経由して排水タンク13に集合する。こ\で海水冷却式
の冷却設備14によシ冷却され、ポンプ15、給水本管
16、給水環状管17を経由してステープクーラー10
へ再び給水される。
Since the required amount of water supply differs in the height direction, it is divided into three sections, and the staple coolers 10 are each connected in series with one pipe, and the drainage is discharged to the drainage tank 13 via the drainage annular pipe 11 and the drainage main pipe 12. Gather. Here, it is cooled by a seawater cooling type cooling equipment 14, and then sent to the staple cooler 10 via a pump 15, a main water supply pipe 16, and an annular water supply pipe 17.
Water will be supplied to the area again.

何れの方式でも冷却排水温度が約50’C以下と低い。In either method, the cooling water temperature is as low as about 50'C or less.

このため低沸点熱媒体タービン発電システム等で熱エネ
ルギー回収を行なう場合、熱交換器の容量が大きくなり
、かつ低沸点熱媒体の発生蒸気圧が低いため発電量が小
さい。
For this reason, when thermal energy is recovered in a low boiling point heat medium turbine power generation system or the like, the capacity of the heat exchanger is large and the generated steam pressure of the low boiling point heat medium is low, resulting in a small amount of power generation.

従って経済性に乏しく、冷却排水熱工法ルギーの回収を
困難にしている。
Therefore, it is not economical and makes it difficult to recover the cooling and drainage thermal construction method.

第3図は本発明にか\る冷却盤方式の場合の冷却排水熱
エネルギー回収システムの系統図を示す。
FIG. 3 shows a system diagram of the cooling wastewater thermal energy recovery system in the case of the cooling plate type according to the present invention.

排水本管4を経てきた排水を吸収式ヒートポンプ18に
よって昇温させ排水の一部を約70℃以上の高温水とし
て取出す。排水の他の残りは、冷却されて低温の冷却水
として取出される。
The temperature of the wastewater that has passed through the drainage main pipe 4 is raised by an absorption heat pump 18, and a part of the wastewater is taken out as high-temperature water of approximately 70°C or higher. The remainder of the wastewater is cooled and removed as low-temperature cooling water.

この型式のヒートポンプは通常オ■種吸収ヒートポンプ
と呼ばれ蒸発器19、吸収器加、冷却器21及び発生器
nからなっている。
This type of heat pump is usually called an O-type absorption heat pump and consists of an evaporator 19, an absorber, a cooler 21, and a generator.

臭化リチウム(LiBr )等水溶液の水蒸気吸収時の
吸収熱(稀釈熱)と呼ばれる発熱作用を利用したもので
ある。
This method utilizes the exothermic effect called heat of absorption (heat of dilution) when an aqueous solution such as lithium bromide (LiBr) absorbs water vapor.

他の型式の吸収ヒートポンプ、圧縮ヒートポンプ等を用
いて高温水を取出してもよい。
Other types of absorption heat pumps, compression heat pumps, etc. may be used to extract high temperature water.

これらの高温水は低沸点熱媒体タービン発電設備μs中
の低沸点熱媒体蒸気発生器に導入し、低沸点の蒸気を発
生、タービンをまわして電力としてエネルギーを回収す
る。
These high-temperature waters are introduced into a low-boiling point heat medium steam generator in the low-boiling point heat medium turbine power generation equipment μs to generate low-boiling point steam, which rotates a turbine to recover energy as electric power.

ヒートポンプ出口の一方の低温の冷却水ス及び低沸点熱
媒体蒸気発生器で冷却された冷却水5けポンプ7、給水
本管8、給水環状管9を経由して高炉炉壁1に設けた冷
却盤2に再び給水される。なお図中5は排水タンクであ
不。
Cooling provided in the blast furnace wall 1 via the low-temperature cooling water at one of the heat pump outlets, the cooling water cooled by the low boiling point heat medium steam generator, the 5 pump 7, the main water supply pipe 8, and the annular water supply pipe 9. Water is supplied to board 2 again. Note that 5 in the figure is a drainage tank.

以上の如く比較的低温の高炉冷却水をヒートポンプを利
用して低沸点熱媒体タービン発電に適した高温水とし、
低沸点熱媒体タービン発電によシ冷却水排熱を回収する
ことが可能となる。
As described above, the relatively low temperature blast furnace cooling water is converted into high temperature water suitable for low boiling point heat medium turbine power generation using a heat pump,
It becomes possible to recover cooling water waste heat by low boiling point heat medium turbine power generation.

他の方法として、ヒートポンプ18を使用せずに低沸点
熱媒体タービン発電に適した高温水を確保するために1
多くの冷却体を一系統の冷却流路として連結させること
が考えられる。
As another method, to secure high temperature water suitable for low boiling point heat medium turbine power generation without using the heat pump 18
It is conceivable to connect many cooling bodies as one cooling channel.

冷却盤方式の他、ステープクーリング方式の場合も全く
同様である。
The same applies to the cooling plate type and the staple cooling type.

高炉の長期稼動に伴ない、冷却水の奪熱量は増大する傾
向にある。
With the long-term operation of a blast furnace, the amount of heat absorbed by the cooling water tends to increase.

従って、本発明の排熱回収設備は工業的に極めて有用で
ある。
Therefore, the exhaust heat recovery equipment of the present invention is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の冷却盤方式の炉体冷却システムの系統図
、第2図は従来のステーブクーリング方式の炉体冷却シ
ステムの系統図、第3図は本発明にか\る冷却排水熱エ
ネルギー回収システムの一例を示す系統図である。 1は高炉炉壁、2は冷却盤、4け排水本管、5は排水タ
ンク、7はポンプ、8は給水本管、9は給水環状管、1
8は吸収式ヒートポンプ、19は蒸発器、加は吸収器、
21は冷却器、nは発生器、23は低沸点熱媒体タービ
ン発電設備、冴は一方の低温の冷却水、5は低沸点熱媒
体蒸気発生器で冷却された冷却水。 特許出願人 新日本袈鉄株式会社 同         日鐵プラント設計株式会社寄 /
 凹 筬ユ扁 4ブ ヤ3男 (1
Figure 1 is a system diagram of a conventional cooling plate type furnace body cooling system, Figure 2 is a system diagram of a conventional stave cooling type furnace body cooling system, and Figure 3 is a diagram of the cooling wastewater thermal energy according to the present invention. It is a system diagram showing an example of a collection system. 1 is the blast furnace furnace wall, 2 is the cooling plate, 4 drainage mains, 5 is the drainage tank, 7 is the pump, 8 is the water supply main pipe, 9 is the water supply ring pipe, 1
8 is an absorption heat pump, 19 is an evaporator, and 19 is an absorber.
21 is a cooler, n is a generator, 23 is a low boiling point heat medium turbine power generation equipment, Sae is one low temperature cooling water, and 5 is cooling water cooled by a low boiling point heat medium steam generator. Patent applicant Nippon Steel Plant Design Co., Ltd. /
Concave reed, 4 boys, 3 boys (1

Claims (1)

【特許請求の範囲】[Claims] 高炉炉体冷却システムに於ける冷却水及び排水の循環経
路中に、ヒートポンプと低沸点熱媒体発電設備を設けた
ことを特徴とする、高炉炉体冷却水の排熱回収設備。
A blast furnace body cooling water exhaust heat recovery equipment, characterized in that a heat pump and a low boiling point heat medium power generation equipment are installed in the circulation path of cooling water and waste water in a blast furnace body cooling system.
JP6703883A 1983-04-18 1983-04-18 Waste heat recovery equipment of cooling water of shaft furnace body Pending JPS59193205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6703883A JPS59193205A (en) 1983-04-18 1983-04-18 Waste heat recovery equipment of cooling water of shaft furnace body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6703883A JPS59193205A (en) 1983-04-18 1983-04-18 Waste heat recovery equipment of cooling water of shaft furnace body

Publications (1)

Publication Number Publication Date
JPS59193205A true JPS59193205A (en) 1984-11-01

Family

ID=13333287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6703883A Pending JPS59193205A (en) 1983-04-18 1983-04-18 Waste heat recovery equipment of cooling water of shaft furnace body

Country Status (1)

Country Link
JP (1) JPS59193205A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105219898A (en) * 2015-10-10 2016-01-06 成都申川节能环保工程有限公司 Based on the pressure-controlled vibration cogeneration energy-saving control system of over-voltage over-current protection
CN110185508A (en) * 2019-05-28 2019-08-30 淮沪煤电有限公司 A kind of energy comprehensive utilization system and its operation method based on coal mine gas recycling

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105219898A (en) * 2015-10-10 2016-01-06 成都申川节能环保工程有限公司 Based on the pressure-controlled vibration cogeneration energy-saving control system of over-voltage over-current protection
CN110185508A (en) * 2019-05-28 2019-08-30 淮沪煤电有限公司 A kind of energy comprehensive utilization system and its operation method based on coal mine gas recycling
CN110185508B (en) * 2019-05-28 2020-02-28 淮沪煤电有限公司 Energy comprehensive utilization system based on coal mine gas recovery and operation method thereof

Similar Documents

Publication Publication Date Title
EP1336724B1 (en) Exhaust heat utilization method for carbon dioxide recovery process
KR101295806B1 (en) Combined cycle power plant utilizing absorption heat pump for improving generating efficiency, and method for controlling thereof
US8544284B2 (en) Method and apparatus for waste heat recovery and absorption gases used as working fluid therein
CN207348918U (en) A kind of low temperature exhaust heat high efficiente callback electricity generation system
KR20150019977A (en) Hybrid condenser cooling system
KR101603253B1 (en) Condenser Waste-heat Recovery System
JPS59193205A (en) Waste heat recovery equipment of cooling water of shaft furnace body
KR101071919B1 (en) High efficient Gas Compression System using Absorption refrigeration
CN116105508A (en) Electric furnace waste heat recovery system and method based on molten salt energy storage
CN206310790U (en) A kind of magnetic suspension and suction-type lithium bromide bimodulus operation heating combined equipment
RU119393U1 (en) HEAT ELECTRIC POWER STATION WITH ABSORPTION BROWN-LITHIUM REFRIGERATING MACHINE
CN212408714U (en) Coal-fired power plant waste heat and water recovery system
JP3147322B2 (en) Absorption chiller / heater
CN210317417U (en) Coal-fired power generation system
CN109356724B (en) Coupling method of flue gas waste heat supply and air inlet cooling and gas heating
JPS6226304A (en) Steam-binary-compound geothermal power system
CN202052456U (en) Solar auxiliary extraction flue gas decarburization and refrigeration combination system with solid absorbent
CN111023617A (en) Device and method for cooling dead steam cooling water based on refrigeration mode
KR101695029B1 (en) Apparatus of heat recovery from CO2 capture apparatus using dry regenerable sorbents for power plant
JPH0443802A (en) Exhaust heat recovery steam turbine type energy system
JPH02146208A (en) Compound heat utilizing plant
CN219624514U (en) Molten salt energy storage system for waste heat recovery of electric furnace
JPS6024833B2 (en) Method for recovering coke oven gas waste heat
JPS63215841A (en) Gas turbine generating system
CN103383199A (en) Integrated waste heat generating and dust removing method utilizing flue gas from interior and exterior of electric furnace