JPS5919309B2 - Halogen gas sensing element - Google Patents

Halogen gas sensing element

Info

Publication number
JPS5919309B2
JPS5919309B2 JP10786776A JP10786776A JPS5919309B2 JP S5919309 B2 JPS5919309 B2 JP S5919309B2 JP 10786776 A JP10786776 A JP 10786776A JP 10786776 A JP10786776 A JP 10786776A JP S5919309 B2 JPS5919309 B2 JP S5919309B2
Authority
JP
Japan
Prior art keywords
halogen gas
gas
sensing element
halogen
gas sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10786776A
Other languages
Japanese (ja)
Other versions
JPS5333696A (en
Inventor
孝 高橋
英夫 大熊
正樹 桂
基真 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10786776A priority Critical patent/JPS5919309B2/en
Publication of JPS5333696A publication Critical patent/JPS5333696A/en
Publication of JPS5919309B2 publication Critical patent/JPS5919309B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】 本発明はハロゲンガスの吸脱着による電気抵抗の変化を
利用してハロゲンガスを感知する素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an element that senses halogen gas by utilizing changes in electrical resistance due to adsorption and desorption of halogen gas.

例えば冷蔵庫などの冷媒としてフレオン系ガスが、また
大型冷凍機の冷媒として塩化メチルガスなどがそれぞれ
使用されている。
For example, Freon gas is used as a refrigerant in refrigerators, and methyl chloride gas is used as a refrigerant in large refrigerators.

しかしてこれら冷媒としてのハロゲン系ガスは冷凍能力
の低下や衛生的な面などから漏洩防止ないし漏洩を速か
に感知する必要がある。ところでハロゲンもしくはハロ
ゲン化物ガスの感知は次のような手段で行なわれている
。例えばsno2やZnOなど酸化物半導体中に白金抵
抗体を設けハロゲンガスの吸脱着に伴う熱伝導度ないし
温度による前記白金抵抗体の抵抗値変化でハロゲン系ガ
スを感知する手段または加熱フィラメントに近接させて
一方の電極を配置しておき加熱フィラメントと電極との
間を流れるイオン電流がハロゲン系ガスの存在によつて
変化する手段を利用したものなどが知られている。しか
しこれらの手段では熱伝導式素子の場合は1000pμ
m以上の高濃度でしか感知し得ず、1〜100ppm程
度の低濃度の場合には検知できなかつた。一方電極間の
イオン電流の変化により検出する方法では300V程度
の高電圧源を要し、ヒータ電力も数w必要であり、装置
が大型化した。
However, it is necessary to prevent or promptly detect leakage of these halogen-based gases as refrigerants in order to reduce the refrigerating capacity and to maintain hygiene. By the way, sensing of halogen or halide gas is carried out by the following means. For example, a platinum resistor is provided in an oxide semiconductor such as sno2 or ZnO, and the platinum resistor is placed close to a heating filament or a means for sensing halogen gas based on the thermal conductivity associated with adsorption and desorption of halogen gas, or the change in resistance value of the platinum resistor due to temperature. A known method uses a method in which one electrode is arranged and the ionic current flowing between the heating filament and the electrode changes depending on the presence of a halogen gas. However, with these methods, in the case of a thermally conductive element, 1000 pμ
It could only be detected at a high concentration of 1 to 100 ppm, and could not be detected at a low concentration of about 1 to 100 ppm. On the other hand, the method of detection based on changes in the ion current between electrodes requires a high voltage source of about 300 V, requires several watts of heater power, and increases the size of the device.

またこのイオン電流法が高感度であるが高濃度ガスに接
触すると回復までに時間がかかつたり或いは素子の寿命
が短いなどの欠点があつた。さらに従来のハロゲンガス
感応体ではイソプタンガス等の還元性ガスと同様にガス
濃度の増加に伴い低抵抗に変化するため、・・ロゲンガ
スと還元性ガスとの判別において問題点があつた。
Furthermore, although this ion current method has high sensitivity, it has drawbacks such as a long recovery time when it comes into contact with a highly concentrated gas and a short life span of the device. Furthermore, in conventional halogen gas sensitive materials, the resistance changes as the gas concentration increases, similar to reducing gases such as isoptane gas, so there was a problem in distinguishing between halogen gas and reducing gas.

本発明は上記の点を鑑み高電圧源を必要とせず低濃度の
ハロゲンガスも容易に且つ再現性よく感知しさらにガス
の選択性に優れたハロゲンガス感知素子を提供する事を
目的とする。
In view of the above points, it is an object of the present invention to provide a halogen gas sensing element that does not require a high voltage source, can easily sense halogen gas at low concentrations with good reproducibility, and has excellent gas selectivity.

本発明はモル比でZn099.9〜40%およびAuX
3(但しXはCl、Br、Iのうち少なくともいずれか
一種)0.1〜60%を含む組成の焼結体からなるハロ
ゲンガス感応体と、前記ハロゲン感応体に設けられた一
対の電極を具備する事を特徴としたハロゲンガス感知素
子である。
The present invention uses Zn099.9 to 40% and AuX in molar ratio.
3 (where X is at least one of Cl, Br, and I) a halogen gas sensitive body made of a sintered body with a composition containing 0.1 to 60%, and a pair of electrodes provided on the halogen sensitive body. This is a halogen gas sensing element characterized by:

なおZnOをモル比で99.9〜40%としたのは、9
9.9%を超えるとガス吸脱による抵抗値の変化率が少
さく感度が低下し、また40%未満では焼結性が劣るか
らである。また、AUX3をモル比で0.1〜60%と
したのは、0.1%未満でもまた60%を超えても所要
の効果を発揮しないからである。本発明に係るハロゲン
ガス感知素子は以下のようにして製造しうる。
The reason why the molar ratio of ZnO is 99.9 to 40% is 9.
This is because if it exceeds 9.9%, the rate of change in resistance value due to gas adsorption and desorption will be small, resulting in a decrease in sensitivity, and if it is less than 40%, sinterability will be poor. Further, the reason why AUX3 is set to 0.1 to 60% in terms of molar ratio is that the desired effect is not exhibited even if it is less than 0.1% or exceeds 60%. The halogen gas sensing element according to the present invention can be manufactured as follows.

例えばZnOおよびAUX3を所定の組成比に選んだ粉
末をボールミルなどによりよく混合して調整粉末を得る
。次いでこの調整粉末に粘結剤として例えばポリビニル
アルコール水溶液を加え、ペースト状化した後、予じめ
用意しておいた絶縁筒基体1の外周に金属線2本2,2
″を平行に巻装し、少なくともその金属線間に上記ペー
スト状物3を塗布充填する。しかる後乾燥し、500〜
900℃の空気雰囲気中での焼結を施す事によつてZn
O−Aux3系ガス感応体を形成せしめることによりハ
ロゲン感知素子が得られる。
For example, powder in which ZnO and AUX3 are selected at a predetermined composition ratio is thoroughly mixed in a ball mill or the like to obtain an adjusted powder. Next, an aqueous solution of polyvinyl alcohol as a binder is added to this prepared powder to form a paste, and then two metal wires 2
'' are wound in parallel, and the paste-like material 3 is applied and filled at least between the metal wires. Then, it is dried and
By sintering in an air atmosphere at 900°C, Zn
A halogen sensing element is obtained by forming an O-Aux3-based gas sensitive material.

上記においてAUX3としては例えばAuCl3に容易
に分解するHAuCl4・4H20等の酸類を用いても
全く同様の効果をあげられる。
In the above, even if an acid such as HAuCl4.4H20 which easily decomposes into AuCl3 is used as AUX3, the same effect can be obtained.

さらに本発明に係るハロゲンガス感知素子が具備するガ
ス感応体はZnOおよびAuX,の種類、組成比によつ
て特性を調整しうる。例えばAuCl3は低濃度のガス
に対する適確な感応性、応答速度、安定した動作性など
の点でさらに良好な性質を示す。一方AuBr3・Au
I3ず☆は濃度と抵抗値との直線的な関係に大きく寄与
するばかりでなく、高濃度のハロゲンガスに接触しても
感度が変らず且つ温度の影響抑止などの点でよりすぐれ
た性能を示す。次に本発明の実施例を記載する。
Furthermore, the characteristics of the gas sensitive body included in the halogen gas sensing element according to the present invention can be adjusted by adjusting the types and composition ratios of ZnO and AuX. For example, AuCl3 exhibits better properties in terms of proper sensitivity to low concentration gases, response speed, stable operation, etc. On the other hand, AuBr3・Au
I3zu☆ not only greatly contributes to the linear relationship between concentration and resistance value, but also has superior performance in terms of sensitivity not changing even when it comes into contact with high concentration halogen gas, and suppressing the effects of temperature. show. Next, examples of the present invention will be described.

ZnO粉末およびAuX3(但しXはCl,.BrlI
のうち少なくともいづれか一種)粉末を所定の組成比に
選び、参考例を含め30種の混合物を得た後、それぞれ
ボールミルにかけてよく混合して、9それぞれ調整粉末
とした。
ZnO powder and AuX3 (where X is Cl, .BrlI
At least one of these powders was selected at a predetermined composition ratio to obtain 30 mixtures including reference examples, and each mixture was thoroughly mixed in a ball mill to obtain 9 adjusted powders.

しかる後これら調整粉末にポリビニルアルコール0.5
%水溶液を加えそれぞれペースト状物とした。次いで第
1図に示す如く外局面に2本の金属線2,2′を平行に
巻装した内径0.81』厚さ0.2mTfLs5長さ4
nの円筒状絶縁基体1の外周面に上記ペースト状物3を
塗布充填し、乾燥後750℃でそれぞれ焼結処理を施し
てハロゲンガス感知素子を作製した。
After that, 0.5% of polyvinyl alcohol was added to these prepared powders.
% aqueous solution was added to each to form a paste. Next, as shown in Fig. 1, two metal wires 2 and 2' were wound in parallel around the outer surface, and the inner diameter was 0.81'', the thickness was 0.2 m, and the length was 4.
The paste-like material 3 was applied and filled onto the outer peripheral surface of the cylindrical insulating substrate 1 of No. n, and after drying, a sintering treatment was performed at 750° C. to produce a halogen gas sensing element.

しかして上記のハロゲンガス感知素子についてっ 室温
(25℃)下で、ハロゲンガス濃度0ppmの時の抵抗
値R。
Regarding the above-mentioned halogen gas sensing element, the resistance value R is at room temperature (25°C) and a halogen gas concentration of 0 ppm.

およびCCl2F2ガス濃度100ppmの時抵抗値R
gを測定し、抵抗変化率Rg/ROを組成比と共に表−
1に示した。またCHClF2についても同様に測定し
、表−1に併τ せて示す。次にこれらハロゲンガス感
知素子について、ハロゲンガスとしてCCl2F2の濃
度と抵抗変化率との関係を調べ第2図に示した。
and resistance value R when CCl2F2 gas concentration is 100 ppm
g, and table the resistance change rate Rg/RO along with the composition ratio.
Shown in 1. CHClF2 was also measured in the same manner, and the results are also shown in Table 1. Next, for these halogen gas sensing elements, the relationship between the concentration of CCl2F2 as a halogen gas and the rate of change in resistance was investigated and is shown in FIG.

なお第2図において曲線aは実施例11を、曲線bは実
施例5を、また曲線cは実施例11に対する還元性ガス
(イソブタンガス)濃度に対する抵抗変化率を示す。第
2図から明らかな如く・・ロゲンガス濃度に応じて抵抗
変化率が異つているため抵抗値から濃度も検知しうる。
また還元性ガス(イソブタンガス)の濃度と抵抗変化率
との関係は、・・ロゲンガスと逆の傾向を示すため、ハ
ロゲンガスと還元性ガスとの区別が明確となる。さらに
上記ハロゲンガス感知素子についてCCl2F2を10
0ppm含む空気と接触、離脱させた場合における応答
特性を調べ第3図に示した。
In FIG. 2, curve a shows Example 11, curve b shows Example 5, and curve c shows the rate of change in resistance with respect to reducing gas (isobutane gas) concentration for Example 11. As is clear from FIG. 2, the rate of change in resistance varies depending on the concentration of rogen gas, so the concentration can also be detected from the resistance value.
In addition, the relationship between the concentration of reducing gas (isobutane gas) and the rate of change in resistance shows a tendency opposite to that of halogen gas, so it becomes clear to distinguish between halogen gas and reducing gas. Furthermore, for the above halogen gas sensing element, 10% of CCl2F2 was added.
The response characteristics when brought into contact with and released from air containing 0 ppm were investigated and shown in Figure 3.

なお第3図において曲線aは実施例11の場合を、また
曲線bは実施例5の場合をそれぞれ示す。第3図から明
らかな如く応答性にも優れている。以上の如く本発明は
10ppm程度のハロゲン系ガスも感知し得る程度感度
でかつ応答性にも優れ、その上ハロゲンガスと還元性ガ
スとの選択性にも優れた・・ロゲンガス感知素子といえ
る。本実施例ではCCl2F2及びCHClF2を用い
た例を示したが、他のハロゲンガス、例えばCHBrF
2でも同様の特性を示す。
In FIG. 3, curve a shows the case of Example 11, and curve b shows the case of Example 5. As is clear from FIG. 3, the responsiveness is also excellent. As described above, the present invention can be said to be a halogen gas sensing element that is sensitive enough to detect a halogen gas of about 10 ppm, has excellent responsiveness, and has excellent selectivity between halogen gas and reducing gas. Although this example shows an example using CCl2F2 and CHClF2, other halogen gases such as CHBrF2 can also be used.
2 shows similar characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のハロゲンガス感知素子の構成例を示す
斜視図、第2図および第3図は本発明に係るハロゲンガ
ス感知素子の諸特性を示す曲線図、第1図において1・
・・・・・絶縁性基体、2,2′・・・・・・金属線、
3・・・・・・ハロゲンガス感応体。
FIG. 1 is a perspective view showing a configuration example of a halogen gas sensing element according to the present invention, and FIGS. 2 and 3 are curve diagrams showing various characteristics of the halogen gas sensing element according to the present invention.
...Insulating base, 2,2'...Metal wire,
3...Halogen gas sensitive body.

Claims (1)

【特許請求の範囲】[Claims] 1 モル比でZnO99.9〜40%およびAuX_3
(但しXはCl、Br、Iのうち少なくともいずれか一
種)0.1〜60%を含む組成の焼成体からなるハロゲ
ンガス感応体と、前記ハロゲンガス感応体に設けられた
一対の電極を具備する事を特徴としたハロゲンガス感知
素子。
1 molar ratio of ZnO99.9-40% and AuX_3
(However, X is at least one of Cl, Br, and I.) A halogen gas sensitive body made of a fired body having a composition containing 0.1 to 60%, and a pair of electrodes provided on the halogen gas sensitive body. A halogen gas sensing element that is characterized by:
JP10786776A 1976-09-10 1976-09-10 Halogen gas sensing element Expired JPS5919309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10786776A JPS5919309B2 (en) 1976-09-10 1976-09-10 Halogen gas sensing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10786776A JPS5919309B2 (en) 1976-09-10 1976-09-10 Halogen gas sensing element

Publications (2)

Publication Number Publication Date
JPS5333696A JPS5333696A (en) 1978-03-29
JPS5919309B2 true JPS5919309B2 (en) 1984-05-04

Family

ID=14470078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10786776A Expired JPS5919309B2 (en) 1976-09-10 1976-09-10 Halogen gas sensing element

Country Status (1)

Country Link
JP (1) JPS5919309B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252322U (en) * 1988-10-01 1990-04-16

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3212770A1 (en) * 1982-04-06 1983-10-06 Bosch Gmbh Robert METHOD FOR GAP-FREE INSTALLATION OF MIDDLE ELECTRODES IN THE INSULATING BODY OF SPARK PLUGS FOR INTERNAL COMBUSTION ENGINES
DE19542974C2 (en) * 1995-11-17 2001-05-31 Siemens Ag Sensor for halogens and hydrogen halide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252322U (en) * 1988-10-01 1990-04-16

Also Published As

Publication number Publication date
JPS5333696A (en) 1978-03-29

Similar Documents

Publication Publication Date Title
US3676820A (en) Gas detecting element and method of manufacturing same
US3695848A (en) Gas detecting device
US3732519A (en) Semiconductor gas detecting device
EP0114310B1 (en) Carbon monoxide sensing element and process for manufacturing it
JPH0517650Y2 (en)
JPS5919309B2 (en) Halogen gas sensing element
US3916367A (en) Relative humidity sensor
JPS5814043B2 (en) humidity sensor element
JPS5922174B2 (en) Halogen gas sensing element
JPS6036017B2 (en) Manufacturing method of reducing gas detection element
JPH0429050A (en) Gas sensor
JPH0580012A (en) Semiconductor gas detection element
JP3495607B2 (en) Carbon dioxide sensor
JPH01321348A (en) Hydrogen gas sensor
JPS604849A (en) Nitrogen oxide detecting element
JPS6363064B2 (en)
JPH0627071A (en) Carbon-dioxide-gas detecting element and detecting method using it
JPH0875692A (en) Contact-burning type gas sensor
JPH0447658Y2 (en)
JPS58122453A (en) Gas sensor element
JPS599851B2 (en) Flammable gas sensor device
JPS627497B2 (en)
JPS58624B2 (en) gas sensing element
JPS58113849A (en) Semiconductor gas sensor
JP2000088797A (en) Carbon dioxide sensor