JPS5919276B2 - How to control the amount of heat exchanged - Google Patents

How to control the amount of heat exchanged

Info

Publication number
JPS5919276B2
JPS5919276B2 JP14171279A JP14171279A JPS5919276B2 JP S5919276 B2 JPS5919276 B2 JP S5919276B2 JP 14171279 A JP14171279 A JP 14171279A JP 14171279 A JP14171279 A JP 14171279A JP S5919276 B2 JPS5919276 B2 JP S5919276B2
Authority
JP
Japan
Prior art keywords
amount
heat
fluid
liquid
fluids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14171279A
Other languages
Japanese (ja)
Other versions
JPS5666698A (en
Inventor
賢一郎 中島
友久 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP14171279A priority Critical patent/JPS5919276B2/en
Publication of JPS5666698A publication Critical patent/JPS5666698A/en
Publication of JPS5919276B2 publication Critical patent/JPS5919276B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】 本発明は熱交換器等の交換熱量を制御する方法に関し、
特に2流体間の伝熱面積を変化させることにより、迅速
に2流体間の交換熱量を制御する方法に関する。
[Detailed Description of the Invention] The present invention relates to a method for controlling the amount of heat exchanged in a heat exchanger, etc.
In particular, the present invention relates to a method of quickly controlling the amount of heat exchanged between two fluids by changing the heat transfer area between the two fluids.

温度の異なる2流体を隔壁?へたてて接触させて熱交換
な行なう際、プロセス流体の出口温度が所定温度より高
くなシすぎたり、低くなりすぎたりすることがあり、こ
れシ所定温度になるよう制御する方法として、従来から
加熱又は冷却媒体側の流体(以下単に媒体流体と称する
)の入口温度な変化させる方法または媒体流体の流量を
調節する方法が行なわれていた。
A partition between two fluids with different temperatures? When heat exchange is performed by contacting the process fluid with a flat surface, the outlet temperature of the process fluid may be too high or too low than the predetermined temperature. A method of changing the inlet temperature of a fluid on the heating or cooling medium side (hereinafter simply referred to as a medium fluid) or a method of adjusting the flow rate of a medium fluid has been used.

ところがこのような従来の交換熱量制御法は次のような
欠点があった。
However, such conventional heat exchange control methods have the following drawbacks.

(1) i度制御、流量調節とも熱交換器の熱容量、
ポンプ、温度調節器からの流体の移動等による遅れが出
る。
(1) The heat capacity of the heat exchanger for i degree control and flow rate adjustment,
There is a delay due to the movement of fluid from the pump and temperature controller.

(2) システムとしての動的特性の正確な把握が困難
である。
(2) It is difficult to accurately grasp the dynamic characteristics of the system.

(3)急激に交換熱量を変化させる場合、2流体の熱容
量により、交換熱量決定の支配要因である温度差を所定
の速さで変化させることができない。
(3) When changing the amount of heat exchanged rapidly, it is not possible to change the temperature difference, which is the dominant factor in determining the amount of heat exchanged, at a predetermined speed due to the heat capacities of the two fluids.

本発明者らはこのような従来技術の欠点を解消するため
鋭意検討した結果、2流体間の伝熱面積を変化さすこと
に想到し、冒頭に記載した本発明に至ったのである。
The inventors of the present invention have made extensive studies to solve the drawbacks of the prior art, and have come up with the idea of changing the heat transfer area between two fluids, resulting in the present invention described at the beginning.

以下、図面に沿って本発明を具体的に説明する。The present invention will be specifically described below with reference to the drawings.

第1図は本発明の詳細な説明するための説明図であり、
熱交換器1は2重の隔壁2および3で2室に分けられて
いる。
FIG. 1 is an explanatory diagram for explaining the present invention in detail,
The heat exchanger 1 is divided into two chambers by double partition walls 2 and 3.

互いに温度の異なるプロセス流体Aと媒体流体Bを夫々
隔壁2,3をへだてて流すことによシ接触させる。
A process fluid A and a medium fluid B having different temperatures are brought into contact by flowing through partition walls 2 and 3, respectively.

一方、隔壁2.3に囲まれた空間5には流体4を入れる
On the other hand, fluid 4 is introduced into space 5 surrounded by partition wall 2.3.

液体4の液面Hが上にあがると2流体2,3間の伝熱面
積は増大し、交換熱量が増す。
When the liquid level H of the liquid 4 rises, the heat transfer area between the two fluids 2 and 3 increases, and the amount of heat exchanged increases.

また、液面Hが下がると2流体2,3間の伝熱面積は減
少しく空気の熱伝導率は液体の熱伝導率よりはるかに小
さい)、交換熱量は減少する。
Furthermore, when the liquid level H decreases, the heat transfer area between the two fluids 2 and 3 decreases (the thermal conductivity of air is much lower than that of the liquid), and the amount of exchanged heat decreases.

この液体4の液位(液面Hの高さ)を適当な手段で変化
させることによシ、交換熱量を制御することができる。
By changing the liquid level of the liquid 4 (the height of the liquid surface H) by appropriate means, the amount of exchanged heat can be controlled.

不発面において、液体4が入っている空間5は2流体A
、Bが流れる部屋と隔離され、独立した空間になってい
てもよいし、また、空間5が流体AまたはBのいずれか
に連通していて、したがって液体4は流体AまたはBそ
のものであってもかまわない。
On the unexploded surface, the space 5 containing the liquid 4 has two fluids A
, B may be isolated from the room in which they flow, forming an independent space, or the space 5 may be in communication with either fluid A or B, and therefore the liquid 4 may be fluid A or B itself. I don't mind.

第2図は本発明な用いた液体金属精製装置の断面図であ
る。
FIG. 2 is a sectional view of a liquid metal refining apparatus used in the present invention.

この例のプロセス流体は液体金属6であり、高温流体で
ある。
The process fluid in this example is liquid metal 6, which is a high temperature fluid.

また、媒体流体は冷却流体7である。Further, the medium fluid is the cooling fluid 7.

隔壁2,3間の空間5はプロセス流体側に連通しており
、空間5には液体金属6が入っている。
A space 5 between the partition walls 2 and 3 communicates with the process fluid side, and contains a liquid metal 6.

入口ノズル8から入った液体金属6は冷却ダクト9を通
る冷却流体7と隔壁2.3シへだてて接触、冷却され、
温度測定端子10によって設定された温度に制御される
The liquid metal 6 entering from the inlet nozzle 8 comes into contact with the cooling fluid 7 passing through the cooling duct 9 and is cooled by the partition wall 2.3.
The temperature is controlled to a set temperature by the temperature measurement terminal 10.

析出した不純物はコールドトラップのメツシュ13に溜
す、精製された金属は出口ノズル14から出る。
The precipitated impurities are collected in the mesh 13 of the cold trap, and the purified metal exits from the outlet nozzle 14.

過剰に冷却された場合の交換熱量制御として従来は冷却
流体7の流量変化または加熱ヒータ11の容量変化によ
って行なってきたが、本機構では隔壁2゜3間の空間5
に入っている液体金属6の液位をカバーガス圧力調整器
12を用いて変化させ、液体金属6と冷却流体7との間
の伝熱面積な変化させて交換熱量ケ制御する。
Conventionally, the amount of heat exchanged in the case of excessive cooling has been controlled by changing the flow rate of the cooling fluid 7 or changing the capacity of the heater 11, but in this mechanism, the space 5 between the partition walls 2.3
The amount of heat exchanged is controlled by changing the level of the liquid metal 6 contained in the liquid metal 6 using the cover gas pressure regulator 12 and changing the heat transfer area between the liquid metal 6 and the cooling fluid 7.

第3図は本発明の機構を用いた液体金属純度測定装置の
断面図である。
FIG. 3 is a sectional view of a liquid metal purity measuring device using the mechanism of the present invention.

入口ノズル8から入った液体金属6は冷却ダクト9を通
る冷却流体γによって冷却され、不純物析出温度になる
とオリフィス17のところで不純物が析出し、流量変化
が起きるため、これによって不純物濃度を検知する装置
である。
The liquid metal 6 that enters from the inlet nozzle 8 is cooled by the cooling fluid γ passing through the cooling duct 9, and when it reaches the impurity precipitation temperature, impurities are precipitated at the orifice 17, causing a change in flow rate.This is the device that detects the impurity concentration. It is.

不純物析出までの冷却とオリフィス17に溜った不純物
を再溶融するには、従来は冷却流体7の流量調節および
加熱ヒータ11の容量変更にたよっていたが、本機構で
は、これに加えて、あるいは単独に液位制御液体4の液
位をピストン15の移動によって上下させ、伝熱面積を
変化させることにより交換熱量な制御する。
Conventionally, cooling until impurity precipitation and remelting the impurities accumulated in the orifice 17 relied on adjusting the flow rate of the cooling fluid 7 and changing the capacity of the heater 11, but in this mechanism, in addition to this, or The amount of exchanged heat is controlled by independently raising and lowering the liquid level of the liquid 4 by moving the piston 15 and changing the heat transfer area.

第3図の装置において、隔壁2,3によって閉ざされた
空間5は冷却流体I側および液体金属6側のいずれとも
隔絶しており、液位の変更はベロー16の所に設置され
たピストン15で行なう。
In the device shown in FIG. 3, a space 5 closed by partition walls 2 and 3 is isolated from both the cooling fluid I side and the liquid metal 6 side, and the liquid level is changed by a piston 15 installed at a bellows 16. Let's do it.

このように、2液間の伝熱面積を変化させることにより
、不純物再溶融あるいは不純物析出のための冷却がきわ
めて迅速になる。
By changing the heat transfer area between the two liquids in this manner, cooling for remelting impurities or precipitation of impurities becomes extremely rapid.

本発明の交換熱量制御方法は次のような利点を有する。The exchange heat amount control method of the present invention has the following advantages.

(1) 伝熱面積の変化は隔壁間の液位な変えること
によって行なうため、極めて短時間で終了す谷したがっ
て、従来の流量変化や温度調節器を用・ いる方法に
くらべ、流体の移動に伴なう制御時間の遅れがなくな谷 (2)流量変化によって交換熱量を制御する場合と異な
り、2流体の熱伝達にほとんど影響を与えない。
(1) Since the heat transfer area is changed by changing the liquid level between the partition walls, the troughs are completed in an extremely short period of time. There is no accompanying control time delay, and unlike the case where the amount of heat exchanged is controlled by the valley (2) flow rate change, there is almost no effect on the heat transfer between the two fluids.

・(3) システムとしての動的特性の正確な把握が
容易である。
-(3) It is easy to accurately grasp the dynamic characteristics of the system.

(4)通常の熱交換器、金属の精製、金属の純度測定な
どの装置、凝縮器など広い範囲に適用が可能である。
(4) It can be applied to a wide range of applications such as ordinary heat exchangers, equipment for metal refining and metal purity measurement, and condensers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概念を示す説明図、第2図は本発明を
用いた液体金属精製装置の断面図、第3図は本発明を用
いた液体金属純度測定装置の断面図である。 1・・・・・・熱交換器、2,3・・・・・・隔壁、4
・・・・・・液体、5・・・・・・空間、6・・・・・
・液体金属、7・・・・・・冷却流体、12・・・・・
・カバーガス圧力調節器、15・・・・・・ピストン、
A・・・・・・プロセス流体、B・・・・・・媒体流体
FIG. 1 is an explanatory diagram showing the concept of the present invention, FIG. 2 is a cross-sectional view of a liquid metal purification apparatus using the present invention, and FIG. 3 is a cross-sectional view of a liquid metal purity measuring apparatus using the present invention. 1... Heat exchanger, 2, 3... Partition wall, 4
...Liquid, 5...Space, 6...
・Liquid metal, 7... Cooling fluid, 12...
・Cover gas pressure regulator, 15... piston,
A...Process fluid, B...Medium fluid.

Claims (1)

【特許請求の範囲】[Claims] 1 温度の異なる2流体を隔壁をへだてて接触させるこ
とによシ熱交換を行なう方法において、該隔壁を二重に
設けて、その隔壁間に液体を流入し、該隔壁間の流体の
液位を変化させることにより、前記2流体間の交換熱量
を制御する方法。
1. In a method of exchanging heat by bringing two fluids with different temperatures into contact across a partition wall, the partition walls are provided in duplicate, a liquid flows between the partition walls, and the liquid level of the fluid between the partition walls is adjusted. A method of controlling the amount of heat exchanged between the two fluids by changing the amount of heat exchanged between the two fluids.
JP14171279A 1979-11-01 1979-11-01 How to control the amount of heat exchanged Expired JPS5919276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14171279A JPS5919276B2 (en) 1979-11-01 1979-11-01 How to control the amount of heat exchanged

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14171279A JPS5919276B2 (en) 1979-11-01 1979-11-01 How to control the amount of heat exchanged

Publications (2)

Publication Number Publication Date
JPS5666698A JPS5666698A (en) 1981-06-05
JPS5919276B2 true JPS5919276B2 (en) 1984-05-04

Family

ID=15298437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14171279A Expired JPS5919276B2 (en) 1979-11-01 1979-11-01 How to control the amount of heat exchanged

Country Status (1)

Country Link
JP (1) JPS5919276B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19651480A1 (en) * 1996-12-11 1998-06-18 Krantz Tkt Gmbh Adjustment device

Also Published As

Publication number Publication date
JPS5666698A (en) 1981-06-05

Similar Documents

Publication Publication Date Title
EP0409989A1 (en) Method of controlling temperature of machine tool and apparatus for practicing same
US4651813A (en) Thermostat for the setting of a constant temperature for a fluid
US2852090A (en) Liquid type air conditioning apparatus and method for marine applications
CA1244402A (en) Heat exchanger and process for cooling gases
US3863708A (en) Modulatable heat exchanger with restraint to avoid condensation
JPS5919276B2 (en) How to control the amount of heat exchanged
GB1595865A (en) Heat-exchanger element for a cold drier
US3406744A (en) Heating and air-conditioning apparatus
Johnson et al. Spray—extraction‐tower studies
SU1386807A1 (en) Method of preventing formation of hoarfrost in heat exchanger
JPH03152365A (en) Refrigerator
JPH0133611Y2 (en)
Test The Influence of Bypass Channels on the Laminar Flow Heat-Transfer and Fluid Friction Characteristics of Shell and Tube Heat Exchangers
CN111767636B (en) Explicit heat transfer calculation method of single-pass cross-flow heat exchanger
GB1515793A (en) Flameless reboiler for reconcentrating liquid desiccant
SU848957A1 (en) Heat exchanger
JPS644202A (en) Gas cooling device
SU912219A1 (en) Filter-heat exchanger
US2106101A (en) Air conditioning system
JPS6215662Y2 (en)
SU1101655A1 (en) Heat exchanger
JPH0142725B2 (en)
JP2551408Y2 (en) Paint temperature controller
SU877488A1 (en) Temperature regulator
SU398838A1 (en) DEVICE FOR MEASURING THE TEMPERATURE) OF MELT CRYSTALLIZATION