JPS59192232A - Optical deflector of waveguide type - Google Patents

Optical deflector of waveguide type

Info

Publication number
JPS59192232A
JPS59192232A JP58066417A JP6641783A JPS59192232A JP S59192232 A JPS59192232 A JP S59192232A JP 58066417 A JP58066417 A JP 58066417A JP 6641783 A JP6641783 A JP 6641783A JP S59192232 A JPS59192232 A JP S59192232A
Authority
JP
Japan
Prior art keywords
electrode
curved
frequency
surface acoustic
acoustic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58066417A
Other languages
Japanese (ja)
Inventor
Toshihiko Kitano
北野 利彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58066417A priority Critical patent/JPS59192232A/en
Publication of JPS59192232A publication Critical patent/JPS59192232A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices
    • G02F1/335Acousto-optical deflection devices having an optical waveguide structure

Abstract

PURPOSE:To extend a frequency band and to eliminate the dependence of delay time upon frequency by forming a curved reed screen type electrode so that intervals of intersections between the normal passing an optional point of a center electrode finger and the other electrode fingers traversed by this normal are constant. CONSTITUTION:An optical beam 5 propagated in a plane waveguide 2 is subjected to Bragg diffraction with a surface acoustic wave 4 radiated by a curved reed screen type electrode 3, where electrode fingers are curved in the lengthwise direction, to obtain a deflected light 6. In this case, a reed screen type electrode 11 is so formed that intervals of electrode fingers of this electrode 11 are decreased or increased gradually and are approximately constant in the propagation direction of the surface acoustic wave. Consequently, the time when the surface acoustic wave radiated from the reed screen type electrode 11 reaches an optical beam 12 is hardly different between a case 13 of a low frequency f1 and a case 14 of a high frequency f2 and is not dispersed. Thus, the frequency band is extended, and the dependence of delay time upon frequency is eliminated.

Description

【発明の詳細な説明】 本発明は、光音響信号処理装置に用いられる弾性表面波
利用の光偏向器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical deflector using surface acoustic waves used in a photoacoustic signal processing device.

弾性表面波(SAW)変換器を用いた導波型光偏向器は
、光・音響信号処理デバイスたとえば実時間スペクトラ
ムアナライザ、コリレータ等の集積化、小型化、高性能
化をもたらすものとして種々の研究がなされている。こ
の様な光偏向器では、現在、偏向効率の向上とともに周
波数帯域の広帯域化が極めて重袂なテーマとなっている
Waveguide optical deflectors using surface acoustic wave (SAW) converters are being studied in various ways as a means of integrating, miniaturizing, and improving the performance of optical/acoustic signal processing devices such as real-time spectrum analyzers and correlators. is being done. Currently, in such optical deflectors, improving deflection efficiency and widening the frequency band are extremely important themes.

広帯域化として、これまでSAW伝搬方向に沿って電極
指間隔を徐々に変えたチャープ電極を用いるタイプが提
案されている。チャープ電極は、電極指間隔が徐々に変
化しており、さらに各周波数で光ビームとのプラグ条件
が満足される様に各電極指が互いに傾斜しているため、
偏向器の周波数特性はほぼ平担となり、広帯域化が容易
に実現される。しかしSAWが励振されてから元ビーム
と交叉するまでの時間が周波数により異なるため、一様
遅延(直線位相)周波数特性を必要とする様な信号処理
デバイス、たとえばコリレータのようなデバイスへの適
用には不向きである。そのため広帯域でかつ光ビームと
交叉するまでの時間に周波数依存性がない様な光偏向器
が望まれる。
In order to widen the band, a type using chirped electrodes in which the spacing between electrode fingers is gradually changed along the SAW propagation direction has been proposed. In the chirp electrode, the electrode finger spacing gradually changes, and each electrode finger is tilted to each other so that the plug condition with the light beam is satisfied at each frequency.
The frequency characteristics of the deflector become almost flat, making it easy to achieve a wide band. However, since the time from when the SAW is excited until it intersects with the original beam differs depending on the frequency, it cannot be applied to signal processing devices that require uniform delay (linear phase) frequency characteristics, such as correlators. is not suitable. Therefore, an optical deflector is desired that has a wide band and has no frequency dependence in the time taken to intersect with the optical beam.

広帯域化のさらに別の例としては、電極指が長さ方向に
曲線上(こ曲っている湾曲すだれ状電極を用いるタイプ
がある。これは最初カーネギメロン大学のシー・ニス・
ツアイ(C0S、Tsai)氏により提案されたもので
、アイトリプルイー(IBEB )発行のトランザアク
ション・オン・サーキッツ・アンド・システムズ(Tr
ansaction on C1rcuitsand 
Systems )誌1979年12月号1072頁に
掲載さイtたツアイ氏の論文ガイディソド・ウニイブ・
アク−スト・オプティック・プラグ・モジューレークス
・フォー・ワイド・バンド・インチグレイティラド噛オ
プティックス・コミュニケーション・アンド拳シクナル
プロセスイン’y” (Gu 1ded −WaveA
coustooptic Bragg Modulat
ors for Wide −Band Integr
ated 0ptic Comrlllunicati
ons andSignal Processing 
)  に湾曲すだれ状電極の図が広帯域光偏向器の例と
して示されている。
Another example of broadband expansion is a type that uses curved interdigital electrodes in which the electrode fingers are curved in the longitudinal direction.
This was proposed by Mr. Tsai (C0S), and was published by Transaction Action on Circuits and Systems (Tr) published by IBEB.
Answer on C1rcuitsand
Systems) magazine, December 1979 issue, page 1072.
Acoust Optic Plug Module Lakes for Wide Band Inch Gradient Optics Communication and Fist Signal Process In'y'' (Gu 1ded -WaveA
coustooptic Bragg Modulat
ors for Wide-Band Integr
ated 0ptic Comrllunicati
ons and Signal Processing
) shows a diagram of a curved interdigital electrode as an example of a broadband optical deflector.

この図から湾曲すだれ状電極の電極指間隔が、長さ方向
で徐々に変化し、かつSAW伝搬方向でほぼ一定である
ため、広帯域かつ遅延時間が周波数に゛依存しない、い
わゆる非分散性の偏向器の実現か容易の様に見える。し
かし原理的(こは、広帯域化及び非分散化が実現される
ように帯域内のあらゆる周波数のSAWに対してプラグ
条件を満足せしめ、かつSAW伝搬方向に対し゛電極指
間隔を一定とする様な電極の構成は不可能である。そこ
で何らかの近似的な構成法が必要となるが、前述のソア
イ氏の引用文献も含め全く提案されていない。
This figure shows that the electrode finger spacing of the curved interdigital electrode changes gradually in the length direction and is almost constant in the SAW propagation direction, resulting in so-called non-dispersive deflection with a wide band and delay time independent of frequency. It looks like it would be easy to implement the device. However, in principle, it is necessary to satisfy the plug condition for SAWs of all frequencies in the band and to keep the electrode finger spacing constant in the SAW propagation direction so that broadband and non-dispersion can be realized. Therefore, some kind of approximate construction method is necessary, but none have been proposed, including the cited document by Mr. Soai mentioned above.

そこで、周波数帯域が広く、遅延時間が周波数に依存し
ないような湾曲すだれ状電極の構成法が得られれば、極
めて有用である。
Therefore, it would be extremely useful if a method for configuring curved interdigital electrodes with a wide frequency band and a delay time independent of frequency could be obtained.

本発明の目的は、この様な湾曲すだれ状電極の構成を与
えるものであり、本発明の導波型光偏向器は薄膜光導波
路上に電極指が長さ方向に湾曲しかつ有限の周波数帯域
を有する湾曲すだれ状電極を設け、前記薄膜光導波路内
を伝搬する光ビームを前記湾曲すだれ状電極から放射さ
れる弾性表面波により偏向させる導波型光偏向器におい
て、前記湾曲すだれ状電極の中央電極指より放射される
弾性表面波と前記元ビームとが常に前記周波数帯域内で
プラク回折条件を満足し、さらに前記中央電極指上の任
意の点を通る法線が他の電極指を順次よぎる際、この法
線と各電極指との各交点間の間隔が一定となる様に前記
湾曲すだれ収電1椿を構成せしめたことに特徴がある。
The object of the present invention is to provide such a structure of curved interdigital electrodes, and the waveguide type optical deflector of the present invention has electrode fingers curved in the longitudinal direction on a thin film optical waveguide and has a finite frequency band. In the waveguide type optical deflector, a curved interdigital electrode is provided, and a light beam propagating in the thin film optical waveguide is deflected by a surface acoustic wave emitted from the curved interdigital electrode, wherein the center of the curved interdigital electrode is The surface acoustic wave emitted from the electrode finger and the original beam always satisfy the Plaque diffraction condition within the frequency band, and furthermore, the normal passing through any point on the central electrode finger sequentially crosses other electrode fingers. The present invention is characterized in that the curved blind electricity collector 1 is configured such that the distance between each intersection of this normal line and each electrode finger is constant.

次に本発明を図面を参照しながら説明する。Next, the present invention will be explained with reference to the drawings.

第1図は本発明になる導波型光偏向器の一実施例を示す
立体図で、1は基板、2は基板上に設けられた平面光導
波路で、例えばL 1NbOs基板上にTIを拡散する
ことにより得られる。3は電極指が長さ方向で湾曲して
いる湾曲すだれ状電極で、この電極より放射される弾性
表面波4ζこより平面導波路内を伝搬する光ビーム5は
プラグ回折され偏向光6が得られる。入射光7を導波路
に伝搬せしめたり、出射光6をとり出す手段は種々ある
が、本実施例ではたとえば8,9のようなプリズムを用
いて行なわれる。第2図は第1図の湾曲すだれ状電極3
を拡大した図で、すだれ状電極11の電極指間隔が電極
指長さ方向に沿って徐々に減少もしくは増加し、さらに
弾性表面波の伝搬方向にほぼ一定となるような構造をし
ている。したがって、すだれ状電極11より放射された
弾性表面波が光ビーム12までζこ到達する時間は、周
波数がf8のように低い場合13でも、f2のように高
い場合14でもほぼ同じとなり分散性はない。第3図は
第2図に示した湾曲すたれ状電極の具体的な構成法を示
す図である。
FIG. 1 is a three-dimensional diagram showing an embodiment of the waveguide type optical deflector according to the present invention, where 1 is a substrate and 2 is a planar optical waveguide provided on the substrate. For example, TI is diffused on an L 1NbOs substrate. It can be obtained by 3 is a curved interdigital electrode whose electrode fingers are curved in the length direction, and a light beam 5 propagating in the planar waveguide is plug-diffracted by the surface acoustic wave 4ζ emitted from this electrode to obtain polarized light 6. . There are various means for propagating the incident light 7 into the waveguide and extracting the output light 6, but in this embodiment, prisms such as 8 and 9 are used. Figure 2 shows the curved interdigital electrode 3 of Figure 1.
In this enlarged view, the interdigital electrode 11 has a structure in which the electrode finger spacing gradually decreases or increases along the length direction of the electrode fingers, and further remains almost constant in the propagation direction of the surface acoustic wave. Therefore, the time it takes for the surface acoustic wave emitted from the interdigital electrode 11 to reach the light beam 12 is almost the same whether the frequency is low like f8 (13) or high like f2 (14), and the dispersion is do not have. FIG. 3 is a diagram showing a specific method of constructing the curved intersecting electrode shown in FIG. 2.

すなわち、湾曲すだれ状電極の対数をNとするとN/2
  番目の中央電極指21から放射される表面波が、電
極の帯域内のすべての周波数でプラグ回折の条件を満足
するにはまず電極指21の形状が、第3図の様にy軸、
y軸を決めると次式で示されることが必要十分である。
That is, if the number of pairs of curved interdigital electrodes is N, then N/2
In order for the surface waves emitted from the th central electrode finger 21 to satisfy the plug diffraction conditions at all frequencies within the band of the electrode, the shape of the electrode finger 21 must first be adjusted along the y-axis as shown in FIG.
Once the y-axis is determined, it is necessary and sufficient that it is expressed by the following equation.

この時、各電極指で励損される周波数はXの値により直
線的に変わり、 Xl f=fo+()Δf(2) 2 で示される。ここでWは電極のX軸方向の長さで近似的
には電極指交差幅を、foは電極の中心周波数、Δfは
電極の周波数帯域幅、λ。、は光ビームの波長、neは
光導波路の屈折率、voは表面波の伝搬速度を示す。
At this time, the frequency excited by each electrode finger changes linearly depending on the value of X, and is expressed as Xl f=fo+()Δf(2) 2 . Here, W is the length of the electrode in the X-axis direction and is approximately the intersecting width of the electrode fingers, fo is the center frequency of the electrode, and Δf is the frequency bandwidth of the electrode, λ. , represents the wavelength of the light beam, ne represents the refractive index of the optical waveguide, and vo represents the propagation speed of the surface wave.

又、光ビームの伝搬方向は なる直線に平行となる。Also, the propagation direction of the light beam is parallel to the straight line.

次に中央電極指以外の電極指22〜25は式(1)で決
められた電極指21上に法線26をたて、電極指間隔が
その場所に和尚する周波数(式(2)より求められる)
より決まる波長λの半分となる様に構成する。
Next, for the electrode fingers 22 to 25 other than the central electrode finger, the normal line 26 is drawn on the electrode finger 21 determined by formula (1), and the electrode finger spacing is set at the frequency (calculated from formula (2)) )
The wavelength is set to be half of the wavelength λ determined by

つまり、第3図の電極指21上の点Aに立てた法線26
上で、電極指間隔dは とXの関数になる。
In other words, the normal line 26 set at point A on the electrode finger 21 in FIG.
In the above, the electrode finger spacing d is a function of and X.

を実現することが出来る。can be realized.

第4図は、本発明になる導波型光偏向器を用いて光偏向
実験を行なった結果得られた周波数特性である。中心周
波数200 MH2、周波数帯域100■号、交差幅2
−6mvt、電極指対数14対なる湾曲すだれ状電極を
、Yカッ) LiNbO3基板上に形成されたTi拡散
光導波路上に設け、He −Neレーザを用いて偏向器
の周波数特性をはかった。この結果、帯域幅(−3dB
) 80MJム、したがって比帯域40%という広帯域
な偏向器が実現でき、本発明の有用性が実証された。
FIG. 4 shows frequency characteristics obtained as a result of an optical deflection experiment using the waveguide optical deflector according to the present invention. Center frequency 200 MH2, frequency band 100■, crossover width 2
-6mvt, curved interdigital electrodes with 14 pairs of electrode fingers were provided on a Ti-diffused optical waveguide formed on a Y-type LiNbO3 substrate, and the frequency characteristics of the deflector were measured using a He-Ne laser. As a result, the bandwidth (-3dB
) A deflector with a wide band of 80 MJ and a fractional band of 40% was realized, demonstrating the usefulness of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

/p1ノ 第1図は本発明になる導波型光偏向器の一実施を示す立
面図で、 1:基板、2:光導波路、3:湾曲すだれ状電極、4:
弾性表面波、5:光ビーム、6:偏向光、7:入射光、
8.9ニブリズム を示す。 第2図は湾曲すだれ状電極の拡大図で、11:湾曲すだ
れ状電極、12:光ビーム、13.14:弾性表面波 を示し、第3図は第2図の湾曲すだれ状電極の構成法を
示す図で、 21〜25:電極指、26二法線 を示す。 第4図は本発明になる導波型光偏向器の周波数特性の実
験結果である。 ?rc創人弁理±1も原  − 175− 弔1図 、、ff      /     乙 第2図 ゲ3図 A
Figure 1 of /p1 is an elevational view showing one implementation of the waveguide type optical deflector according to the present invention, 1: substrate, 2: optical waveguide, 3: curved interdigital electrode, 4:
surface acoustic wave, 5: light beam, 6: polarized light, 7: incident light,
Shows 8.9 nibrism. Fig. 2 is an enlarged view of the curved interdigital electrode, showing 11: curved interdigital electrode, 12: light beam, 13.14: surface acoustic wave, and Fig. 3 shows the construction method of the curved interdigital electrode in Fig. 2. In the figure, 21 to 25: electrode fingers, 26 two normal lines. FIG. 4 shows the experimental results of the frequency characteristics of the waveguide type optical deflector according to the present invention. ? rc Founder's Attorney ±1 Mohara - 175- Funeral Figure 1, ff / Otsu Figure 2 Ge 3 Figure A

Claims (1)

【特許請求の範囲】[Claims] 薄膜光導波路上に電極指が長さ方向に湾曲し、かつ有限
の周波数帯域を有する湾曲すだれ状電極を備え、前記薄
膜光導波路内を伝搬する光ビームを前記湾曲すだれ状電
極から放射される弾性表面波により偏向させる導波型光
偏向器において、前記湾曲すだれ状電極の中央電極指よ
り放射される弾性表面波と前記光ビームとが常に前記周
波数帯域内でプラグ回折条件を満足し、さらに前記中央
電極指上の任意の点を通る法線が他の電極指を順次よぎ
る際、この法線と各電極指との各交点間の間隔が一定と
なる様に前記湾曲すだれ状電極を構成せしめたことを特
徴とする導波型光偏向器。
A thin film optical waveguide is provided with a curved interdigital electrode in which electrode fingers are curved in the length direction and has a finite frequency band, and a light beam propagating within the thin film optical waveguide is radiated from the curved interdigital electrode. In a waveguide type optical deflector that deflects using a surface wave, the surface acoustic wave emitted from the center electrode finger of the curved interdigital electrode and the light beam always satisfy the plug diffraction condition within the frequency band, and The curved interdigital electrode is configured so that when a normal line passing through an arbitrary point on the central electrode finger successively crosses other electrode fingers, the distance between each intersection of this normal line and each electrode finger is constant. A waveguide type optical deflector characterized by:
JP58066417A 1983-04-15 1983-04-15 Optical deflector of waveguide type Pending JPS59192232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58066417A JPS59192232A (en) 1983-04-15 1983-04-15 Optical deflector of waveguide type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58066417A JPS59192232A (en) 1983-04-15 1983-04-15 Optical deflector of waveguide type

Publications (1)

Publication Number Publication Date
JPS59192232A true JPS59192232A (en) 1984-10-31

Family

ID=13315193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58066417A Pending JPS59192232A (en) 1983-04-15 1983-04-15 Optical deflector of waveguide type

Country Status (1)

Country Link
JP (1) JPS59192232A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4815802A (en) * 1984-12-03 1989-03-28 Canon Kabushiki Kaisha Surface acoustic wave generating apparatus including a positive feedback-type generator
US4929043A (en) * 1988-05-31 1990-05-29 Fuji Photo Film Co., Ltd. Light beam deflector
US4929042A (en) * 1986-11-28 1990-05-29 Fuji Photo Film Co., Ltd. Variable acoustical deflection of an optical wave in an optical waveguide
US4940304A (en) * 1987-06-03 1990-07-10 Fuji Photo Film Co., Ltd. Optical deflecting apparatus
US4941722A (en) * 1988-05-27 1990-07-17 Fuji Photo Film Co., Ltd. Light beam deflector
US5138482A (en) * 1989-09-25 1992-08-11 Fuji Photo Film Co., Ltd. Light modular and recording device employing same
US8654424B2 (en) 2009-09-15 2014-02-18 Ricoh Company, Ltd. Multibeam deflector for separating beams output from optical deflection devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936346A (en) * 1972-08-04 1974-04-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936346A (en) * 1972-08-04 1974-04-04

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4815802A (en) * 1984-12-03 1989-03-28 Canon Kabushiki Kaisha Surface acoustic wave generating apparatus including a positive feedback-type generator
US4929042A (en) * 1986-11-28 1990-05-29 Fuji Photo Film Co., Ltd. Variable acoustical deflection of an optical wave in an optical waveguide
US4940304A (en) * 1987-06-03 1990-07-10 Fuji Photo Film Co., Ltd. Optical deflecting apparatus
US4941722A (en) * 1988-05-27 1990-07-17 Fuji Photo Film Co., Ltd. Light beam deflector
US4929043A (en) * 1988-05-31 1990-05-29 Fuji Photo Film Co., Ltd. Light beam deflector
US5138482A (en) * 1989-09-25 1992-08-11 Fuji Photo Film Co., Ltd. Light modular and recording device employing same
US8654424B2 (en) 2009-09-15 2014-02-18 Ricoh Company, Ltd. Multibeam deflector for separating beams output from optical deflection devices

Similar Documents

Publication Publication Date Title
US4155056A (en) Cascaded grating resonator filters with external input-output couplers
US5400171A (en) Acousto-optic filter with near-ideal bandpass characteristics
JPS59192232A (en) Optical deflector of waveguide type
US4027946A (en) Acousto-optic guided-light beam device
RU2182347C2 (en) Acoustooptical tunable filter
US4455064A (en) Surface acoustic wave transducer array for a guided-wave acoustooptic device
JPH09218317A (en) Tapered waveguide and optical waveguide element using the same
JPH08286160A (en) Acoustooptic filter
JP2976273B2 (en) Acousto-optic element
WO2002043462A2 (en) Saw wave-guides
Yamamoto et al. Guided-wave acoustooptic tunable filters using simple coupling weighting technique
JPH09211504A (en) Laser pulse compressor
JP2674306B2 (en) Waveguide type optical deflector
US4737743A (en) Single mode waveguide saw dispersive filter
JP2985457B2 (en) Acousto-optic tunable wavelength filter
JPH05181098A (en) Acoustooptical variable wavelength filter
JP2770773B2 (en) Acousto-optic filter
JPH03128519A (en) Saw resonator and saw filter
JPH09152565A (en) Acoustooptical filter
JP3276088B2 (en) Waveguide type acousto-optic device
US5675207A (en) Surface acoustic waver convolver
RU2093877C1 (en) Method which decreases angular divergence of laser beam and device which implements said method
JPS62242922A (en) Acousto-optical device
US5345135A (en) Interdigital transducer for use in a surface acoustic wave filter
JPS59192233A (en) Optical deflector of waveguide type