JPS59192055A - Preparation of concentrated soya milk - Google Patents

Preparation of concentrated soya milk

Info

Publication number
JPS59192055A
JPS59192055A JP58063774A JP6377483A JPS59192055A JP S59192055 A JPS59192055 A JP S59192055A JP 58063774 A JP58063774 A JP 58063774A JP 6377483 A JP6377483 A JP 6377483A JP S59192055 A JPS59192055 A JP S59192055A
Authority
JP
Japan
Prior art keywords
soymilk
concentrated
soybean
milk
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58063774A
Other languages
Japanese (ja)
Other versions
JPS611103B2 (en
Inventor
Nobuyuki Inoue
信幸 井上
Kazutoshi Serikawa
芹川 一敏
Toshihiko Akizuki
秋月 利彦
Mikio Higure
日暮 幹男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Nyugyo KK
Original Assignee
Kyushu Nyugyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Nyugyo KK filed Critical Kyushu Nyugyo KK
Priority to JP58063774A priority Critical patent/JPS59192055A/en
Publication of JPS59192055A publication Critical patent/JPS59192055A/en
Publication of JPS611103B2 publication Critical patent/JPS611103B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Dairy Products (AREA)
  • Beans For Foods Or Fodder (AREA)

Abstract

PURPOSE:To obtain a concentrated soya milk having excellent taste and flavor and low viscosity, and free of soybean smell, by grinding soybean together with a solution of polyphosphoric acid salt, removing refuse from the product, and treating the obtained soya milk with a proteinase under a specific pH condition. CONSTITUTION:Soybean is ground together with a solution of a polyphosphoric acid salt (e.g. sodium metaphosphate, etc.) at 75-85 deg.C, and the refuse is removed from the obtained liquid. The resultant soya milk is adjusted to 7-8pH, treated with a proteinase, usually heated to deactivate the enzyme, and concentrated to obtain the objective soya milk. USE:The stock solution for the preparation of powdery soya milk by spray drying process.

Description

【発明の詳細な説明】 本発明は、大豆臭がなく、風味良好な低粘性の濃縮豆乳
の製造方法に関するものであり、さらに詳しくは、大豆
を重合リン酸塩溶液と共に75〜85℃ の温度で磨砕
し、該磨砕液よシ粕分を除去して豆乳を得、得られた豆
乳の−を7.0〜8.0に調整し、中性又はアルカリ性
蛋白分解酵素の単独もしくは混合物を作用させたのち濃
縮操作を実施することにより大豆臭のない風味良好な低
粘性の濃縮豆乳を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing low-viscosity concentrated soymilk with no soybean odor and good flavor. The soybean milk was ground by removing the lees from the grinding liquid, and the - of the obtained soymilk was adjusted to 7.0 to 8.0, and a neutral or alkaline proteolytic enzyme was added alone or in a mixture. The present invention relates to a method for producing a low-viscosity concentrated soymilk with no soybean odor and good flavor by carrying out a concentration operation after the soybean odor.

ここ数年来、豆乳は植物性蛋白とそれに伴う植物性脂肪
の為健康食品として注目式れるに到った。
Over the past few years, soy milk has attracted attention as a health food due to its vegetable protein and accompanying vegetable fat.

そして脱臭等の製造技術の向上によシにわかに脚光をあ
び、商品として広く市場に出廻っているのは周知の通シ
である。この豆乳は直接飲料に供するだけではなく、噴
霧乾燥によって得られる豆乳粉末共々加工用食品素材と
して、あるいは牛乳及び乳製品の代替品として各外野で
種々の食品に利用されており、今後は増々広い用途が期
待できる。
It is a well-known tsushi that has suddenly come into the spotlight due to improvements in manufacturing technology such as deodorization, and is now widely available as a commercial product. This soymilk is not only used directly as a drink, but also as a processed food material along with soymilk powder obtained by spray drying, or as a substitute for milk and dairy products in a variety of foods, and will be used in a wide variety of foods in the future. We can expect many uses.

然しなから、通常豆乳中の豆乳固形分濃度はせいぜい1
2〜13%(重量、以下同じ)位であり、水分含有量が
多い為、保管方法がむずかしく、豆乳固形分あたりの輸
送費もかかり、加工用食品素材としての用途は限定され
るという欠点を有していた。一方、豆乳を噴霧乾燥する
ことによって得られる豆乳粉末は、取り扱い、輸送費等
の面で豆乳と比較し優っているが、噴霧乾燥工程を錦で
いる為、当然ながらコストアップとなシ、加水還元して
飲料に供する場合は原豆乳と比較し香味の低下をきたし
ている。なお、噴霧乾燥に先立ちその効率をあげる為に
通常濃縮工程を行うが、大豆臭発生の原因となるリポキ
シダーゼの失活を目的とした高温磨砕法によって得られ
るいわゆる無臭豆乳は、濃縮工程中での粘度上昇が甚だ
しく、豆乳固形分が22%近辺になると、20℃で約2
500 cpの粘度を示し、流動性が減少し、乾燥効率
の低下をきたすばかりでなく、濃縮豆乳としての商品価
値まで消失してしまう。もし、風味が良好で豆乳固形分
が高く、粘度の低い濃縮豆乳が得られたならば、加工用
食品素材として、牛乳、乳製品の代替品として、さらに
は粉末豆乳用の供給原液として、大きな利用価値を生ず
るものである。すなわち、豆乳固形分が高い濃縮豆乳は
、牛乳に対する濃縮乳の関係の如く、余分な水分が少い
為包材費、輸送費が低下し、保管場所も狭くてすむうえ
、容器を移しかえる時の取り扱いが楽であり、がっ、加
水還元すればすぐ豆乳にもどすことができるので、飲料
、デザート、冷菓、製パン業界等で広い用途が考えられ
る。又粘度が低いということは豆乳粉末を製造するに際
し、豆乳の濃縮比をあげることができるので製品処理能
力の点で有利であり大巾な製品コストの低減につながっ
てくる。
However, the soy milk solid content concentration in soy milk is usually at most 1.
2-13% (by weight, the same hereinafter) and has a high water content, making storage difficult and requiring transportation costs per solid content of soymilk, which limits its use as a processed food material. had. On the other hand, soymilk powder obtained by spray-drying soymilk is superior to soymilk in terms of handling and transportation costs, but because the spray-drying process is done in brocade, it naturally increases costs and adds water. When it is reduced and used for beverages, the flavor is lower than that of raw soy milk. Furthermore, prior to spray drying, a concentration process is usually performed to increase the efficiency, but so-called odorless soymilk, which is obtained by high-temperature grinding with the aim of deactivating lipoxidase, which causes soybean odor, is processed during the concentration process. The viscosity of soybean milk increases significantly, and when the solid content of soybean milk reaches around 22%, the viscosity increases by approximately 2% at 20℃.
It exhibits a viscosity of 500 cp, resulting in decreased fluidity and drying efficiency, and also loses its commercial value as concentrated soymilk. If concentrated soymilk with good flavor, high soybean milk solids content, and low viscosity could be obtained, it could be used as a food material for processing, as a substitute for milk and dairy products, and even as a feed stock solution for powdered soymilk. It is something that generates utility value. In other words, concentrated soy milk, which has a high soy milk solid content, has less excess water, similar to the relationship between concentrated milk and cow milk, which reduces packaging and transportation costs, requires less space for storage, and is easier to transfer when changing containers. Because it is easy to handle and can be immediately reconstituted into soy milk by adding water and reducing it, it can be used in a wide variety of industries, including beverages, desserts, frozen desserts, and bread making. In addition, the low viscosity allows the concentration ratio of soymilk to be increased when producing soymilk powder, which is advantageous in terms of product processing capacity and leads to a significant reduction in product costs.

そこで豆乳中の豆乳固形分を上げるために過去様々の研
究がなされておシ、公知の公開公報にみると■特開昭4
9−30564号、■特公昭50−37736号、同昭
50−37737号などにその技術がみられる。
Therefore, various studies have been conducted in the past to increase the solid content of soymilk in soymilk.
This technique can be seen in Japanese Patent Publication No. 9-30564, Japanese Patent Publication No. 50-37736, and Japanese Patent Publication No. 50-37737.

■の方法は、浸漬大豆を加水磨砕して豆乳と豆粕に分離
し、得られる豆乳に浸漬大豆を加えて磨砕し豆乳と豆粕
に分離し、一方豆粕に加水し得られる豆乳に浸漬大豆を
加え磨砕して豆乳と豆粕に分離し、以後前記処理を繰り
返すという方法であるが、浸漬大豆を磨砕するためリポ
キシダーゼがはたらき、豆乳加工の中心技術である大豆
臭除去が行われず、青臭く不快な臭味を有した豆乳とな
り、飲料用及び加工用素材として供する範囲が限定され
好ましくない。また■の方法は、全脂大豆あるいは脱脂
大豆よシ豆乳粉末を製造するに際し、任意の工程でエリ
ソルビン酸または(および)エリソルビン酸ナトリウム
、アスコルビンe−tたは(および)アスコルビン酸ソ
ーダーを添加する方法であるが、これらの方法も水で抽
出して豆乳を得る為、青臭く不快な大豆臭は除去されて
おらず、濃縮豆乳とした時の濃縮比も劣っている。
Method (2) involves adding water and grinding soaked soybeans to separate them into soymilk and soybean meal, adding soaked soybeans to the resulting soymilk, grinding and separating into soymilk and soybean meal, and then adding water to the soybean meal and adding soaked soybeans to the resulting soymilk. The method is to add and grind the soybeans to separate them into soymilk and soybean meal, and then repeat the above process, but lipoxidase works to grind the soaked soybeans, and soybean odor removal, which is the core technology of soymilk processing, is not carried out. The soy milk has a grassy and unpleasant odor and taste, which is undesirable because it limits the scope of its use as a material for beverages and processing. In addition, method (2) involves adding erythorbic acid or (and) sodium erythorbate, ascorbic acid or (and) sodium ascorbic acid in any step when producing full-fat soybean or defatted soybean or soybean milk powder. However, since these methods also obtain soymilk by extraction with water, the grassy and unpleasant soybean odor is not removed, and the concentration ratio when making concentrated soymilk is also poor.

上述の理由によシ風味良好な低粘性濃縮豆乳の出現が切
望されていたが、従来の製造技術ではこれを達成するこ
とは困難であった。
For the reasons mentioned above, there has been a strong desire for low-viscosity concentrated soymilk with good flavor, but it has been difficult to achieve this using conventional production techniques.

通常高蛋白質溶液は粘度が高くなる為、取り扱いが困難
となる。そこで粘度を低下させる目的で酵素を作用させ
るという方法は良く知られており、基質として分離大豆
蛋白を使用した場合も同様の効果を生ずる。然しなから
、豆乳に蛋白分解酵素を添加し所定温度に加温すると、
レンネットを添加した牛乳の如く、時間の経過に伴い粘
度が高まっていくが、この現象は豆乳の抽出温度により
影響をうけ、抽出温度が高くなるに従って増粘傾向がは
げしくなる。然るに嗜好にあった風味良好な豆乳を得る
ためには、少くとも75℃以上の磨砕条件で抽出するこ
とが必要であり、かくして得られた豆乳に蛋白分解酵素
を添加して酵素処理を施せば、当然ながら豆乳の粘度は
増加してくる。かくの如き増粘した豆乳を濃縮しても、
濃縮比率はかえって低下し、初期目的に反するものとな
る。
Usually, high protein solutions have high viscosity and are difficult to handle. The method of using an enzyme to reduce the viscosity is well known, and the same effect can be obtained when isolated soybean protein is used as a substrate. However, when a proteolytic enzyme is added to soy milk and heated to a specified temperature,
Like milk with rennet added, the viscosity increases over time, but this phenomenon is affected by the extraction temperature of soymilk, and the higher the extraction temperature, the more the viscosity tends to increase. However, in order to obtain soymilk with a good flavor that suits one's taste, it is necessary to extract the soymilk under grinding conditions of at least 75°C or higher, and the soymilk thus obtained must be subjected to enzyme treatment by adding proteolytic enzymes. Naturally, the viscosity of soy milk increases. Even if you concentrate thickened soy milk like this,
On the contrary, the concentration ratio decreases, which is contrary to the initial purpose.

本発明者らは、前記の如き従来技術の問題点を改善せん
がため、鋭意研究を重ねた結果、大豆を重合リン酸塩溶
液と共に75〜85℃の温度で磨砕し、得られた豆乳を
アルカリ性とし、蛋白分解酵素を作用させたところ、豆
乳の粘度が著しく低下する事実を見出し、この知見に基
づいて本発明を完成するに到った。
In order to improve the problems of the prior art as described above, the present inventors have conducted extensive research and have found that soybean milk is obtained by grinding soybeans together with a polymerized phosphate solution at a temperature of 75 to 85°C. When made alkaline and treated with proteolytic enzymes, it was discovered that the viscosity of soymilk decreased significantly, and based on this finding, the present invention was completed.

以下本発明について詳細に説明する。The present invention will be explained in detail below.

本発明における大豆とは、外皮付着の有無は問わず、丸
大豆、外皮を除去した大豆、及び破砕きれた大豆をも含
むものである。
In the present invention, soybeans include whole soybeans, soybeans with hulls removed, and crushed soybeans, regardless of whether or not the hulls are attached.

本発明の第一工程は、抽出液として重合リン酸塩溶液を
用い、大豆と共に75〜85℃の温度で磨砕し、磨砕液
を得たのち粕分を除去して豆乳を得る工程である。
The first step of the present invention is to use a polymerized phosphate solution as an extract and grind it together with soybeans at a temperature of 75 to 85°C to obtain a ground liquid, and then remove the lees to obtain soy milk. .

本発明の第一工程刃用いる重合リン酸塩は、メタリン酸
、ポリリン酸、ピロリン酸塩などの単独もしくは混合物
で、塩としてはナトリウム塩、カリウム塩のいずれでも
よい。抽出流中における重合リン酸塩の好ましい添加量
の範囲は0.02〜0.80チ程度である。すなわち、
重合リン酸塩の添加量がこの範囲より少い抽出液で大豆
を磨砕し、粕分を除去して得た豆乳の−を7.0〜8.
0の範囲に調整し、蛋白分解酵素を用いて酵素処理をお
こなった後、濃縮操作を実施したところ、豆乳固形分2
5%で300cp(20℃)の粘度を示した。一方、重
合リン酸塩を抽出液中に0.02%程度加えることによ
り、同様の操作で得られた濃縮豆乳の粘度が300 c
p(20℃)を示すのは豆乳固形分が30%に達した時
点であり、濃縮比は急激に上昇した。
The polymerized phosphate used in the first step of the present invention may be metaphosphoric acid, polyphosphoric acid, pyrophosphate, etc. alone or as a mixture, and the salt may be either a sodium salt or a potassium salt. The preferable range of the amount of polymerized phosphate added to the extraction stream is about 0.02 to 0.80. That is,
The - of soybean milk obtained by grinding soybeans with an extract containing less polymerized phosphate than this range and removing the lees is 7.0 to 8.
After adjusting the soybean milk to a range of 0 and performing enzyme treatment using a proteolytic enzyme, a concentration operation was performed, and the solid content of soymilk was 2.
At 5%, it exhibited a viscosity of 300 cp (20°C). On the other hand, by adding about 0.02% of polymerized phosphate to the extract, the viscosity of concentrated soymilk obtained by the same operation was reduced to 300 c.
p (20°C) was reached when the solid content of soybean milk reached 30%, and the concentration ratio rapidly increased.

また、重合リン酸塩の添加量がO,SO%を越えると、
重合リン酸塩特有のえぐ味を感じて呈味的に好ましくな
く、その添加量は抽出液に対し0.02〜0.80%程
度が望ましい範囲である。
In addition, if the amount of polymerized phosphate added exceeds O,SO%,
The harsh taste characteristic of polymerized phosphates is undesirable in terms of taste, and the desired amount to be added is about 0.02 to 0.80% based on the extract.

なお、重合リン酸塩の添加効果は抽出液中に添加し、大
豆と共に磨砕してこそ効果を発揮し得るものであり、重
合リン酸塩無添加で抽出した豆乳中に後から加えて同様
な操作で濃縮しても、豆乳固形分24%でその粘度は3
00 cp(20”C)となり、目標とする濃縮比の高
い濃縮豆乳を得ることはできなかった。
The effect of adding polymeric phosphate can only be achieved by adding it to the extract and grinding it together with soybeans; it can be added later into soybean milk extracted without the addition of polymeric phosphate. Even if it is concentrated by a similar operation, the solid content of soy milk is 24% and the viscosity is 3.
00 cp (20''C), and it was not possible to obtain concentrated soymilk with a high target concentration ratio.

上述の如く、本発明は大豆を重合リン酸塩溶液を抽出液
として75〜85゛Cの磨砕温度で磨砕し磨砕液を得る
のであるが、磨砕時の温度低下を防ぐ目的であらかじめ
抽出液温を高めたり、蒸気或は湯を用いて直接又は間接
に加熱し、磨砕温度を一ヒ記範囲内に保持する必要があ
る。然し加熱による豆乳中の蛋白質の変性を防ぐ為にも
磨砕処理は可及的速かに行う必要があり、通常2〜3分
位迄で終了することが好ましい。この場合の磨砕機とし
ては、グラインダー、ミキサー、マイコロイダー等通常
の磨砕機を使用し、大豆に対する抽出液の加水量は5〜
15倍位が望ましい。
As mentioned above, in the present invention, soybeans are ground using a polymerized phosphate solution as an extract at a grinding temperature of 75 to 85°C to obtain a ground liquid. It is necessary to maintain the grinding temperature within the above range by increasing the temperature of the extract or heating it directly or indirectly using steam or hot water. However, in order to prevent denaturation of the proteins in soymilk due to heating, it is necessary to carry out the grinding process as quickly as possible, and it is usually preferable to complete the grinding process within about 2 to 3 minutes. In this case, a normal grinder such as a grinder, mixer, or mycolloider is used, and the amount of water added to the soybean extract is 5 to 5.
About 15 times is desirable.

磨砕時の温度が75℃に達しない場合にはりポキシダー
ゼの失活が不光分であシ、得られた豆乳は不快な大豆臭
が発生しておシ、風味が悪いだけではなく色調も暗くな
り好ましくない。
If the temperature at the time of grinding does not reach 75℃, the deactivation of poxidase will occur due to the inactivation of the soybean, and the resulting soymilk will not only have an unpleasant soybean odor and a bad flavor but also a dark color. I don't like it.

一方、85℃を越える磨砕温度で抽出した豆乳に蛋白分
解酵素を作用させ、濃縮操作を行うと、濃縮比は急激に
低下する。これを例証すると下記のとおりである。
On the other hand, when a proteolytic enzyme is applied to soymilk extracted at a grinding temperature exceeding 85° C. and a concentration operation is performed, the concentration ratio decreases rapidly. An example of this is as follows.

脱皮大豆100tと重合リン酸塩を0.1%含有した8
0℃の抽出液600fをミキサー内に投入し、蒸気を注
入しながら80℃に保持して9((秒間磨砕処理を行な
い、磨砕液を得、得られた磨砕液を100メツシユの金
属篩で粕汁を除去したのち、 100χ2の圧力で均質
化処理を施し、豆乳固形分10.3%−6,5の豆乳を
得た。この豆乳の粘度を東京言4測(株)VA−1型粘
度言」を用いて品温20’Cで測定したところ、7.5
cpであった。
8 containing 100 tons of dehulled soybeans and 0.1% polymerized phosphate
Pour 600f of the extract at 0°C into a mixer, maintain it at 80°C while injecting steam, and grind for 9 seconds to obtain a ground liquid. After removing the lees with a pressure of 100 χ2, a soy milk with a solid content of 10.3% - 6.5 was obtained. When measured at a product temperature of 20'C using a viscosity test, it was 7.5.
It was cp.

上記豆乳の豆乳固形分に対して大野製薬製プロテアーゼ
「アマノ」Aを暑、。。。添加し40 ’Cで3時間酵
素処理を行い、然るのち(資)℃に加熱して酵素を失活
させ、エバIレータ−を用いて豆乳固形分16.5%ま
で減圧濃縮し、濃縮豆乳を得、得られた  1次に、磨
砕温度を85°C988℃とした以外は前述の試作例と
8一様な方法で実施し、豆乳固形分16.5%の濃縮豆
乳を得、夫々の20T、における粘度を測定した。その
測定結果を下表に示す。
Heat protease "Amano" A manufactured by Ohno Pharmaceutical Co., Ltd. to the soy milk solid content of the above soy milk. . . The soybean milk was added and subjected to enzyme treatment at 40'C for 3 hours, then heated to 40'C to inactivate the enzyme, concentrated under reduced pressure using an Evaporator to a soymilk solid content of 16.5%, and concentrated. Soy milk was obtained and obtained. 1st Next, the process was carried out in the same manner as in the previous prototype example except that the grinding temperature was 85° C. and 988° C., to obtain concentrated soy milk with a soy milk solid content of 16.5%. The viscosity at 20T of each was measured. The measurement results are shown in the table below.

上表に示す如く、88℃の磨砕温度から得られた豆乳を
酵素処理し減圧濃縮したところ80℃および85’Cの
磨砕温度から得られた濃縮豆乳に比べて粘度は大巾に上
昇した。なお85℃の磨砕温度で抽出した豆乳を酵素処
理を行わずに豆乳固形分16.5%迄濃縮した時の20
’Cにおける粘度は100cpであった。
As shown in the table above, when soy milk obtained from a grinding temperature of 88°C was treated with enzymes and concentrated under reduced pressure, the viscosity increased significantly compared to concentrated soymilk obtained from grinding temperatures of 80°C and 85'C. did. In addition, when soymilk extracted at a grinding temperature of 85°C was concentrated to a soymilk solid content of 16.5% without enzyme treatment.
The viscosity at 'C was 100 cp.

以上の如く、適正な磨砕温度範囲は75〜85°Cであ
り、この様にして得られた磨砕液は、遠心分帷機、デカ
ンタ−等の機械を用いて繊維等の粕汁本発明の第三工程
は、第一工程で得られた豆乳の−を7.0〜8.0に調
整して蛋白分解酵素を作用させ、しかるのち酵素の失活
、或は必要に応じ均質化処理等を施し濃縮操作を行う工
程である。第二工程において濃縮比の高い豆乳を得る為
には、酵素処理を行う際の豆乳の声が大きく影響する。
As mentioned above, the appropriate grinding temperature range is 75 to 85°C, and the grinding liquid obtained in this way is processed into a lees juice of fibers, etc. using a machine such as a centrifugal shunter or a decanter. The third step is to adjust the - of the soymilk obtained in the first step to 7.0 to 8.0, allow proteolytic enzyme to act on it, and then deactivate the enzyme or perform homogenization treatment as necessary. This is the process of performing a concentration operation. In order to obtain soymilk with a high concentration ratio in the second step, the sound of the soymilk during enzyme treatment has a great influence.

例えば、声が7.0より低い豆乳を酵素処理して得られ
た濃縮豆乳が2.000cp(20℃)の粘度を示す時
の豆乳固形分濃度は26.5%であるのに対し、豆乳の
−を7.0〜8.0に調整後酵素処理して得られた濃縮
豆乳が2.000cp(20℃)の粘度を示す時の豆乳
固形分濃度は34%と大巾に向上した。しかし、豆乳の
−を8.0よシ高くすると風味2色調共劣化するので、
好ましいpi(の範囲は7.0〜8.0である。なお、
−は苛性ソーダ−、重炭酸ソーダー等で調整するが、重
合リン酸塩溶液と共に磨砕して得られる大豆磨砕液の−
が上記の範囲内にある場合は一調整の必要はない。
For example, when concentrated soymilk obtained by enzymatically treating soymilk with a voice lower than 7.0 exhibits a viscosity of 2.000 cp (20°C), the soymilk solids concentration is 26.5%; When concentrated soymilk obtained by enzyme treatment after adjusting - to 7.0 to 8.0 exhibits a viscosity of 2.000 cp (20°C), the solid content concentration of soybean milk was greatly improved to 34%. However, if the - of soy milk is increased beyond 8.0, both the two tones of flavor will deteriorate, so
The preferred range of pi is 7.0 to 8.0.
- is adjusted with caustic soda, bicarbonate soda, etc., but - of the ground soybean solution obtained by grinding with a polymerized phosphate solution -
If is within the above range, no adjustment is necessary.

この工程で用いる蛋白分解酵素とは、黴ならびに細菌を
源とする中性及びアルカリ性蛋白分解酵素であり、具体
例としては、大野製薬製グロテアーゼ「アマノ」A、プ
ロティアーゼ[アマノJC等があげられる。これら酵素
剤は通常豆乳固形分に対し0.01〜0.30%の範囲
内で添加し、加〜60’Cの温度範囲内で加分〜6時間
程度の処理を行う。
The proteases used in this step are neutral and alkaline proteases derived from molds and bacteria, and specific examples include grotease "Amano" A manufactured by Ohno Pharmaceutical Co., Ltd. and protease [Amano JC, etc.]. These enzyme agents are usually added in an amount of 0.01 to 0.30% based on the solid content of soybean milk, and the treatment is carried out within a temperature range of 60°C to 60°C for about 6 hours.

上述の方法で豆乳を酵素処理し、その処理豆乳を使用し
て濃縮豆乳を製造するが、顕著な効果をあげる為には酵
素処理をほどこした豆乳中の蛋白質の分解割合が極めて
重要である。
Soymilk is treated with enzymes using the method described above, and the treated soymilk is used to produce concentrated soymilk, but in order to achieve a significant effect, the decomposition rate of protein in the enzyme-treated soymilk is extremely important.

多くの蛋白分解酵素は蛋白質を部分分解して苦みのある
物質を生ずるが、本発明においても商品価値を損う様な
苦みの生成は避けねばならない。
Many proteolytic enzymes partially decompose proteins to produce bitter substances, but in the present invention as well, the production of bitterness that would impair commercial value must be avoided.

すなわち、酵素処理をほどこした豆乳を塩酸等の酸によ
シーを4,50に調整し、そのF液中に存在する可溶区
分中の総窒素含有量(A)を求め、涼夏乳中の総窒素量
(B)に対する割合(A/B X 100 )を算出す
る。総窒素量に対する可溶性窒素割合(@の適正な範囲
は20.0〜50.0%であり、この範囲を越えると苦
みを生じ、呈味的に好ましくなく、一方可溶性窒素割合
(イ))がこの範囲に達してない場合は、後の濃縮操作
を実施しても濃縮比率の上昇はみられなかつた。
That is, the enzyme-treated soymilk is treated with an acid such as hydrochloric acid to adjust the concentration to 4.50, the total nitrogen content (A) in the soluble fraction present in the F solution is determined, and the total nitrogen content (A) in the cool summer milk is determined. The ratio (A/B x 100) to the total nitrogen amount (B) is calculated. The appropriate range of soluble nitrogen (@) to the total nitrogen amount is 20.0 to 50.0%; exceeding this range causes bitterness and is undesirable in taste; If this range was not reached, no increase in the concentration ratio was observed even if subsequent concentration operations were performed.

この様にして得た酵素処理を施した豆乳を用いて濃縮豆
乳を製造するに際し、酵素の失活や雑菌の死滅等の目的
で加熱操作を行うとか、均質化処理を施すとかしてから
濃縮操作を実施しても何ら差しつかえない。この濃縮操
作は、通常45〜65°C程度の温度で減圧濃縮方法に
て行われるが、濃縮操作の前後、又は濃縮操作中に糖類
を添加することも当然可能である。
When producing concentrated soymilk using the enzyme-treated soymilk obtained in this way, a heating operation is performed for the purpose of inactivating the enzyme and killing various bacteria, etc., or a homogenization treatment is performed before the concentration operation. There is no harm in implementing this. This concentration operation is usually carried out at a temperature of about 45 to 65°C by a vacuum concentration method, but it is naturally possible to add saccharides before, during or before the concentration operation.

以上に述べたごとく、本発明は、前記第一工程と第二工
程を組み合わせることにより、従来不可能とされていた
風味良好な低粘性の濃縮豆乳の製造が可能になった。
As described above, in the present invention, by combining the first step and the second step, it has become possible to produce concentrated soymilk with good flavor and low viscosity, which was previously considered impossible.

このものは、加工用食品素材として乳製品の代替品とし
て飲料、デザート、冷菓、製菓、製・々ン等の業界での
利用が見込まれる他、噴霧乾燥法による豆乳粉末用の原
液として、その含水量の少さから多大の経済効果を生ん
でいる利用度の高い濃縮豆乳である。
This product is expected to be used as a substitute for dairy products as a food material for processing in industries such as beverages, desserts, frozen desserts, confectionery, and food preparation. It is a highly utilized concentrated soymilk that has a large economic effect due to its low water content.

以下本発明の実施例を示す。Examples of the present invention will be shown below.

実施例1 ポリリン酸ナトリウム:メタリン酸ナトリウムが40 
:60からなる重合リン酸塩の0.2%溶液600?を
85℃に加熱し、外皮を除去した大豆1002とともに
三菱JM−371型ミキサー型膜キサ−蒸気を注入しな
がら温度を85℃に保持し、歯車回転を毎分10.00
0回転として90秒間の磨砕処理を行ない、磨砕液を得
た。得られた磨砕液から100メツシユの金属篩により
粕分を除去し、さらに1.500 X t で1分間の
遠心分離を行って沈澱物を除き、’pF(6,5゜豆乳
固形分10.0%の豆乳400?を得た。
Example 1 Sodium polyphosphate: 40 sodium metaphosphate
:0.2% solution of polymerized phosphate consisting of 600? The temperature was maintained at 85°C while injecting steam into a Mitsubishi JM-371 mixer-type membrane mixer along with 1002 soybeans from which the hulls had been removed, and the gear rotation was set at 10.0° per minute.
Grinding was performed for 90 seconds at zero rotation to obtain a grinding liquid. The lees were removed from the resulting ground solution using a 100-mesh metal sieve, and the precipitate was removed by centrifugation at 1.500 x t for 1 minute. I got 400? of 0% soy milk.

この豆乳の声を苛性ソーダにより7.3に調整後、40
℃に加温し、蛋白分解酵素として大野製薬製グロテアー
ぜ[アマノJPa13mg を添加し、・10℃で3時
間作用させた。次いで80℃10分間の加熱処理により
酵素を失活せしめたのち、品温80℃、均質化圧力15
0Kg/cTL2で均質化処理を施して処理豆乳を得た
After adjusting the voice of this soy milk to 7.3 with caustic soda, 40
The mixture was heated to .degree. C., and 13 mg of Grotease (Amano JPa manufactured by Ohno Pharmaceutical Co., Ltd.) was added as a proteolytic enzyme, and allowed to act at 10.degree. C. for 3 hours. Next, the enzyme was inactivated by heat treatment at 80°C for 10 minutes, and then the product temperature was 80°C and the homogenization pressure was 15°C.
Homogenization treatment was performed at 0 kg/cTL2 to obtain treated soymilk.

得られた処理豆乳をエバポノーターを用いて55〜60
℃の条件で減圧濃縮し、豆乳固形分34%の風味良好な
濃縮豆乳を得た。得られた濃縮豆乳の粘度を東京開側(
株)MA−1型粘度酎により測定したところ、加℃に於
て2.0OOcp″″cあり、総窒素量に対する可溶性
窒素割合は31%であった。
The obtained treated soymilk was heated to 55 to 60% using an evaporator.
It was concentrated under reduced pressure at 0.degree. C. to obtain concentrated soymilk with a soybean milk solid content of 34% and a good flavor. The viscosity of the obtained concentrated soymilk was determined by the Tokyo open side (
As a result of measurement using a viscosity distillation machine manufactured by MA-1, Ltd., it was found to be 2.0OOcp''c at heating, and the ratio of soluble nitrogen to the total nitrogen amount was 31%.

比較例 実施例1において酵素処理を行なわずにその他は実施例
1と同様な方法により得られた濃縮豆乳人9重合リン酸
塩を使用せずにその他は実施例1と同様な方法によシ得
られた濃縮豆乳Bを実施例1に記載されている方法によ
り得られた濃縮豆乳と比較した結果を第1表に示す。
Comparative Example Example 1 was carried out in the same manner as in Example 1, except that the enzyme treatment was not performed and the concentrated soymilk 9-polymer phosphate obtained was not used. Table 1 shows the results of comparing the obtained concentrated soymilk B with the concentrated soymilk obtained by the method described in Example 1.

第  1  表 第1表に示す如く、実施例1の方法で得られた濃縮豆乳
は、比較例A、33と比較すると、同一粘度時の豆乳固
形分は著しく高くなっている。よって本発明に限定する
条件のいずれかが欠けても所期の効果を奏することがで
きないことが判明する。
Table 1 As shown in Table 1, the concentrated soymilk obtained by the method of Example 1 has a significantly higher soybean milk solid content at the same viscosity than Comparative Examples A and 33. Therefore, it is clear that even if any of the conditions limiting the present invention is missing, the desired effect cannot be achieved.

実施例2 実施例1と同じ蛋白分解酵素を添加する前の−73に調
整した豆乳400fに蛋白分解酵素として大野製薬製グ
ロテアーゼ「アマノlA20.ypを添加し、40℃で
1時間作用させた。次いで80°C,10分間の加熱処
理によシ酵素を失活せしめたのち、品温80℃、均質化
圧力150 Ky/cm2の条件で均質化処理を施して
処理豆乳を得た。このものの総窒素量に対する可溶性窒
素割合は28%であった。
Example 2 Grotease "Amano IA20.yp" manufactured by Ohno Pharmaceutical Co., Ltd. was added as a proteolytic enzyme to 400f of soymilk adjusted to -73 before adding the same proteolytic enzyme as in Example 1, and the mixture was allowed to act at 40°C for 1 hour. Next, the soybean enzyme was inactivated by heat treatment at 80°C for 10 minutes, and then homogenized at a product temperature of 80°C and a homogenization pressure of 150 Ky/cm2 to obtain treated soymilk. The ratio of soluble nitrogen to the total nitrogen amount was 28%.

次いで上記処理豆乳400fにシヨ糖902.乳糖10
 tを添加し、攪拌溶解後エバポレーターを用いて55
〜60℃の条件で減圧濃縮し、全固形分70%(豆乳固
形分20%)の加糖豆乳ペーストを得た。
Next, 902.9 g of sucrose was added to 400 f of the above-mentioned treated soymilk. lactose 10
Add t, stir and dissolve using an evaporator for 55 minutes.
The mixture was concentrated under reduced pressure at ~60°C to obtain a sweetened soymilk paste with a total solid content of 70% (soymilk solid content 20%).

対照例として重合リン酸塩を含まない85℃の熱水を抽
出液として、その他は実施例1と同様な方法によシ得ら
れたpH6,5、豆乳固形分9.0%の豆乳400fを
一調整及び酵素処理を施すことなく、シヨ糖812.乳
糖91を添加し、実施例2に記載の方法で濃縮し対照加
糖豆乳ペーストを得た。この対照例と実施例2とを比較
した結果を第2表に示す。
As a control example, 400f of soymilk with a pH of 6.5 and a soymilk solid content of 9.0% was obtained in the same manner as in Example 1, except that 85°C hot water containing no polymerized phosphate was used as the extraction liquid. Without any adjustment or enzymatic treatment, sucrose 812. Lactose 91 was added and concentrated as described in Example 2 to obtain a control sweetened soy milk paste. Table 2 shows the results of comparison between this control example and Example 2.

第  2  表 第2表に示す如く、実施例2の方法で得られた加糖豆乳
ペーストは、同一全固形分の対照加糖豆乳ペーストと比
較して粘度が著しく低く、また風味的にも良好であった
Table 2 As shown in Table 2, the sweetened soy milk paste obtained by the method of Example 2 had significantly lower viscosity and better flavor than the control sweetened soy milk paste with the same total solid content. Ta.

実施例3 谷式剥皮機で外皮を除去した剥皮大豆1部(重量部、以
下同じ)に対し、重合リン酸塩を0.1%含有した88
℃の抽出液を6部の割合で注ぎながら、湿式ビンミルで
粗砕後砥石間隙250μとした特殊機化工業裂マイコロ
イダーを通過させ、85℃の大豆磨砕液を得た。得られ
た磨砕液を3500 G の遠心効果で稼動している横
型連続遠心分@機に通し、粕汁(おから)を除去してp
H6,5、豆乳固形分9.5%の風味良好な豆乳を得た
。得られた豆乳5,000Kfに10%の苛性ソーダ溶
液を少量づつ加えて−を7.5に調整後品温を40°C
に保持し、大野製薬製プロテアーゼ「アマノJ Ps 
160rを添加し、ゆるやかに攪拌しながら40℃で3
時間作用させた。次いで閉℃、10分間の加熱により酵
素を失活せしめたのち、品温(資)℃、均質化圧力15
0Kg/crrL2の条件で均質化処理を施して処理豆
乳を得た。このものの総窒素量に対する可溶性窒素割合
は32%であった。
Example 3 88 containing 0.1% polymerized phosphate per 1 part (part by weight, the same shall apply hereinafter) of peeled soybeans from which the outer skin was removed using a Tani type peeler.
While pouring 6 parts of the extract at 85°C, the mixture was passed through a Tokushu Kika Kogyo Hire Mycolloider with a grindstone gap of 250 μm after coarse crushing in a wet bottle mill to obtain a ground soybean liquid at 85°C. The obtained grinding liquid is passed through a horizontal continuous centrifugal machine operated with a centrifugal effect of 3500 G to remove the lees (okara).
A soymilk with a good flavor and H6.5 and a soymilk solid content of 9.5% was obtained. Add 10% caustic soda solution little by little to the obtained soymilk 5,000Kf and adjust the - to 7.5, then raise the product temperature to 40°C.
Ohno Pharmaceutical's protease "Amano JPs"
Add 160r and heat at 40℃ with gentle stirring.
I let time work. Next, the enzyme was inactivated by heating for 10 minutes at a closed temperature (℃), and then the product temperature was reduced to 15℃ and the homogenization pressure was 15℃.
Homogenization treatment was performed under the condition of 0 kg/crrL2 to obtain treated soymilk. The ratio of soluble nitrogen to the total nitrogen amount was 32%.

次いで上記の処理豆乳を三重効用蒸発装置を用いて豆乳
固形分30%まで減圧濃縮を行ない、品温50℃で1.
500cpの粘度を有する低粘性の風味良好な濃縮豆乳
を得た。得られた濃縮豆乳は、噴霧乾燥機(フィルター
マッドドラ′イーY−9以下同じ)を用いて送風温度1
65℃、排風温度80℃、再乾燥温度(資)℃、冷却温
度40℃の条件で噴霧乾燥し、水分3.0%の豆乳粉末
330 Kfを得たが、この工程における所要時間は1
.1時間であった。
Next, the above-mentioned treated soymilk was concentrated under reduced pressure using a triple-effect evaporator to a soybean milk solid content of 30%, and the product temperature was 50°C.
A concentrated soymilk having a viscosity of 500 cp and a good flavor was obtained. The obtained concentrated soymilk was dried using a spray dryer (filter mud dryer Y-9 and below) at a blowing temperature of 1.
Spray drying was carried out under the conditions of 65°C, exhaust air temperature 80°C, re-drying temperature (supply)°C, and cooling temperature 40°C to obtain 330 Kf of soy milk powder with a moisture content of 3.0%, but the time required for this process was 1.
.. It was one hour.

因みに、対照方法として5重合リン酸塩を含まない抽出
液を使用し、実施例3と同様な方法で抽出したところ、
pH6,5、豆乳固形分8.5%の対照豆乳5.000
Kfを得た。このものを−調整及び酸素処理することな
く、品温80℃、均質化圧力150’7.2の条件で均
質化処理を施し、実施例3と同様な方法で濃縮し、豆乳
固形分22%で品温50’Cにおける粘度が3,0OO
cpを有する対照濃縮豆乳を得た。得られた対照濃縮豆
乳の粘度は噴霧乾燥機に供給し得る限界粘度に近く、こ
のものを実施例3と同様な方法で噴霧乾燥し、水分30
%の対照豆乳粉末300 V4を得たが、この乾燥工程
における所要時間は1,3時間であった。
Incidentally, as a control method, an extract containing no pentapolymer phosphate was used and extracted in the same manner as in Example 3.
Control soy milk 5.000 with pH 6.5 and soy milk solids content 8.5%
I got Kf. This product was subjected to homogenization treatment under the conditions of a product temperature of 80°C and a homogenization pressure of 150'7.2 without conditioning or oxygen treatment, and concentrated in the same manner as in Example 3, resulting in a soymilk solid content of 22%. The viscosity at the product temperature of 50'C is 3.0OO
A control concentrated soymilk with cp was obtained. The viscosity of the obtained control concentrated soymilk was close to the limit viscosity that can be supplied to a spray dryer, and this product was spray-dried in the same manner as in Example 3 to reduce the moisture content to 30%.
A control soy milk powder of 300% V4 was obtained, and the time required for this drying process was 1.3 hours.

以上の如〈実施例3の方法は対照方法に比べると、第3
表に示すように11.得られる豆乳中の豆乳固形分が高
いだけでなく、得られた豆乳を濃縮した濃縮豆乳の濃縮
比が高いにもかかわらず、粘度が低い為豆乳粉末を製造
する時の時間当りの製造量が向上し、多大の経済効果を
もたらす。
As described above, the method of Example 3 has a third
11. As shown in the table. Not only is the soy milk solid content in the obtained soy milk high, but even though the concentration ratio of the concentrated soy milk obtained by concentrating the obtained soy milk is high, the viscosity is low, so the amount of soy milk powder produced per hour is low. and bring about significant economic effects.

第  、3  表 応用例 実施例3の方法で得られた濃縮豆乳と対照濃縮豆乳を岩
井機械工業製アトマイデ一式噴霧乾燥機を用いて噴霧乾
燥し、各々水e 3.0%の豆乳粉末を得た。得られた
各々の豆乳粉末の溶解性と粒度分布を比較した結果を第
4表に示す。
Table 3 Application Examples The concentrated soy milk obtained by the method of Example 3 and the control concentrated soy milk were spray-dried using an Atomide set spray dryer manufactured by Iwai Kikai Kogyo to obtain soy milk powder each containing 3.0% water e. Ta. Table 4 shows the results of comparing the solubility and particle size distribution of each of the obtained soymilk powders.

第  4  表 第4表に示す如く、実施例3の方法による濃縮豆乳から
得られた豆乳粉末は、対照濃縮豆乳から得られた豆乳粉
末と比較して、溶解時間が短時間であり、加水還元にお
いて使用が容易である。
Table 4 As shown in Table 4, the soymilk powder obtained from the concentrated soymilk according to the method of Example 3 had a shorter dissolution time than the soymilk powder obtained from the control concentrated soymilk. Easy to use.

なお、第4表における溶解性(溶解時間)とは、20℃
の水10(1+lを入れた300 d容ビーカー中に長
さ3.5 cyn の電磁撹拌棒を投入し、東洋製作所
(株)モデルB−2マグネチックスターラ上に設置し、
目盛中で回転攪拌しておき、別途秤取した試料2を全上
記ビーカー内に投入し、試料が完全溶解に要する時間(
秒数)であり、また粒度分布とは、(資)メツシュと1
00メツシユの金属篩を用いてふるい分けを行ない、全
粉末量に対する各粒度の粉末量の割合(%)である。
In addition, the solubility (dissolution time) in Table 4 refers to the temperature at 20°C.
A magnetic stirring rod with a length of 3.5 cyn was placed in a 300 d beaker containing 10 (1+l) of water, and placed on a Toyo Seisakusho Co., Ltd. model B-2 magnetic stirrer.
Rotate and stir in the scale, put sample 2, which was weighed separately, into the beaker, and wait for the time required for the sample to completely dissolve (
number of seconds), and the particle size distribution is
Sieving was performed using a 00 mesh metal sieve, and the ratio (%) of the amount of powder of each particle size to the total amount of powder is shown.

特許出願人 九州乳業株式会社Patent applicant Kyushu Dairy Co., Ltd.

Claims (1)

【特許請求の範囲】 1、 大豆を重合リン酸塩溶液と共に75〜85℃の温
度で磨砕し、該磨砕液より粕分を除去して豆乳を得、得
られた豆乳のPHを7.0〜8.0に調整して蛋白分解
酵素を作用させたのち濃縮操作を実施することを特徴と
する濃縮豆乳の製造方法。 2、蛋白分解酵素を作用させた豆乳の声を4.50に調
整した時の可溶区分中の総窒素量が豆乳中の総窒素量の
20,0〜50.0%の範囲内にある特許請求の範囲第
1項記載の濃縮豆乳の製造方法。
[Claims] 1. Grind soybeans together with a polymerized phosphate solution at a temperature of 75 to 85°C, remove the lees from the ground solution to obtain soymilk, and adjust the pH of the obtained soymilk to 7. A method for producing concentrated soymilk, which comprises adjusting the soybean milk to a concentration of 0 to 8.0, allowing a proteolytic enzyme to act thereon, and then carrying out a concentration operation. 2. When the soymilk treated with proteolytic enzyme is adjusted to 4.50, the total nitrogen content in the soluble category is within the range of 20.0 to 50.0% of the total nitrogen content in soymilk. A method for producing concentrated soymilk according to claim 1.
JP58063774A 1983-04-13 1983-04-13 Preparation of concentrated soya milk Granted JPS59192055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58063774A JPS59192055A (en) 1983-04-13 1983-04-13 Preparation of concentrated soya milk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58063774A JPS59192055A (en) 1983-04-13 1983-04-13 Preparation of concentrated soya milk

Publications (2)

Publication Number Publication Date
JPS59192055A true JPS59192055A (en) 1984-10-31
JPS611103B2 JPS611103B2 (en) 1986-01-14

Family

ID=13239049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58063774A Granted JPS59192055A (en) 1983-04-13 1983-04-13 Preparation of concentrated soya milk

Country Status (1)

Country Link
JP (1) JPS59192055A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010515462A (en) * 2007-01-11 2010-05-13 クラフト・フーヅ・グローバル・ブランヅ リミテッド ライアビリティ カンパニー Method for forming heat-stable concentrated soymilk
CN101828600A (en) * 2010-03-16 2010-09-15 成都市翻鑫家科技有限公司 Process for manufacturing instant soybean milk powder
JP2013240288A (en) * 2012-05-18 2013-12-05 Sumiyoshiya Shokuhin:Kk Method for manufacturing paste-like soybean milk product and paste-like soybean milk product manufactured using the same
CN106942384A (en) * 2017-03-23 2017-07-14 黑龙江省北大荒绿色健康食品有限责任公司 A kind of preparation method of high instant capacity and high protein content bean powder
JP2018093788A (en) * 2016-12-13 2018-06-21 日本製粉株式会社 Soybean curd-like flowable food and method for producing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124404U (en) * 1991-04-23 1992-11-12 金次 渡辺 Vehicle running wheel strike angle detection device
CN107410502B (en) * 2017-04-28 2018-08-24 黑龙江省北大荒绿色健康食品有限责任公司 A kind of preparation method of the instant potato soymilk powder of subsensitivety

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010515462A (en) * 2007-01-11 2010-05-13 クラフト・フーヅ・グローバル・ブランヅ リミテッド ライアビリティ カンパニー Method for forming heat-stable concentrated soymilk
CN101828600A (en) * 2010-03-16 2010-09-15 成都市翻鑫家科技有限公司 Process for manufacturing instant soybean milk powder
JP2013240288A (en) * 2012-05-18 2013-12-05 Sumiyoshiya Shokuhin:Kk Method for manufacturing paste-like soybean milk product and paste-like soybean milk product manufactured using the same
JP2018093788A (en) * 2016-12-13 2018-06-21 日本製粉株式会社 Soybean curd-like flowable food and method for producing the same
CN106942384A (en) * 2017-03-23 2017-07-14 黑龙江省北大荒绿色健康食品有限责任公司 A kind of preparation method of high instant capacity and high protein content bean powder

Also Published As

Publication number Publication date
JPS611103B2 (en) 1986-01-14

Similar Documents

Publication Publication Date Title
JP4838786B2 (en) Soy milk composition
US4137339A (en) Method of preparing processed food material from soybean
US4409256A (en) Soymilk process
US20040197463A1 (en) Soya fiber particulates and methods of preparation
KR101022390B1 (en) Soy milk compositions and methods of preparation
JPH03168066A (en) Making of flavor additive
JPS6384455A (en) Production of sterilized packed tofu
WO2001010242A1 (en) Method for processing soybean by using enzyme, processed soybean thus obtained and foods containing the thus processed soybean
JPS59192055A (en) Preparation of concentrated soya milk
GB2119218A (en) Process for the preparation of soymilk
JP2000093083A (en) Production of lactic fermented soya milk
JP3142001B2 (en) Method for removing bitterness from enzymatic hydrolysis protein
JPS6211068A (en) Production of soya milk, bean curd and other food produced by utilizing soya milk
JPH0369496B2 (en)
JP2782849B2 (en) Vegetable protein powder and method for producing tofu using the same
JPH11299443A (en) Production of functional soybean curd
JPH0581219B2 (en)
JPS63317055A (en) Production of food material
JPH03127958A (en) Pasty food material
JPS6070042A (en) Production of protein drink
JPS62232340A (en) Production of food material
CN107949282A (en) The manufacture method of powdered flavor imparting agent
JPH0463548A (en) Production of vegetable protein powder
JPH0479842A (en) Production of vegetable protein powder
JPS5850704B2 (en) Method for producing new protein materials