JPS59191621A - Servo device - Google Patents

Servo device

Info

Publication number
JPS59191621A
JPS59191621A JP58066365A JP6636583A JPS59191621A JP S59191621 A JPS59191621 A JP S59191621A JP 58066365 A JP58066365 A JP 58066365A JP 6636583 A JP6636583 A JP 6636583A JP S59191621 A JPS59191621 A JP S59191621A
Authority
JP
Japan
Prior art keywords
signal
speed
angle
saturator
integrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58066365A
Other languages
Japanese (ja)
Other versions
JPH0474725B2 (en
Inventor
Koichi Nojima
野島 浩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58066365A priority Critical patent/JPS59191621A/en
Publication of JPS59191621A publication Critical patent/JPS59191621A/en
Publication of JPH0474725B2 publication Critical patent/JPH0474725B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • G05D3/14Control of position or direction using feedback using an analogue comparing device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position Or Direction (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To prevent the generation of an overshoot by replacing an integrator with a control saturation integrator and at the same time adding a control saturator. CONSTITUTION:A control saturation integrator 11 has a function to saturate a target speed signal 12 with the prescribed value V; while an added control saturator 20 saturates a speed error signal 10 with the prescribed value A. When such an angle command signal is supplied that makes the signal 10 exceed the value A of the saturator 20, the input of the integrator 11 is limited. Thus the signal 12 is smoothly increased and never exceeds the value V. When the angle error is reduced and a speed signal 7 is smaller than the value V, the signal 10 becomes negative and the signal 20 is reduced. The change of the signal 20 is smooth. The target speed is set at 0 when the speed command is 0. Thus no overshoot is produced.

Description

【発明の詳細な説明】 この発明は被制御物を与えら庇た指令位置に指向するよ
うに制御するサーボ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a servo device that controls a controlled object to direct it to a commanded position.

以下、被制御物の例としてレーダアンテナを制御するサ
ーボ装置について説明する。
A servo device that controls a radar antenna will be described below as an example of a controlled object.

第1図は従来のこの種サーボ装置の一例を示すもので1
図において(1)は角度指令信号、(2)は角度信号、
(3)は上記゛角度指令信号(1)と角度信号(2)と
の差を演算し角度誤差信号(4)を出力する角度誤差演
算器、(5)は角度誤差信号(4)を増幅する位置アン
プ、(6)は上記位置アンプの出力信号を一定値で飽和
させ、速度指令信号(7)を出力する管理飽和器、(8
)は速度指令信号(7)と速度信号(9)との差を演算
し速度誤差信号finを出力する速度誤差演算器、Iは
上記速度誤差信号fi1を積分し目標速度信号(2)を
出力する積分器、(2)は目標速度信号醤と速度信号(
9)との差を演算する誤差演算器、α4は上記誤差演算
器(13の出力を電力増幅するサーボ増幅器、(lはサ
ーボ増幅器Iにより駆動されるモータ、βQは駆動機構
、+1肴はレーク゛アンテナ、a印は上記モータの回転
速度に比例した速度信号(9)を出力する速度検出器、
αlはレーダアンテナa71の指向角度に対応した角度
信号(2)を出力する位置検出器である。
Figure 1 shows an example of a conventional servo device of this type.
In the figure, (1) is an angle command signal, (2) is an angle signal,
(3) is the angle error calculator that calculates the difference between the angle command signal (1) and the angle signal (2) and outputs the angle error signal (4), and (5) amplifies the angle error signal (4). (6) is a management saturator (8) that saturates the output signal of the position amplifier at a constant value and outputs a speed command signal (7).
) is a speed error calculator that calculates the difference between the speed command signal (7) and the speed signal (9) and outputs a speed error signal fin, and I integrates the speed error signal fi1 and outputs a target speed signal (2). (2) is the integrator that calculates the target speed signal and the speed signal (
9), α4 is a servo amplifier that amplifies the output of the error calculator (13), (l is a motor driven by servo amplifier I, βQ is a drive mechanism, +1 is a rake Antenna, mark a is a speed detector that outputs a speed signal (9) proportional to the rotational speed of the motor;
αl is a position detector that outputs an angle signal (2) corresponding to the directivity angle of the radar antenna a71.

次に動作について説明する。指令角度信号(1)が入力
されると指令角度とアンテナ角度の差に対応した角度誤
差信号(4)が発生する。この角度誤差信号(4)は位
置アンプ(5)で増幅される。角度誤差があるしきい値
を越えると位置アンプ(5)の出力は管理飽和器(6)
により所定の値で飽オロした速度指令信号(7)となる
。速度指令信号(7)は速度信号(9)と引算された後
、積分器Qllで積分されて目標速度信号となシ、速度
信号(9)と引算されて、サーボ増幅器04を介してモ
ータti喝を駆動する。モータ0!9は駆動機構0eを
介してレーダアンテナ住7)全回転させる。この時速度
検出器0秒はモータα9の速度に比例した大きさの速度
信号(9)を発生する、が、その極性は速度誤差信号f
lJ並びにサーボ増幅器α祷の入力を減少させるように
なっている。また9位置検出器(11はレーダアンテナ
0Dの角度に対応した角度信号(2)を発生するが。
Next, the operation will be explained. When the command angle signal (1) is input, an angle error signal (4) corresponding to the difference between the command angle and the antenna angle is generated. This angle error signal (4) is amplified by a position amplifier (5). When the angle error exceeds a certain threshold, the output of the position amplifier (5) is controlled by the saturator (6).
As a result, the speed command signal (7) is saturated at a predetermined value. The speed command signal (7) is subtracted from the speed signal (9), then integrated by an integrator Qll to become a target speed signal, and then subtracted from the speed signal (9) and sent via the servo amplifier 04. Drive the motor. The motor 0!9 rotates the radar antenna completely through the drive mechanism 0e. At this time, the speed detector 0 seconds generates a speed signal (9) proportional to the speed of motor α9, but its polarity is the speed error signal f
The input of lJ and servo amplifier α is reduced. Further, the 9 position detector (11 generates an angle signal (2) corresponding to the angle of the radar antenna 0D).

その極性は角度誤差信号(4)全減少させるようになっ
ているため、結局レーダアンテナ面の角度は角度指令に
合致するように系が動作する。
Since the polarity is such that the angle error signal (4) is completely reduced, the system operates so that the angle of the radar antenna surface matches the angle command.

このようなサーボ装置において、レーダアンテナ面が止
まっている時に角度指令信号(1)として第2図(a)
のようにステップ状の指令を加えた場合の角度誤差信号
は第2図(b)のようになる。
In such a servo device, when the radar antenna surface is stationary, the angle command signal (1) shown in Fig. 2 (a) is transmitted as the angle command signal (1).
The angular error signal when a step-like command is added is as shown in FIG. 2(b).

角度誤差信号(4)があるしきい値θより大きい間は、
速度指令信号(7)は第2図(c)に示すように一定値
■で飽和し、角度誤差信号(4)がθよシ小さくなると
速度指令信号(7)は角度誤差信号(4)に比例する。
While the angle error signal (4) is greater than a certain threshold θ,
The speed command signal (7) is saturated at a constant value ■ as shown in Figure 2 (c), and when the angle error signal (4) becomes smaller than θ, the speed command signal (7) becomes the angle error signal (4). Proportional.

最初レーダアンテナaηは止まっているので、速度信号
(9)は0から増加し、速度誤差信号fi1は第2図(
d)のように変化し、その積分値である目標速度信号α
2は第2図(e)のように最初は急しゅんに変化し、速
度指令信号(7)の飽和値Vを越えて、しかる後■に収
束する。速度信号(9)は目標速度信号α渇と同様に変
化する。
At first, the radar antenna aη is stopped, so the speed signal (9) increases from 0, and the speed error signal fi1 increases as shown in Fig. 2 (
d), and the target speed signal α is the integral value.
2 changes rapidly at first as shown in FIG. 2(e), exceeds the saturation value V of the speed command signal (7), and then converges to . The speed signal (9) changes in the same way as the target speed signal α.

角度誤差が小さくなって、速度指令信号(7)が■より
小さくなると、速度誤差信号O1は負になり、目標速度
信号0は減少する。加速の場合と同様にその変化は急し
ゅんで速度指令信号(7)より小さくなり、速度誤差信
号IIIが正となり、目標速度信号α2の変化はゆるや
かになシ、速度指令信号(7)のが目標速度信号0邊よ
り小さくなる。
When the angular error becomes smaller and the speed command signal (7) becomes smaller than ■, the speed error signal O1 becomes negative and the target speed signal 0 decreases. As in the case of acceleration, the change is sudden and becomes smaller than the speed command signal (7), the speed error signal III becomes positive, and the change in the target speed signal α2 is gradual, and the speed command signal (7) becomes smaller. The target speed signal becomes smaller than 0.

このようにして減速するため目標速度信号αのは速度指
令信号(7)の上下を振動する。そのため。
In order to decelerate in this manner, the target speed signal α oscillates above and below the speed command signal (7). Therefore.

速度指令信号(7)が0.即ち角度誤差信号が0になっ
た時も目標速度信号は0にならず、0を越えてしかる後
0に収束する。角度誤差はいったん0になシ、その後レ
ーダアンテナの動きに伴って再び0になるいわゆるオー
バーシュートをすることになる。
Speed command signal (7) is 0. That is, even when the angle error signal becomes 0, the target speed signal does not become 0, but exceeds 0 and then converges to 0. The angular error once becomes 0, and then becomes 0 again as the radar antenna moves, resulting in a so-called overshoot.

以上のように従来のサーボ装置では、最高速度を設定し
ても実際の速度はその値を越えてしまう事、加速度が管
理できないため、モータa!9の所要トルクが大きくな
り、速度制限が出来ないこととあいまってサーボ増幅器
0滲、モータα9は大容量のものが必要となυ、必然的
に駆動機構filの強度、剛性を高かめなければならな
いという欠点があった。
As mentioned above, with conventional servo devices, even if the maximum speed is set, the actual speed exceeds that value and acceleration cannot be managed, so the motor a! The required torque of the motor α9 becomes large, and the speed cannot be limited, so the servo amplifier is lost, the motor α9 needs a large capacity, and it is necessary to increase the strength and rigidity of the drive mechanism fil. There was a drawback that it was not possible.

また減速時においてはスムーズな減速をしないため、レ
ーダアンテナαDの受ける力も大きく、レーダアンテナ
αηの強度を高かめなくてはならず、更に必然的にオー
バーシュートしてしまうという欠点があった。
Furthermore, since the deceleration is not smooth during deceleration, the force received by the radar antenna αD is large, and the strength of the radar antenna αη must be increased, which also has the disadvantage of inevitably overshooting.

この発明は、従来のこの種サーボ装置の欠点を除去する
ためになされたもので、最高速度。
This invention was made to eliminate the drawbacks of conventional servo devices of this type.

加速度を管理して、必要最小限の容量のサーボ増幅器、
モータ及び必要最小限の強度、剛性を有した駆動機構、
レーダアンテナで構成され。
A servo amplifier with the minimum necessary capacity to manage acceleration,
A motor and a drive mechanism with the minimum necessary strength and rigidity,
Consists of radar antenna.

オーバーシュートしないサーボ装置を提供するものであ
る。
To provide a servo device that does not overshoot.

第8図にこの発明の構成例を示し、以下詳細にその動作
について説明する。
FIG. 8 shows a configuration example of the present invention, and its operation will be explained in detail below.

第8図において(11’)は目標速度信号(L邊を所定
の値■で飽和させる機能を併、せもった管理飽和積分器
であり、C1lは新たに設けられた第2の管理飽和器で
あって、速度誤差信号層を所定の値Aで飽和させるもの
である。
In Fig. 8, (11') is a controlled saturation integrator with a function to saturate the target speed signal (L side) at a predetermined value, and C1l is a newly installed second controlled saturation integrator. The speed error signal layer is saturated at a predetermined value A.

このような構成において、第4図(d)破線のように速
度誤差信号01が第2の管理飽和器(優の所定値Aを越
えるような角度指令信号が入力されると、管理飽和積分
器(11’ )の入力は第4図(d)実線のように制限
され、目標速度信号0は第4図(e)のようになめらか
に増加し、かつ目標速度信号02は■を越えることがな
い。
In such a configuration, when an angle command signal is input such that the speed error signal 01 exceeds the predetermined value A of the second management saturator (excellent) as shown by the broken line in FIG. 4(d), the control saturation integrator The input of (11') is limited as shown by the solid line in Figure 4(d), the target speed signal 0 increases smoothly as shown in Figure 4(e), and the target speed signal 02 cannot exceed ■. do not have.

角度誤差が小さくなって速度指令信号(7)がVより小
さくなると、速度誤差信号01は負になり、目標速度信
号−は減少するが、その変化は加速の場合と同様滑らか
であり、速度指令が00とき目標速度も0となpオーバ
ーシュートしない。
When the angular error becomes small and the speed command signal (7) becomes smaller than V, the speed error signal 01 becomes negative and the target speed signal - decreases, but the change is smooth as in the case of acceleration, and the speed command When is 00, the target speed is also 0 and there is no p overshoot.

この発明は以上のように構成され、かつ動作するため、
いかなる角度指令が入力された場合も所定の最高速度■
、加加速度合越えることなく指向動作し、モータ、駆動
機構に必要以上に大きな速度変化を与えないで、しかも
オーバーシーートシないサーボ装置を実現できる。
Since this invention is configured and operates as described above,
Predetermined maximum speed no matter what angle command is input■
It is possible to realize a servo device that performs directional operation without exceeding the jerk, does not cause an unnecessarily large speed change to the motor or drive mechanism, and does not overseat.

なお1以上は被制御物としてレーダアンテナを例として
説明したが、この発明はこれに限らず光学機械等を被制
御物としても良い。
Incidentally, in the above description, a radar antenna is used as an example of the object to be controlled, but the present invention is not limited to this, and an optical machine or the like may be used as the object to be controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のレーダ用サーボ装置の構成図、第2図は
従来のサーボ装置の動作を説明するための波形図、第8
図はこの発明によるサーボ装置の構成図、第4図はこの
発明によるサーボ装置の動作を説明するための波形図で
ある。 図中(1)は角度指令信号、(2)は角度信号、(3)
は角度誤差演算器、(4)は角度誤差信号、(5)は位
置アンプ、(6)は管理飽和器、(7jは速度指令信号
。 (8)は速度誤差演算器、(9)は速度信号、00は速
度誤差信号、■は積分器、  (11’)は管理飽和積
分器、α2は目標速度信号、(I3は誤差演算器、α(
イ)はサーボ増幅器、a四はモータ、鵠は駆動機構、鰭
はレーダアンテナ、(1&は速度検出器、 +11は位
置検出器、(2Iは第2の管理飽和器である。 なお9図中同一、あるいは相当部分には同一符号を付し
て示しである。 第2図 特開昭59−191G21(4) 第4図 時間丈 92
Fig. 1 is a configuration diagram of a conventional radar servo device, Fig. 2 is a waveform diagram for explaining the operation of the conventional servo device, and Fig. 8 is a waveform diagram for explaining the operation of the conventional servo device.
FIG. 4 is a configuration diagram of a servo device according to the present invention, and FIG. 4 is a waveform diagram for explaining the operation of the servo device according to the present invention. In the figure, (1) is the angle command signal, (2) is the angle signal, and (3)
is the angle error calculator, (4) is the angle error signal, (5) is the position amplifier, (6) is the management saturator, (7j is the speed command signal, (8) is the speed error calculator, and (9) is the speed signal, 00 is the speed error signal, ■ is the integrator, (11') is the management saturation integrator, α2 is the target speed signal, (I3 is the error calculator, α(
A) is the servo amplifier, a4 is the motor, the mouse is the drive mechanism, the fin is the radar antenna, (1 & is the speed detector, +11 is the position detector, (2I is the second management saturator. Identical or equivalent parts are indicated with the same reference numerals. Fig. 2 JP-A-59-191G21 (4) Fig. 4 Time length 92

Claims (1)

【特許請求の範囲】[Claims] 被制御物を、与えられた指令位置に指向するように制御
するサーボ装置において、指令位置信号と検出位置信号
の偏差を増幅する位置アンプと、上記位置アンプの出力
を所定の値で飽和させる第1の管理飽和器と、上記第1
の管理飽和器の出力と速度信号の偏差を所定の値で飽和
させる第2の管理飽和器と、上記第2の管理飽和器の出
力を積分し、かつ所定の値で飽和させる管理飽和積分器
と、上記管理飽和積分器の出力と速度信号との偏差を電
力増幅するサーボ増幅器と、上記サーボ増幅器の出力を
受は駆動機構を介して被制御物を駆動するモータと、モ
ータの回転速度を検出し速度信号を発生する速度検出器
と、被制御物の位置を検出する位置検出器とで構成した
ことを特徴とするサーボ装置。
A servo device that controls a controlled object to direct it to a given command position includes a position amplifier that amplifies the deviation between the command position signal and the detected position signal, and a position amplifier that saturates the output of the position amplifier at a predetermined value. 1 managed saturator, and the first
a second managed saturator that saturates the deviation between the output of the managed saturator and the speed signal at a predetermined value; and a managed saturation integrator that integrates the output of the second managed saturator and saturates it at a predetermined value. a servo amplifier that amplifies the deviation between the output of the management saturation integrator and the speed signal; a motor that receives the output of the servo amplifier and drives the controlled object through a drive mechanism; A servo device comprising a speed detector that detects and generates a speed signal, and a position detector that detects the position of a controlled object.
JP58066365A 1983-04-15 1983-04-15 Servo device Granted JPS59191621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58066365A JPS59191621A (en) 1983-04-15 1983-04-15 Servo device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58066365A JPS59191621A (en) 1983-04-15 1983-04-15 Servo device

Publications (2)

Publication Number Publication Date
JPS59191621A true JPS59191621A (en) 1984-10-30
JPH0474725B2 JPH0474725B2 (en) 1992-11-27

Family

ID=13313744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58066365A Granted JPS59191621A (en) 1983-04-15 1983-04-15 Servo device

Country Status (1)

Country Link
JP (1) JPS59191621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988003678A1 (en) * 1986-11-12 1988-05-19 Fanuc Ltd Position control system
JPH11175163A (en) * 1997-12-12 1999-07-02 Mitsubishi Electric Corp Position controller

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125684A (en) * 1974-08-28 1976-03-02 Fuji Photo Optical Co Ltd ICHISEIGYOSAABOSOCHI NO DOSASOKUDOSEIGYOKAIRO
JPS5174183A (en) * 1974-12-24 1976-06-26 Shinko Electric Co Ltd UNDOSEIGYO SOCHI
JPS57189218A (en) * 1981-05-18 1982-11-20 Nec Corp Position controller for moving member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125684A (en) * 1974-08-28 1976-03-02 Fuji Photo Optical Co Ltd ICHISEIGYOSAABOSOCHI NO DOSASOKUDOSEIGYOKAIRO
JPS5174183A (en) * 1974-12-24 1976-06-26 Shinko Electric Co Ltd UNDOSEIGYO SOCHI
JPS57189218A (en) * 1981-05-18 1982-11-20 Nec Corp Position controller for moving member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988003678A1 (en) * 1986-11-12 1988-05-19 Fanuc Ltd Position control system
JPH11175163A (en) * 1997-12-12 1999-07-02 Mitsubishi Electric Corp Position controller

Also Published As

Publication number Publication date
JPH0474725B2 (en) 1992-11-27

Similar Documents

Publication Publication Date Title
US4999557A (en) Integration proportional controller in servo-control system
EP0217727A2 (en) Integral control of a dependent variable in a system having at least two independent variables which influence the dependent variable
JPH07120216B2 (en) Position control method
JPS59191621A (en) Servo device
US4864209A (en) Negative feedback control system
US5814962A (en) Servo controller
KR960035192A (en) Position control of motor
JPS58123386A (en) Speed controller for motor
KR880700527A (en) Servo motor control method
JPS6160108A (en) Control circuit for response speed of servo mechanism
JPH0475113A (en) Controller
JPS61198310A (en) Position controller
JPS56125758A (en) Speed controlling device for electrophotographic copier
JPS6211875Y2 (en)
JPS6054020A (en) Controller of movable object
JPH06259136A (en) Controller
JPS6135179A (en) Speed controller of motor
JPS621182Y2 (en)
JPS6015718A (en) Speed servo control method
SU1465302A1 (en) Device for controlling regulation object
JPS6022218A (en) Constant water level control method
SU1159139A1 (en) D.c.drive with two-zone speed control
JPH05143105A (en) Automatic control device
JPH03265480A (en) Acceleration/deceleration controller
SU748363A1 (en) System for regulating speed of mine lifting apparatus drive