JPS591914B2 - Sound reduction device for air passages such as air conditioning return vents - Google Patents

Sound reduction device for air passages such as air conditioning return vents

Info

Publication number
JPS591914B2
JPS591914B2 JP54015819A JP1581979A JPS591914B2 JP S591914 B2 JPS591914 B2 JP S591914B2 JP 54015819 A JP54015819 A JP 54015819A JP 1581979 A JP1581979 A JP 1581979A JP S591914 B2 JPS591914 B2 JP S591914B2
Authority
JP
Japan
Prior art keywords
volume reduction
sound
air
ventilation
view
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54015819A
Other languages
Japanese (ja)
Other versions
JPS55107853A (en
Inventor
元昭 向野
昭義 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP54015819A priority Critical patent/JPS591914B2/en
Publication of JPS55107853A publication Critical patent/JPS55107853A/en
Publication of JPS591914B2 publication Critical patent/JPS591914B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • F24F2013/245Means for preventing or suppressing noise using resonance

Landscapes

  • Exhaust Silencers (AREA)
  • Pipe Accessories (AREA)
  • Duct Arrangements (AREA)

Description

【発明の詳細な説明】 この発明は、空調還気口などの通気路における減音装置
に関し、特に、通気路に、異なる方向に傾斜させ且つ通
風口を開口した2以上の隔壁を設置して、通気の円滑性
を確保しつつ減音させる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sound reduction device in a ventilation passage such as an air conditioner return air vent, and in particular, the invention relates to a sound reduction device in a ventilation passage such as an air conditioner return air vent, and in particular, two or more partition walls that are inclined in different directions and have ventilation openings are installed in the ventilation passage. , reduce noise while ensuring smooth ventilation.

完全な消音は、通気路を遮音構造の壁などにより密閉す
ることによって達成し得るが、通気の目的は阻害され、
また逆に通気路を全く開放すれば通気は円滑化するもの
の、騒音の遮蔽、減少が阻害される。
Complete noise reduction can be achieved by sealing the ventilation passages, such as with walls of sound-insulating structure, but the purpose of ventilation is obstructed;
On the other hand, if the ventilation path is completely opened, although ventilation becomes smooth, shielding and reduction of noise will be hindered.

そこで従来は、通気路の両側に交互にじゃま板を設置し
て迷路形にすることにより通気を蛇行させて通気の確保
と減音とを図っている空調室の還気口が殆どであった。
Therefore, in the past, most return air vents in air-conditioned rooms were designed to ensure ventilation and reduce noise by installing baffles alternately on both sides of the ventilation path to form a maze shape, making the ventilation meander. .

しかしながら、かかる減音装置は、減音の程度が甚だ低
い欠点がある。
However, such a sound reduction device has the disadvantage that the degree of sound reduction is extremely low.

特に、多層建築物の中間層に空調機械室を設けそこに冷
暖房機器を設置する方式が、防災上および温妾制御や部
分運転の便宜のために適していることから多く採用され
はじめている。
In particular, a system in which an air-conditioning machine room is provided in the middle floor of a multi-story building and air-conditioning equipment is installed there is beginning to be widely adopted because it is suitable for disaster prevention, hot control, and convenience of partial operation.

しかし、この場合に問題となるのは、空調機械室で発生
する1騒音である。
However, the problem in this case is the noise generated in the air conditioning machine room.

即ち、多層建築物の中間層であるがゆえに近隣の居室数
は、従来の地下機械室等と比較して倍加しているため、
空調機械室から発生する騒音の影響は犬となる。
In other words, because it is the middle floor of a multi-story building, the number of living rooms nearby is double compared to conventional underground machine rooms, etc.
The effects of noise generated from the air conditioning machine room become a dog.

そこで、従来の通気路における減音装置の改良が強く望
まれていた。
Therefore, it has been strongly desired to improve the conventional sound reduction device for air passages.

この発明は、かかる技術的課題のもとに、発明者らの研
究の結果完成されたものであ如、その目的は、空調還気
口などの通気路において通気を確保しつつ減音量を可及
的に犬にすることにあシ、またその目的は、特に従来難
しいとされていた低音域(125,250Hz)におけ
る減音量をも犬にすることにあり、またその目的は、装
置の所要空間を小形化することにあり、またその目的は
、装置のユニット化を可能にして施工上の信頼性を向上
させることにある。
This invention was completed as a result of research by the inventors based on the above technical problem, and its purpose is to reduce the volume while ensuring ventilation in air passages such as air conditioning return vents. The purpose is to reduce the volume in the low frequency range (125, 250 Hz), which has been considered difficult in the past. The purpose is to downsize the space and to improve construction reliability by making it possible to unitize the device.

すなわちこの発明は、通気路1に、その側壁2及び床3
のいずれか一方又は両方に対して傾斜させた2以上の隔
壁4を、夫々が通気路1を個別に渡る如く設置し、各隔
壁4は、通風口5が開口され且つ隣合う隔壁4どうしの
前記傾斜が反対向きになって、側隔壁4が断面ハ字状を
なす如く設置され、もって隣合う側隔壁4と、通気路1
を形成3 する両側壁2、天井及び床3によシ、断面が二角形又は
三角形に近似した台形の膨張室6を形成したことを特徴
とする空調還気口などの通気口における減音装置に係る
That is, this invention provides a ventilation path 1, its side wall 2 and floor 3.
Two or more partition walls 4 are installed such that each partition wall 4 is inclined with respect to one or both of The side partition walls 4 are installed so that the inclinations are opposite to each other, and the side partition walls 4 have a V-shaped cross section.
A sound reduction device for a vent such as an air conditioner return air vent, characterized in that a trapezoidal expansion chamber 6 whose cross section is approximately square or triangular is formed in the side walls 2, the ceiling and the floor 3 which form 3. Pertains to.

この発明の完成に至るまで、発明者らは次の各実験を試
みた。
The inventors attempted the following experiments until completing this invention.

初めに、通気路1の両側に交互に垂直なじゃま板7を設
置した迷路形(第1図C)と、該じゃま板7を2枚とも
同方向に傾斜させた迷路形(第1図B)と、2枚のじゃ
ま板Tを反対向きに傾斜させた迷路形(第1図A)との
減音量を各周波数において測定した。
First, there are two types: a labyrinth shape in which vertical baffle plates 7 are installed alternately on both sides of the ventilation passage 1 (Fig. 1C), and a labyrinth shape in which both baffle plates 7 are inclined in the same direction (Fig. 1B). ) and a labyrinth shape (FIG. 1A) in which two baffle plates T are tilted in opposite directions, the volume reduction was measured at each frequency.

第1図Cが従来の減音装置の構成である。FIG. 1C shows the configuration of a conventional sound reduction device.

また、同人、同Bのじゃま板70角度は床3に対して8
0度である。
Also, the 70 angle of the baffle board for Doujin and Doujin B is 8 to the floor 3.
It is 0 degrees.

第1図りが音の周波数と減音量の関係を示すグラフであ
択第1図A、同B1同Cの夫々の結果が同りのグラフに
表わされた。
The first diagram is a graph showing the relationship between sound frequency and volume reduction.The results of Figures 1A, 1B, 1C, and 1C are shown in the same graph.

これによれば、じゃま板7が垂直なCの形式よシも、傾
斜させたA、Bの形式のものが減音量が大であることが
わかった。
According to this, it was found that the volume reduction was greater in types A and B, in which the baffle plate 7 was tilted, as opposed to type C, in which the baffle plate 7 was vertical.

つぎに、じゃま板7を側壁2に対して傾斜させた迷路形
についての実験が第2図に示される。
Next, FIG. 2 shows an experiment on a labyrinth shape in which the baffle plate 7 is inclined with respect to the side wall 2.

Eは第1図Cと同様に従来の迷路形であり、A−Dばじ
ゃま板Tの態様を変化させた迷路形である。
E is a conventional labyrinth shape similar to FIG.

A−Dにおけるじゃま板70角度は側壁2に対して70
度である。
The angle of the baffle plate 70 in A-D is 70 with respect to the side wall 2.
degree.

1″−、A−Hの各形式における音の周波数と減音量と
の関係を示すグラフである。
It is a graph showing the relationship between sound frequency and volume reduction in each format of 1″- and A-H.

この場合も、じゃま板7を傾斜させた形式がほぼ全周波
数域において減音量を大きくしている。
In this case as well, the type in which the baffle plate 7 is inclined increases the volume reduction in almost the entire frequency range.

またA−Dの形式別に見ると、じゃま板7をへの字状に
傾斜させたA、Hの形式が、特に低音域でも減音量を大
にしていることが理解できる。
Furthermore, when looking at each format of A to D, it can be seen that formats A and H, in which the baffle plate 7 is inclined in the shape of a square, have a large volume reduction, especially in the bass range.

以上、第1図および第2図の実験においては、じゃま板
7の取付を、床3または側壁2に対して傾斜させてなし
、特にじゃま板1がへの字状に傾斜するように取付ける
ことが減音量を増加させる条件となることがわかった。
As mentioned above, in the experiments shown in FIGS. 1 and 2, the baffle board 7 was installed at an angle with respect to the floor 3 or the side wall 2, and in particular, the baffle board 1 was installed at an inclination in a square shape. was found to be a condition for increasing the volume reduction.

また、従来の迷路形装置においては、吸音材を内貼する
ことで中高音域の減音量は実用的にみて十分な量が得ら
れるが、低音域では一般に内貼材の吸音率が小さいこと
が原因して、その減音量は大きくない。
In addition, in conventional maze-shaped devices, a practically sufficient amount of sound reduction in the mid-to-high range can be obtained by lining the inner lining with a sound absorbing material, but in the low frequency range, the sound absorption coefficient of the lining material is generally small. Due to this, the volume reduction is not large.

そこで低音域での減音量を増加させる手段として、迷路
の幅を大きくする、内貼材については吸音率の大きい厚
い吸音材を使う、内貼材の背後に空気層を設けた吸音構
造とする、内貼した迷路の数を増加する、等々の手段が
考えられるものの、これらの手段は、いずれも減音装置
全体の寸法を大形化するという欠点をもつため、実際に
応用することは好適ではない。
Therefore, as a means to increase the volume reduction in the low frequency range, the width of the maze is increased, the inner lining material is made of a thick sound-absorbing material with a high sound absorption coefficient, and the inner lining material has a sound-absorbing structure with an air layer behind it. , increasing the number of inner labyrinths, etc., but all of these methods have the disadvantage of increasing the overall size of the sound reduction device, so they are not suitable for practical application. isn't it.

したがって、ここでは迷路形における低音域での減音量
が小さいという特性を改善するため、通気路1に通風口
が開口された隔壁4を、前記従来のじゃま板Tに代えて
用い、該隔壁4間で膨張室6を形成し、以って気流通過
面積を小さくした形式を考えて実験した。
Therefore, in order to improve the characteristic that the volume reduction in the bass range is small in the labyrinth shape, a partition wall 4 having a ventilation hole opened in the ventilation path 1 is used in place of the conventional baffle plate T. An experiment was conducted considering a format in which an expansion chamber 6 was formed between the two, thereby reducing the air flow passage area.

第3図が、この膨張室6を形成した実験と結果を示すグ
ラフである。
FIG. 3 is a graph showing an experiment in forming this expansion chamber 6 and the results.

第3図Aが膨張室6を形成した形式で、ここでは2枚の
隔壁4によ)形成し、両隅壁4は夫々1つの通風口5が
開口される。
FIG. 3A shows a form in which the expansion chamber 6 is formed, here formed by two partition walls 4), and one ventilation port 5 is opened in each of both corner walls 4.

隔壁4と通風口5との面積比は、ここでは5対1゜10
対1.15対1の3種類について実験した。
The area ratio between the partition wall 4 and the ventilation hole 5 is 5:1°10 here.
Experiments were conducted on three types of ratios of 1.15 to 1.

夫々ここでは膨張比mが5.10.15として表わす。The expansion ratio m is respectively expressed here as 5.10.15.

そして第1図および第2図に示された従来の迷路形が第
3図Bにも示され、その減音量も前記入の形式と比較し
てCのグラフに示される。
The conventional maze shape shown in FIGS. 1 and 2 is also shown in FIG. 3B, and its reduced volume is also shown in the graph in C compared to the previously described format.

このグラフからも明らかなように、膨張室6を設けるこ
とによシ低音域で減音量が最大値をもつ特性とな択その
減音量が、膨張比に比例して大になる傾向を示した。
As is clear from this graph, by providing the expansion chamber 6, the volume reduction had a maximum value in the bass range, and the volume reduction tended to increase in proportion to the expansion ratio. .

また、前記第1図および第2図に示した実験によ如、じ
ゃま板7を側壁2または床3に対して傾斜させて取付け
ることが減音量増大に有効であることが分っているから
、第3図Aの前記膨張室を形成した隔壁4を側壁2に対
して傾斜させてその減音量を求めた。
Furthermore, as per the experiment shown in FIGS. 1 and 2, it has been found that installing the baffle plate 7 at an angle with respect to the side wall 2 or the floor 3 is effective in increasing the volume reduction. The volume reduction was determined by tilting the partition wall 4 forming the expansion chamber shown in FIG. 3A with respect to the side wall 2.

この実験が第4図に示される。ここではいずれも膨張比
mはlOである。
This experiment is shown in FIG. In both cases, the expansion ratio m is lO.

Cは第3図Aと同様の形式であり、Aは隔壁4を同方向
に傾斜させ、Bは隔壁4を反対方向に傾斜させてへの字
状にした形式である。
C is the same type as FIG. 3A, and A is a type in which the partition walls 4 are inclined in the same direction, and B is a type in which the partition walls 4 are inclined in the opposite direction to form a rectangular shape.

その結果がDのグラフに表わされる。The results are shown in graph D.

これによると、膨張室6を構成する隔壁4が傾゛斜した
形式のものは、はぼ全周波数域にわたシ、傾斜のない直
角の形式Cに比べ減音量が大きくなる傾向を示し、特に
膨張室6の断面を三角形とした形式Bのものは、低音域
でおち込んでいた減音量を増加させて、大きな減音量が
得られることがわかった。
According to this, the type in which the partition wall 4 constituting the expansion chamber 6 is inclined tends to have a greater reduction in volume than the type C in which the partition wall 4 is inclined, and has no slope, across almost the entire frequency range, and especially It has been found that type B, in which the expansion chamber 6 has a triangular cross section, can increase the volume reduction that was depressed in the bass range, and can obtain a large volume reduction.

さらに、この膨張室6を前記のように三角形とした形式
について引きつづき減音量を測定したところ、第5図の
A、Bいずれの形式においても、殆ど減音量の変化は見
られなかった。
Furthermore, when the volume reduction was subsequently measured for the configuration in which the expansion chamber 6 was made triangular as described above, almost no change in the volume reduction was observed in either type A or B in FIG.

そこで、第5図Bに示した寸法および形状をもち、しか
も膨張比を10としたものを基体形として、これをもと
に形状変化が減音量に与える影響について以下の実験を
試みた。
Therefore, using a substrate having the dimensions and shape shown in FIG. 5B and an expansion ratio of 10, the following experiment was conducted to examine the effect of shape change on the volume reduction.

第6図は、いずれも膨張比を10とし、通気路の幅りを
変化させた形態における実験であシ、グラフDからも明
らかなように全体的には減音特性の変化は少ないが、幅
りが小さくなるに従って80〜100Hzの音域での減
音量が大となり、また160Hzの音域で減音量が小に
なる結果となった。
Figure 6 shows experiments in which the expansion ratio was set to 10 and the width of the ventilation passage was varied.As is clear from graph D, overall there is little change in the sound attenuation characteristics. The smaller the width, the greater the volume reduction in the 80-100 Hz range, and the smaller the volume reduction in the 160 Hz range.

第7図は、膨張室6の断面三角形をなす隔壁4どうしが
形成する頂角θを変化させた結果を示したものであ#)
、該頂角θを20度、40度、60度に夫々変化させた
状態がAであシ、その結果がグラフCに表わされる。
FIG. 7 shows the results of changing the apex angle θ formed by the partition walls 4 of the expansion chamber 6 having a triangular cross section.
, the state in which the apex angle θ is changed to 20 degrees, 40 degrees, and 60 degrees is A, and the results are shown in graph C.

これによれば低音域での減音量に変化けみられないが、
中高音域では頂角θが小であるほど減音量が大になるこ
とがわかった。
According to this, there is no noticeable change in volume reduction in the bass range,
It was found that in the mid-to-high range, the smaller the apex angle θ, the greater the volume reduction.

第8図は、隔壁4の通風口の開口面積を変化させて膨張
比mを変化させた形式によシ減音量の変化を試験した結
果である。
FIG. 8 shows the results of testing the changes in the volume reduction by changing the expansion ratio m by changing the opening area of the ventilation port of the partition wall 4.

大々膨張比mはAが25、Bが5.Cが10であり、そ
の結果グラフDのような減音特性が表われた。
The expansion ratio m is 25 for A and 5 for B. C was 10, and as a result, a sound reduction characteristic as shown in graph D appeared.

すなわち、はぼ全周波数域で膨張比の大きさに比例して
減音量が大になることがわかった。
In other words, it was found that the volume reduction increases in proportion to the expansion ratio in almost the entire frequency range.

膨張比mが10のときの減音量は同2.5のときの約2
倍の値を示した。
When the expansion ratio m is 10, the volume reduction is approximately 2 when the expansion ratio m is 2.5.
It showed twice the value.

第9図は、Aの隔壁4を3つにして2つの膨張室6を連
続させた形式と、Bの基本形との減音量を試験したもの
で、その結果はグラフCに表わされる。
FIG. 9 shows a test of volume reduction between the type A in which three partition walls 4 are used and two expansion chambers 6 are connected, and the basic type B. The results are shown in graph C.

この場合、減音量は全周波数域にわたってほぼ平行して
おシ、膨張室6を連続させたAの形式ばBの基本形よシ
もおよそ6〜7dB程度大な減音量となる。
In this case, the volume reduction is approximately parallel over the entire frequency range, and the volume reduction is approximately 6 to 7 dB greater than the basic type B in which the expansion chambers 6 are continuous.

第10図は、AおよびBに示すように隔壁4における通
風口5の位置を変化させた形式(膨張比10)について
の試験例である。
FIG. 10 shows a test example in which the position of the ventilation hole 5 in the partition wall 4 was changed as shown in A and B (expansion ratio 10).

隔壁4における通風口5の位置については、空気抵抗に
ついての実験から、Bの形式の方がAの形式よ如も還気
口面での風速偏差が少なく好ましい結果となったが、減
音量の点においては、A、Bいずれも減音量に大差がな
いことから、これら両方式はいずれを採用することもで
きることが明らかとなった。
Regarding the position of the ventilation port 5 in the partition wall 4, experiments on air resistance showed that type B has a smaller wind speed deviation on the return air port surface than type A, which is preferable. Since there is no significant difference in the volume reduction between A and B, it is clear that either of these methods can be adopted.

さらに第11図は、第5図Bに示した基本形に、吸音材
を内貼した場合(膨貼比10)の減音特性を表わす。
Further, FIG. 11 shows the sound reduction characteristics when the basic shape shown in FIG. 5B is coated with a sound absorbing material (expansion ratio: 10).

Aは全体に吸音材を内貼した状態、Bは膨張室6のみ、
Cは眼側のみに夫々吸音材を内貼した状態、Dは吸音材
は甲いない状態であシ、これらの夫々における減音量を
表わしたのがグラフEである。
A is a state in which the entire sound absorbing material is lined inside, B is only the expansion chamber 6,
Graph C shows a state in which the sound absorbing material is applied only on the eye side, and D shows a state in which the sound absorbing material is not insulated. Graph E shows the sound reduction in each of these cases.

これによると、内貼の効果は、低音域の80〜160H
zでは顕著な差異として表われず、200Hz以上の周
波数域において、内貼のないときと比べて明確に減音量
を増加させる傾向が表われた。
According to this, the effect of the inner patch is 80 to 160H in the bass range.
There was no noticeable difference in z, but in the frequency range of 200 Hz or higher, there was a clear tendency to increase the reduced sound volume compared to when no inner patch was used.

また、図中の中高音域において、AのDと比較した減音
量が、BおよびCODと比較した減音量の和と略一致す
ることから、内貼面積に比例して減音量が増加する傾向
が見られた。
In addition, in the mid-high range in the figure, the volume reduction of A compared to D is approximately equal to the sum of the volume reduction compared to B and COD, so the volume reduction tends to increase in proportion to the inner pasting area. It was observed.

例えばグラフEにおいて、実物2KHzの音域を見ると
、減音量はAが42dB、Bが31dB、Cが28dB
であり、光々Dの減音量の17dBと比較すると、Aが
25dB大になっており、Bば14dB犬で、Cは11
dB大である。
For example, in graph E, when looking at the actual 2KHz range, the volume reduction is 42 dB for A, 31 dB for B, and 28 dB for C.
Compared to Hikari D's reduced volume of 17 dB, A is 25 dB louder, B is 14 dB louder, and C is 11 dB louder.
It is large in dB.

するとBおよびCODとの減音量の差は、14dB+1
1dB=25dBであって、これはAとDとの減音量の
差25dBと一致する。
Then, the difference in volume reduction between B and COD is 14dB+1
1 dB=25 dB, which corresponds to the difference in volume reduction between A and D of 25 dB.

以上第1図ないし第11図に示した実験例においては、
矢印Xの方向が空気吸込の方向であり、これと逆の方向
が音の伝播方向である。
In the experimental examples shown in Figures 1 to 11 above,
The direction of arrow X is the direction of air intake, and the opposite direction is the direction of sound propagation.

なお各グラフにおける上端の目盛は実際に施工した状態
における周波数の目盛であシ、これに相当する模型にお
ける周波数の日盛は下端に示した。
The scale at the top of each graph is the frequency scale in the actual construction state, and the corresponding frequency scale in the model is shown at the bottom.

またこの明細書における周波数の説明は、jべて実物に
おける数値である。
Furthermore, all frequencies explained in this specification are actual numerical values.

ま泥これらの空気抵抗値は、膨張室数、膨張比、通風口
の形状等を変えて測定した結果を第12図に示す。
These air resistance values were measured by changing the number of expansion chambers, expansion ratio, shape of ventilation holes, etc., and the results are shown in FIG.

この測定は前記第5図Bに示した基本形を基礎としてな
した。
This measurement was made based on the basic shape shown in FIG. 5B.

その結果実用空気抵抗係数は3〜6程度であ択したがっ
て実用に充分供し得ることがわかった。
As a result, it was found that the practical air resistance coefficient was selected to be about 3 to 6, and therefore, it was sufficient for practical use.

而してこの発明たる、通気路1に、その側壁2および床
3のいずれか一方または両方に対して傾斜させた2以上
の隔壁4を、該通気路を遮る如く設置し、該隔壁4は、
通風口5が開口され且つ隣合う隔壁4どうしの前記傾斜
が反対向きになって、両隅壁4が断面ハ字状をなす如く
設置され、もって隣合う両隅壁4と、両側壁2、天井お
よび床3によシ膨張室6を形成したことを特徴とする空
調還気口などの通気路における減音装置を完成した。
According to the present invention, two or more partition walls 4 which are inclined with respect to one or both of the side wall 2 and the floor 3 are installed in the ventilation passage 1 so as to block the ventilation passage, and the partition walls 4 are ,
The ventilation holes 5 are opened, and the slopes of the adjacent partition walls 4 are opposite to each other, and both corner walls 4 are installed so as to form a V-shaped cross section. A sound reduction device in a ventilation passage such as an air conditioner return air opening has been completed, which is characterized by forming an expansion chamber 6 in the ceiling and floor 3.

その典型的な実施例を示したのが第13図である。FIG. 13 shows a typical example thereof.

この実施例では隔壁4を2つ用いて1つの膨張室6を形
成し、隔壁4に夫々通風口5が円形に開口する形態であ
シ、これを空調機械室の還気口に設けた。
In this embodiment, two partition walls 4 are used to form one expansion chamber 6, and each partition wall 4 has a circular ventilation port 5, which is provided at a return air port of an air conditioning machine room.

なお、通風口5の形状は角形でもよいが、円形またはこ
れに近いものが空気抵抗が少ない。
Note that the shape of the ventilation hole 5 may be square, but a circular shape or a shape close to this has less air resistance.

而して還気は図中矢印Yの如く空調機械室に流入する。The return air then flows into the air conditioning machine room as indicated by arrow Y in the figure.

第13図の横断面拡大図が第14図である。FIG. 14 is an enlarged cross-sectional view of FIG. 13.

2つの隔壁4ば、周囲を枠材8で縁どり、内部に補強材
9を組込むとともに、該補強材90両面にグラスウール
10を充填し、外面には化粧板11を張ってユニット化
されている。
The two partition walls 4b are surrounded by a frame material 8, a reinforcing material 9 is incorporated inside, glass wool 10 is filled on both sides of the reinforcing material 90, and a decorative board 11 is applied to the outer surface to form a unit.

通風口5の周囲は円筒形の枠で形成される。The periphery of the ventilation hole 5 is formed by a cylindrical frame.

矢印Yで示す還気方向の右側の側壁2は空調機械室と他
の居室との仕切シであ択この側壁2にブラケット12を
介して前記隔壁4を固着するとともに、側壁2と隔壁4
との間にはモルタル13を充填する。
The side wall 2 on the right side in the return air direction indicated by arrow Y is a partition between the air conditioning machine room and other rooms.
A mortar 13 is filled in between.

そして還気方向の左側の側壁2は前記隔壁4と同様に枠
材141補強材15.グラスウール16、化粧板17に
よってユニット化されており、これを前記右側の側壁2
と平行に設置し、該左側の側壁2には前記隔壁4の他側
をブラケット18を介して固定する。
Similarly to the partition wall 4, the left side wall 2 in the return air direction has a frame member 141 and a reinforcing member 15. It is made into a unit by glass wool 16 and decorative board 17, and this is attached to the right side wall 2.
The other side of the partition wall 4 is fixed to the left side wall 2 via a bracket 18.

因みに、両側壁2間は1350+u+、隔壁4の厚みは
80酊、両隅壁4を夫々側壁2に固着する両ブラケット
12の間隔はその屈折部間が1200+++ib通風口
5の径は840mm、両隅壁4の角度は40度、両隅壁
4の最も近接した部分の相互の間隔は100m−隔壁4
の高さは2125mgである。
Incidentally, the distance between the two side walls 2 is 1350+u+, the thickness of the partition wall 4 is 80 mm, the distance between the brackets 12 that fix both corner walls 4 to the side walls 2 is 1200 +++ib between the bent parts, the diameter of the ventilation hole 5 is 840 mm, and the distance between the brackets 12 that fix both corner walls 4 to the side walls 2 is 1200 + The angle of the wall 4 is 40 degrees, and the distance between the closest parts of both corner walls 4 is 100 m - partition wall 4
The height of is 2125 mg.

なお図示しないが天井板も同様にユニット化されている
Although not shown, the ceiling board is also made into a unit.

そしてこれら各部の寸法は減音すべき音の性状に応じて
適宜変更すればよい。
The dimensions of these parts may be changed as appropriate depending on the characteristics of the sound to be reduced.

以上から明らかなようにこの発明によれば、空調還気口
などの通気路において、通気を確保しつつ減音量を犬に
し得た。
As is clear from the above, according to the present invention, it is possible to reduce the volume while ensuring ventilation in the air passage such as the air conditioner return vent.

特にこの発明によれば従来器しいとされていた低音域の
減音に著しい効果があ如、したがってすべての音域での
減音に成功した。
In particular, this invention has a remarkable effect on sound reduction in the low range, which was conventionally considered to be unsuitable, and has therefore succeeded in reducing sound in all sound ranges.

またこの発明によれば、隔壁も従来の迷路形におけるじ
ゃま板よシ少なくすることができる等の原因で所要空間
を小形化し得るとともに、装置のユニット化も可能にし
たから設置のための現場作業が少なく、したがって精度
の優れた減音装置が得られた。
Furthermore, according to this invention, the space required for the partition wall can be reduced by reducing the number of baffles in the conventional labyrinth type, and the device can also be made into a unit, making it possible to perform on-site installation work. Therefore, a sound reduction device with excellent accuracy was obtained.

さらにこの発明によれば、減音量が大であるため、従来
空調機械室等に貼着していた吸音材の省略も可能にした
から、前記小形化とも俟って経済性に優れる効果もある
Furthermore, according to this invention, since the sound reduction is large, it is also possible to omit the sound-absorbing material that was conventionally attached to air conditioning equipment rooms, etc., and this also has the effect of being excellent in economical efficiency in conjunction with the above-mentioned miniaturization. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第12図は、この発明の完成に至るまでの
実験例を示すものである。 第1図は、じゃま板の床に対する取付角度と減音量の関
係の実験例であシ、Aは2枚のじゃま板がハ字状になる
ように傾斜した状態の斜視図、Bば2枚のじゃま板が同
方向に傾斜した状態の斜視図、Cば2枚のじゃま板が垂
直な状態の斜視図、DばA−Cの周波数と減音量の関係
を示すグラフである。 第2図は、じゃま板の側壁に対する取付角度と減音量の
関係の実験例であり、Aは2枚のじゃま板がハ字状にな
るように傾斜した状態の斜視図、Bは2枚のじゃま板が
同方向に傾斜した状態の斜視図、Cば2枚のじゃま板が
Aとは逆向きのハ字状になるように傾斜した状態の斜視
図、Dは2枚のじゃま板がBとは逆向きの同方向に傾斜
した状態の斜視図、Eば2枚のじゃま板が垂直な状態の
斜視図、FはA−Eの周波数と減音量の関係を示すグラ
フである。 第3図は、隔壁により膨張室を形成した場合の減音量の
実験例であり、Aは垂直かつ平行な隔壁によシ膨張室を
形成した状態の斜視図、Bば2枚のじゃま板が垂直な状
態の斜視図、CばA。 Bの周波数と減音量の関係を示すグラフである。 第4図は、隔壁の角度を変化させた場合の減音量の実験
であシ、Aは隔壁を同方向に傾斜させた状態の斜視図、
Bは隔壁を異なる方向に傾斜させてハ字状にした状態の
斜視図、Cは2枚の隔壁が垂直な状態の斜視図、DはA
−Cの周波数と減音量の関係を示すグラフである。 第5図は、第1図〜第4図に示した実験の結果完成され
たこの発明の基本となる構造の斜視図であシ、Aは通気
の出入両側に仕切シが設けられた状態の斜視図、Bは通
気の入側にのみ仕切が設けられた状態の斜視図である。 第6図は通気路の幅を変化させた場合の減音量の実験で
あシ、Aは通気路の幅を狭くした状態の斜視図、Bは通
気路の通気入側に幅狭の仕切を設けた状態の斜視図、C
は通気路の通気入側に幅広の仕切を設けた状態の斜視図
、DばA−Cの周波数と減音量の関係を示すグラフであ
る。 第7図は隔壁の角度を変形させた場合の減音量の実験で
あり、Aは該角度の変化状態を示す平面図、Bは該角度
が成る特定角度である場合の斜視図、CばAの周波数と
減音量の関係を示すグラフである。 第8図は膨張比を変化させた場合の減音量の試験であシ
、Aは膨張比が2.5の場合の斜視図、Bは同5の場合
の斜視図、Cは同10の場合の斜視図、DばA−Cの周
波数と減音量の関係を示すグラフである。 第9図は膨張室の数を変化させた場合の減音量の試験で
あり、Aは膨張室を2つの形成した状態の斜視図、Bは
膨張室を1つ形成した状態の斜視図、CばA、Hの周波
数と減音量の関係を示すグラフである。 第10図は通風口の開口位置を変化させた場合の減音量
の試験であシ、Aは入側の通風口が左側で出側のそれが
右側の状態の斜視図、BばAと反対側に開口した状態の
斜視図、CはA、Bの周波数と減音量の関係を示すグラ
フである。 第11図は吸音材の内貼位置を変化させた場合の減音量
の試験であり、Aは全体を内貼した状態の平面図、Bは
膨張室内のみ内貼した状態の平面図、Cは入側のみ内貼
した状態の平面図、Dは内貼しない状態の平面図、Eは
A−Dの周波数と癒音量の関係を示すグラフである。 第12図は各形態における減音装置の空気抵抗値を表わ
す表である。 第13図はこの発明の一実施例を示す斜視図であ如、第
14図は第13図の平断面拡大図である。 なお、図中1は通気路、2は側壁、3は床、4は隔壁、
5は通風口、6は膨張室である。
FIG. 1 to FIG. 12 show experimental examples until the completion of the present invention. Figure 1 is an experimental example of the relationship between the installation angle of the baffle board relative to the floor and the volume reduction.A is a perspective view of two baffle boards tilted in a V-shape; FIG. 2 is a perspective view of the two baffle plates tilted in the same direction, a perspective view of the two baffle plates perpendicular to each other, and a graph showing the relationship between frequency and volume reduction of A-C. Figure 2 is an experimental example of the relationship between the mounting angle of the baffle plate to the side wall and the volume reduction. A perspective view of the two baffle plates tilted in the same direction; C is a perspective view of the two baffle plates tilted in the opposite direction to A; D is a perspective view of the two baffle plates tilted in the same direction as B. E is a perspective view of a state in which the two baffle plates are vertical, and F is a graph showing the relationship between the frequency of A and E and the volume reduction. Figure 3 shows an experimental example of volume reduction when an expansion chamber is formed by a partition wall. Perspective view in vertical position, C.A. It is a graph which shows the relationship between the frequency of B and the volume reduction. Figure 4 is an experiment on volume reduction when changing the angle of the partition wall, A is a perspective view of the partition wall tilted in the same direction;
B is a perspective view of the partition walls tilted in different directions to form a V-shape, C is a perspective view of the two partition walls perpendicular, and D is A.
It is a graph showing the relationship between the frequency of −C and the volume reduction. Fig. 5 is a perspective view of the basic structure of this invention completed as a result of the experiments shown in Figs. Perspective view B is a perspective view with a partition provided only on the ventilation inlet side. Figure 6 is an experiment on volume reduction when changing the width of the air passage.A is a perspective view of the air passage with a narrow width, and B is a perspective view of the air passage with a narrow partition on the ventilation inlet side. Perspective view of installed state, C
1 is a perspective view of a state in which a wide partition is provided on the ventilation inlet side of the ventilation path, and a graph showing the relationship between the frequency of D and AC and the volume reduction. Fig. 7 is an experiment on volume reduction when changing the angle of the partition wall, A is a plan view showing the state of change in the angle, B is a perspective view when the angle is a specific angle, and C is A. It is a graph showing the relationship between the frequency and the volume reduction. Figure 8 is a test of volume reduction when the expansion ratio is changed. A is a perspective view when the expansion ratio is 2.5, B is a perspective view when the expansion ratio is 5, and C is a perspective view when the expansion ratio is 10. It is a perspective view of , and a graph showing the relationship between the frequency of D and AC and the volume reduction. Figure 9 shows a test of volume reduction when changing the number of expansion chambers, A is a perspective view with two expansion chambers formed, B is a perspective view with one expansion chamber formed, and C is a perspective view with one expansion chamber formed. This is a graph showing the relationship between the frequencies of A and H and the volume reduction. Figure 10 is a test of sound reduction when the opening position of the ventilation hole is changed. A perspective view of the device opened to the side, and C is a graph showing the relationship between the frequencies of A and B and the volume reduction. Figure 11 shows a test of sound reduction when changing the position of the inner lining of the sound absorbing material, A is a plan view with the entire interior lining, B is a plan view with only the expansion chamber lining, and C is a plan view with the inner lining only inside the expansion chamber. D is a plan view of a state where only the entrance side is applied internally, D is a plan view of a state where no internal application is applied, and E is a graph showing the relationship between A-D frequency and healing amount. FIG. 12 is a table showing air resistance values of the sound reduction device in each form. FIG. 13 is a perspective view showing an embodiment of the present invention, and FIG. 14 is an enlarged plan view of FIG. 13. In addition, in the figure, 1 is a ventilation path, 2 is a side wall, 3 is a floor, 4 is a partition wall,
5 is a ventilation hole, and 6 is an expansion chamber.

Claims (1)

【特許請求の範囲】 1 通気路に、その側壁及び床のいずれか一方又は両方
に対して傾斜させた2以上の隔壁を、夫々が通気路を個
別に遮る如く設置し、各隔壁は、通風口が開口され且つ
隣合う隔壁どうしの前記傾斜が反対向きになって、側隔
壁が断面ハ字状をなす如く設置され、もって隣合う側隔
壁と、通気路を形成する両側壁、天井及び床により、断
面が三角形又は三角形に近似した台形の膨張室を形成し
たことを特徴とする空調還気口などの通気口における減
音装置。 2 隔壁とその通風口との面積比が、大体において5対
1ないし10対1程度であることを特徴とする空調還気
口などの通気口における減音装置。
[Scope of Claims] 1. Two or more partition walls are installed in the ventilation path, each of which is inclined with respect to one or both of the side wall and the floor, so that each partition wall individually blocks the ventilation path, and each partition wall has a ventilation path. The openings are opened and the slopes of the adjacent partition walls are opposite to each other, and the side partition walls are installed so as to form a V-shaped cross section, so that the adjacent side partition walls, the side walls, the ceiling and the floor forming a ventilation path. 1. A sound reduction device for a vent such as an air conditioner return air vent, characterized in that a trapezoidal expansion chamber with a triangular or approximately triangular cross section is formed. 2. A sound reduction device for a vent such as an air conditioner return vent, characterized in that the area ratio between the partition wall and its vent is approximately 5:1 to 10:1.
JP54015819A 1979-02-14 1979-02-14 Sound reduction device for air passages such as air conditioning return vents Expired JPS591914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54015819A JPS591914B2 (en) 1979-02-14 1979-02-14 Sound reduction device for air passages such as air conditioning return vents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54015819A JPS591914B2 (en) 1979-02-14 1979-02-14 Sound reduction device for air passages such as air conditioning return vents

Publications (2)

Publication Number Publication Date
JPS55107853A JPS55107853A (en) 1980-08-19
JPS591914B2 true JPS591914B2 (en) 1984-01-14

Family

ID=11899450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54015819A Expired JPS591914B2 (en) 1979-02-14 1979-02-14 Sound reduction device for air passages such as air conditioning return vents

Country Status (1)

Country Link
JP (1) JPS591914B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158308A (en) * 1983-02-28 1984-09-07 Hisao Kojima Muffler

Also Published As

Publication number Publication date
JPS55107853A (en) 1980-08-19

Similar Documents

Publication Publication Date Title
US5317113A (en) Anechoic structural elements and chamber
US5326317A (en) Ventilator
US10490178B2 (en) Perforation acoustic muffler assembly and method of reducing noise transmission through objects
US6015025A (en) Diffuser panel with built-in speaker arrangement and methods of installation
Dance et al. The complete image-source method for the prediction of sound distribution in non-diffuse enclosed spaces
WO1985001975A1 (en) Device for absorption of sound waves
JPS591914B2 (en) Sound reduction device for air passages such as air conditioning return vents
JP3071637B2 (en) Resonator type sound absorber and sound absorbing ceiling
JPS616493A (en) Soundproof device
JPWO2020183689A1 (en) Sound adjustment shelf
JPH0439570B2 (en)
FI110896B (en) Sound active damping construction
JP7344665B2 (en) Ventilation opening structure
KR102133435B1 (en) The Ceiling and wall panels for floor impact sound reduction and its construction method
JPH0477645A (en) Test chamber for vehicle
JPH0727387B2 (en) Small reverberation room
GB2121451A (en) Sound insulating structures
JP3044736B2 (en) Air conditioning duct noise attenuator
JP3071401U (en) Silencer
KR200180500Y1 (en) Exhaust spiral duct cross-tee attached sound absorbing plate
JPH01269852A (en) Louver
JPH05126097A (en) Silencer for air blower
JPH028006Y2 (en)
JP3003364B2 (en) Air conditioning duct noise attenuator
JPH0260944B2 (en)