JPS59191272A - Manufacture of sealant for laminated cell - Google Patents

Manufacture of sealant for laminated cell

Info

Publication number
JPS59191272A
JPS59191272A JP58066556A JP6655683A JPS59191272A JP S59191272 A JPS59191272 A JP S59191272A JP 58066556 A JP58066556 A JP 58066556A JP 6655683 A JP6655683 A JP 6655683A JP S59191272 A JPS59191272 A JP S59191272A
Authority
JP
Japan
Prior art keywords
powder
kerosene
mixed
sheet
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58066556A
Other languages
Japanese (ja)
Other versions
JPH0135470B2 (en
Inventor
Masao Kumeta
粂田 政男
Kensho Matsuoka
松岡 憲昭
Yuji Sawada
雄治 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58066556A priority Critical patent/JPS59191272A/en
Publication of JPS59191272A publication Critical patent/JPS59191272A/en
Publication of JPH0135470B2 publication Critical patent/JPH0135470B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/191Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain sealant preferable for laminated seal face of matrix type fuel cell while having excellent resiliency and softness by developing micro powder of beta-type silicon carbide into a sheet while employing fluorine resin primary dried powder and secondary condensed powder. CONSTITUTION:40g of beta-type silicon carbide micro powder having average grain size of 0.3mu and 600ml of kerosene are poured into a mixer and mixed for 15sec. then 30g of polyfron D1 powder having average grain size of 0.2-0.3mu (PTFE dry primary particle) is added and mixed for 15sec. and finally Teflon 6C-J powder (PTFE condensed secondary particle) having average grain size of 100mu is added and mixed for 15sec. Thereafter dispersion solvent of kerosene is filtered to reduce the content of kerosene after filtering to approximately 20wt%. Then said compound is rolled repeatedly by means of rollers warmed to 40 deg.C and fibril the condensed secondary particles. Said sheet is volatilized of kerosene completely under the temperature of 83 deg.C then thermally processed for 30min under the temperature of 200 deg.C and cut to desired length to produce a sealing member.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はマトリックス型燃料電池の積層シール面に用い
るシーμ材所謂「シム」の製法に関するものでおる。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for manufacturing a so-called "shim" of a sea μ material used for the laminated sealing surface of a matrix fuel cell.

(ロ)従来技術 一般に電池スタック(S)は単位セ/l/[+1と伏素
鈎ガス分離板(2)とを交互に多数積重しで構成される
(B) Prior Art In general, a battery stack (S) is constructed by alternately stacking a large number of unit cells/l/[+1 and alumina hook gas separation plates (2).

各ガス分離板(2)の表裏各面には、互に交錯する方向
の両側シール面(3031及び(41(41と、各f5
1応ガフ(空気及び水素)の供給溝(6)及び(6)と
を有し、各ガス極(空気極及び水素極) (P)(N)
は対応反応ガス供給溝(6)及び(5)を夫々覆うよう
前記両側シール面(3)(3)間及び+41+41間に
俵迅−され、これらガス極(P)(N)間に@解質マト
リック7、仮)を介在させて各ガス分離板(2)を積ル
ーする。
On each of the front and back surfaces of each gas separation plate (2), seal surfaces (3031 and (41 (41) and each f5
1 Gaff (air and hydrogen) supply grooves (6) and (6), each gas electrode (air electrode and hydrogen electrode) (P) (N)
is placed between the sealing surfaces (3) and +41+41 on both sides so as to cover the corresponding reaction gas supply grooves (6) and (5), respectively, and between these gas electrodes (P) and (N), Each gas separation plate (2) is stacked with a quality matrix 7 (temporary) interposed therebetween.

この場合各シーμ面(3)及び(4)上には、絶縁性シ
ール材+71 (7fを介してマトリックスへつと一方
のガス極(P)及び(N”)の各周辺部が挟接される。
In this case, the peripheral parts of one gas electrode (P) and (N") are sandwiched between the insulating sealing material +71 (7f) and the matrix on each sea μ surface (3) and (4). Ru.

従来の前記シーμ材−「シム」と云はれるーは、硬質弗
素樹脂シートを用いていたが、弾力性に欠けるためガス
分離板間のシール性が悪く、反応ガス供給溝(5)及び
(6)から夫々シール面(4)及び(3)を伝わって外
部へカス漏れを起す恐れがあった。
The conventional sea μ material (referred to as "shim") used a hard fluororesin sheet, but it lacked elasticity and had poor sealing properties between the gas separation plates, resulting in poor sealing between the reaction gas supply grooves (5) and There was a risk that debris would leak from (6) to the outside through the seal surfaces (4) and (3), respectively.

対策として、シール面とシール材との間に弗素系ゴム液
を塗布することも考えられるが、畏期間の耐熱、耐酸性
に欠けるという問題があった。
As a countermeasure, it may be possible to apply a fluorine-based rubber liquid between the sealing surface and the sealing material, but this has the problem of lacking heat resistance and acid resistance over a period of time.

(ハ)・発明の目的 本発明の目的はガス漏れのない弾力性にすぐれたシール
材(シム)を提供することである。
(c) Purpose of the Invention The purpose of the present invention is to provide a sealing material (shim) with excellent elasticity and no gas leakage.

に)発明の構成 本発明のシール材は、平均粒径約0.3μのβ型度化珪
素超微粉末と、二種類の弗素樹脂−その1つは平均粒径
0,2〜0.3μの微粉末他の1つは平均粒径約100
μの凝集粉末−とを揮発性溶媒で分散させた混合物を混
練して後シート状とし手巻乾燥により前記溶媒を完全に
1軍発させ面る後約200℃で熱処理せしめたものであ
る。
B) Structure of the Invention The sealing material of the present invention is made of β-type hardened silicon ultrafine powder with an average particle size of about 0.3μ, and two types of fluororesin, one of which has an average particle size of 0.2 to 0.3μ. The other one is a fine powder with an average particle size of about 100
A mixture of .mu. coagulated powder dispersed in a volatile solvent was kneaded, formed into a sheet, rolled by hand to completely evaporate the solvent, and then heat-treated at about 200 DEG C.

(ホ)実施例 本発明シール材の作成法について説明する。(e) Examples A method for producing the sealing material of the present invention will be explained.

従来マトリックスやシムに使用されている炭化珪素粉末
は、電気抵抗炉で合成された粒状のα全炭化珪素(α−
9ic)を粉砕分級づ−ることにより作成され、その平
均粒径も5〜6μが限没であった。
The silicon carbide powder conventionally used for matrices and shims is granular α-all silicon carbide (α-
9ic), and its average particle size was limited to 5 to 6μ.

これに対し本発明に用いた超微粉のβ型炭化址集(β−
5ic商品名ベータランタム)は、超微粉末化の要望に
基づき開発された全く絞ましいプロセスで作成されたも
ので、主な特徴として(a)α−5icでは安定して得
難い超微粉末(平均粒径02〜0,3μ> 、(b)角
の少ない球状(で近い粒子形状、(C)優れた分散性と
高い充填特性を有する。
In contrast, the ultrafine powder used in the present invention is a β-type carbonized material (β-
5ic (trade name Beta Lantum) was created using a completely strict process developed based on the desire for ultra-fine powder.The main features are (a) ultra-fine powder (average Particle size: 02-0.3μ>, (b) particle shape with few corners (approximately spherical), (C) excellent dispersibility and high filling characteristics.

又二種類の弗素樹脂粉末のうち、平均粒径02〜0.3
μの微粉末は、ポリフロンD 1 (簡&2+ 名)と
云はれP TF’ Eデづヌパーションを乾燥、水分を
除去した後ミキサーにて粉砕し−(30メツシユを通し
た乾燥−次粉末である。一方平均粒径1゜Oμの凝集粉
末は、テフロン6C=(fi品名)と云はれ、PTEE
ディスパージョンよC01l’にもつ一次粒子を凝集さ
せ、これを捷るめた二次粒子である。
Also, among the two types of fluororesin powder, the average particle size is 02 to 0.3.
The fine powder of μ is made by drying PTF'E dezunupersion, which is called Polyflon D1 (simple & 2+ name), removing the moisture, and then crushing it in a mixer (dried through 30 meshes). On the other hand, the agglomerated powder with an average particle size of 1゜Oμ is called Teflon 6C = (fi product name) and is PTEE.
Dispersion is a secondary particle obtained by agglomerating primary particles in C01l' and breaking them down.

実施例I I 前記β−5ic超微粉末409とクロシン600m
Jをミキサーに入れて15秒間混合した後、前記ポリフ
ロンD1粉末(PTFE乾燥−次粒子)30ノを加えて
15秒間混合する、最後にテフロン6C−Jl末(PT
FE凝集二次粒子)309を加えて15秒間混合する。
Example I I Said β-5ic ultrafine powder 409 and Crocin 600m
After putting J into a mixer and mixing for 15 seconds, add 30 pieces of the Polyflon D1 powder (PTFE dry-substance particles) and mix for 15 seconds.Finally, add Teflon 6C-Jl powder (PTFE powder) and mix for 15 seconds.
Add FE agglomerated secondary particles) 309 and mix for 15 seconds.

ついで分散溶媒であるクロシンを濾過して取Q除くが、
洲過後のクロシン含有量は約20重量%でるる。
Next, the dispersion solvent crocin is filtered to remove Q.
The crocin content after filtration is approximately 20% by weight.

■ 次に前記の混合物を40°Cに保温されたローラー
により繰返しローリングして凝集二次粒子のフィブリル
化を行う。この同ローラー間隔を5mmから1mmまで
順次減少しつつその都度折9重ねたシートを大々数回通
し、最後にローラーで所望厚さのシートに圧延する。
(2) Next, the above mixture is repeatedly rolled using a roller kept at 40°C to fibrillate the aggregated secondary particles. The 9 folded sheet is passed through the sheet several times while the distance between the same rollers is gradually decreased from 5 mm to 1 mm each time, and finally the sheet is rolled into a sheet of desired thickness using rollers.

■ このシートは83°Cでクロシンを完全に揮発させ
て後200℃30分間熱処理を行い、所望寸法に載断し
てシール材(シムンとする。
(2) This sheet was heated to 83°C to completely volatilize the crocin, then heat-treated at 200°C for 30 minutes, cut into desired dimensions, and made into a sealing material (shimun).

第1図は本実施例1のフローチャートを示す。FIG. 1 shows a flowchart of the first embodiment.

実施例2 β−8i c超微粉末609、ポリフロンD1粉末18
9及びテフロン6C−J粉末229をヒーカーに入れ、
撹拌棒で充分混合した後ケロシン25ccを除々に加え
ながら均一になる育て混合を行う。それ以後の操作は実
施例1のnmと同様である。
Example 2 β-8i c ultrafine powder 609, Polyflon D1 powder 18
9 and Teflon 6C-J powder 229 into a heater,
After thoroughly mixing with a stirring rod, 25 cc of kerosene is gradually added and mixed until uniform. The subsequent operations are the same as in Example 1.

二種類の弗素樹脂粉末のうち一次粒子(ポリフロンDI
)は完成シートの柔軟性を向上し、二次粒子(テフロン
6C−J)は繊維状ネットワークを炒成して完成シート
の酸部性を付与する。一方β−5ic超微粉末は、シー
トの成卆伯、柔Q性を高める充填材となり、従来のα−
5ic粉末に比し平均粒径が1/20程度と極めて小さ
く、フィブリμ化弗素樹脂とのなじみが向上する。
Among the two types of fluororesin powder, primary particles (Polyflon DI
) improves the flexibility of the finished sheet, and the secondary particles (Teflon 6C-J) burn the fibrous network to impart acidity to the finished sheet. On the other hand, β-5ic ultrafine powder is a filler that improves sheet growth and soft Q properties, and is
The average particle size is extremely small, about 1/20 of that of 5ic powder, and the compatibility with the fibrillarized fluororesin is improved.

尚両弁素樹脂粉末の混合比は、合せて40〜60%か適
当であり、これより高くなると硬くガって弾力性に欠け
、又これより低くなるとSic&の結合力が不足して強
度的に問題がるる。又二次粒子と一次粒子との比率は、
等しいかもしくにFfli者かや!多い方が好ましい〜 本発明のシール材は、従来の弗素樹脂シートの場合と同
様に各カス分離板(2)の両側シー/L/ff1i (
31f3)及び[4)+4+上に配置畑れるが、電池ス
タック(S)に組立てた場合、力′ス分離板のシール面
(3)と隣接ガス分離板(2)との間に、シール材(7
)を介してマトリックスへi)と空気極(P)の各周辺
部が挾持され、一方シー/1/面(4)と隣接ガス分離
板との間に、シール材(7)を介してマトリックス(M
)と水素極(N)が挾持され、スタックシール部分を形
成する。
The mixing ratio of both resin powders should be 40 to 60% in total; if it is higher than this, it will become hard and loose and lack elasticity, and if it is lower than this, the bonding force of Sic& will be insufficient and the strength will be poor. I have a problem. Also, the ratio of secondary particles to primary particles is
Even if it's the same, it's definitely an Ffli person! The larger the number, the better. The sealing material of the present invention has the same properties as the conventional fluororesin sheet, with the sealing material on both sides of each waste separation plate (2) /L/ff1i (
31f3) and [4)+4+ However, when assembled into a battery stack (S), a sealing material is placed between the sealing surface (3) of the force separation plate and the adjacent gas separation plate (2). (7
) to the matrix through the sealing material (7), the respective peripheral parts of the air electrode (P) and the air electrode (P) are sandwiched between the matrix and the air electrode (P) through the sealing material (7). (M
) and the hydrogen electrode (N) are sandwiched to form a stack seal part.

(ハ)発明の効果 本発明シール材はβ型炭化珪=素の超微粉末を弗素梅脂
一次乾燥粒子粉末及び二次凝集粒子粉末を用いてシート
状にしたものてあり、β型炭化珪素は従来のβ型炭化珪
素に比し平均粒径が1/20も小さい角の少い球状に近
い超微粒子で、優れた分散性と高い充填性を有すると共
に弗紮樹脂のうち一次粒子はシートの柔軟性を向上し、
二次凝集粒子はフイフ゛リル化によりβ型炭化址素超敞
粒子及び−炭粒子を保持して成型性と弾力性を付与する
。従って本発明法によって得たシール材は、従来のもの
に比し弾力性、柔軟性に告れているため、電池7′タッ
ク私u11面のシール効果を著しく救世して各反応ガス
漏れを防止することかできる8
(C) Effects of the Invention The sealing material of the present invention is made by forming a sheet of ultrafine powder of β-type silicon carbide using primary dry powder of fluorine plum oil and secondary agglomerated particle powder, and is made of β-type silicon carbide. is an ultrafine particle with an average particle size 1/20 smaller than that of conventional β-type silicon carbide and has a nearly spherical shape with few corners.It has excellent dispersibility and high filling properties, and the primary particles of the fluorocarbon resin are sheets. improve the flexibility of
The secondary agglomerated particles retain the β-type silicon carbide super tensile particles and the charcoal particles through fibrillation, thereby imparting moldability and elasticity. Therefore, the sealing material obtained by the method of the present invention is known for its elasticity and flexibility compared to conventional ones, so it significantly improves the sealing effect on the battery 7' tack I u11 side and prevents leakage of each reaction gas. 8.

【図面の簡単な説明】[Brief explanation of drawings]

第1図にA−発りjシール材の作成例を万、すフローチ
ャート、第2因はカス分離板間の単位セ/しの分解斜視
図、第3図は電池スタックの要部拡大斜面図、第4区は
第3図X−X線による断面図である。 S・・・電池スタック、l・・単位セル、P、N、・・
・空気極及び水素Aルア、M−・・マトリックス、2−
17分離板、3,4・・両側シール面、5.6・・・反
応ガフ 併結溝、77・・シール材(ンム)。
Fig. 1 is a flowchart showing an example of creating a sealing material starting from A-j, the second factor is an exploded perspective view of a unit cell between waste separation plates, and Fig. 3 is an enlarged perspective view of the main parts of a battery stack. , Section 4 is a sectional view taken along line XX in FIG. 3. S...Battery stack, l...Unit cell, P, N,...
・Air electrode and hydrogen A lua, M-...matrix, 2-
17 separation plate, 3, 4...both side sealing surfaces, 5.6...reaction gaff connection groove, 77...sealing material (mm).

Claims (3)

【特許請求の範囲】[Claims] (1)平均粒径約0.3μのβ型炭化珪素超微粉末と、
弗素樹脂の一次粒子微粉末と、弗素樹脂の凝集二次粒子
粉末とを、前記両弗素樹脂粉末の含有比率が40〜60
重愈%となるよう、溶媒に分散させた混合物を混練して
後シート状とし、このシートを乾燥して前記溶媒を除去
後約200℃で熱処理せしめたことを特徴とする積層電
池シール材の製法。
(1) Ultrafine β-type silicon carbide powder with an average particle size of about 0.3μ,
The fine primary particles of fluororesin and the agglomerated secondary particles of fluororesin are mixed in such a way that the content ratio of both fluororesin powders is 40 to 60.
A laminated battery sealing material characterized in that a mixture dispersed in a solvent is kneaded to form a sheet so as to give a weight of Manufacturing method.
(2)前記β型炭化珪素超微粉末と前記弗素樹脂の一次
粒子粉末と前記凝集二次粒子粉末とは重量比で約4:3
:3の割合で混合されていることを特徴とする特許請求
の範囲第1項記載の積層電池シール桐の製法。
(2) The weight ratio of the β-type silicon carbide ultrafine powder, the fluororesin primary particle powder, and the agglomerated secondary particle powder is approximately 4:3.
The method for producing paulownia laminated battery seal according to claim 1, characterized in that the paulownia wood is mixed at a ratio of 3:3.
(3)前記−次粒子は平均粒径が0.2〜0.3μの乾
燥粒子であり、前記二次粒子は平均粒径が約100μの
凝集粒子であることを特徴とする特許請求の範囲第1項
記載の積層電池シーρ材の製法。
(3) Claims characterized in that the secondary particles are dry particles with an average particle size of 0.2 to 0.3μ, and the secondary particles are aggregated particles with an average particle size of about 100μ. A method for producing a laminated battery sheet ρ material according to item 1.
JP58066556A 1983-04-14 1983-04-14 Manufacture of sealant for laminated cell Granted JPS59191272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58066556A JPS59191272A (en) 1983-04-14 1983-04-14 Manufacture of sealant for laminated cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58066556A JPS59191272A (en) 1983-04-14 1983-04-14 Manufacture of sealant for laminated cell

Publications (2)

Publication Number Publication Date
JPS59191272A true JPS59191272A (en) 1984-10-30
JPH0135470B2 JPH0135470B2 (en) 1989-07-25

Family

ID=13319305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58066556A Granted JPS59191272A (en) 1983-04-14 1983-04-14 Manufacture of sealant for laminated cell

Country Status (1)

Country Link
JP (1) JPS59191272A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127177U (en) * 1991-05-07 1992-11-19 千寿製薬株式会社 Dumpling making tools
CN105140324A (en) * 2015-09-01 2015-12-09 北京汉能光伏投资有限公司 Solar cell protective film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127177U (en) * 1991-05-07 1992-11-19 千寿製薬株式会社 Dumpling making tools
CN105140324A (en) * 2015-09-01 2015-12-09 北京汉能光伏投资有限公司 Solar cell protective film

Also Published As

Publication number Publication date
JPH0135470B2 (en) 1989-07-25

Similar Documents

Publication Publication Date Title
JP5524800B2 (en) Membrane electrode assembly
DE112004001385B4 (en) Fuel cell system with optimized for various operating humidities gas diffusion layer and its use
KR20010014058A (en) Flexible graphite sheet with decreased anisotropy
JP4970698B2 (en) Conductive composite material and fuel cell electrode using the conductive composite material
DE2511557A1 (en) HYDROPHILIC ELECTRODE AND THEIR PRODUCTION
DE3640108A1 (en) ELECTRODE SUBSTRATE
JPS59191272A (en) Manufacture of sealant for laminated cell
JPH01311570A (en) Separator for fuel cell
DE1694558B2 (en) Process for the production of a porous molded article consisting essentially of a hydrophobic polymer
JP2018170222A (en) Method of manufacturing electrode
DE112009005392B4 (en) Method of making a porous article
JPH11354136A (en) Fuel cell, separator for fuel cell, and manufacture therefor
JPH0135471B2 (en)
CN112424310B (en) Sealing material
JP7074083B2 (en) Method for manufacturing electrode slurry containing lithium titanate
JP2001035756A (en) Manufacture of polarizable electrode for capacitor
US552211A (en) Depolarizer for primary batteries and method of making same
DE602004011415T2 (en) Method for producing an isotropic separator for a fuel cell
JPS6067A (en) Manufacture of sealing material for layer-built cell
JP2008013654A (en) Method for producing fluoroplastic sheet containing filler and fluoroplastic sheet containing filler
JPS59196224A (en) Manufacture of electrically conductive polytetrafluoroethylene sheet
US1856684A (en) Porous body and process of manufacturing the same
JPS6014766A (en) Manufacture of layer-built cell sealant
DE10132434B4 (en) Electrolyte membrane / electrode assembly of a solid polymer electrolyte fuel cell
JP3776875B2 (en) Method for producing polarizable electrode for electric double layer capacitor