JPS59190676A - Directional cosine estimation system - Google Patents

Directional cosine estimation system

Info

Publication number
JPS59190676A
JPS59190676A JP58064547A JP6454783A JPS59190676A JP S59190676 A JPS59190676 A JP S59190676A JP 58064547 A JP58064547 A JP 58064547A JP 6454783 A JP6454783 A JP 6454783A JP S59190676 A JPS59190676 A JP S59190676A
Authority
JP
Japan
Prior art keywords
output
spatial frequency
cosine
interpolator
maximum point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58064547A
Other languages
Japanese (ja)
Other versions
JPH0312710B2 (en
Inventor
Hiroshi Nishimura
宏 西村
Masao Igarashi
正夫 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP58064547A priority Critical patent/JPS59190676A/en
Publication of JPS59190676A publication Critical patent/JPS59190676A/en
Publication of JPH0312710B2 publication Critical patent/JPH0312710B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00

Abstract

PURPOSE:To eliminate estimated errors in the spatial frequency by multiplying a beam former output by a reciprocal of the wave receiving sensitivity. CONSTITUTION:Registers 521-52N memorizes a reciprocal of a value in an spatial frequency of a directional pattern of an element, namely, a value of a reciprocal of the element sensitivity as constant. Multipliers 511-51N calculate the product of the constant and an output of a beam former 23 and outputs it to a maximum point detector 24 and an interpolator 25. The interpolator 25 interpolates a multibeam output in the vicinity of the spatial frequency and outputs a beam output as continuous function of the spatial frequency. The maximum point detector 26 outputs a spatial frequency and a converter 27 outputs a directional cosine.

Description

【発明の詳細な説明】 (技術分野) 本発明は、同一の指向性パターンを持つ受波素子の配列
からなるプレイを用いてマルチビームを形成し、該マル
チビームの出力から信号源位置の方向余弦を推定するに
あたって、前記受波素子の指向性パターンによって生ず
る方向余弦の推定誤差を除去する方向余弦推定方式に関
するものである0 (背景技術) ソーナーや音響測位及びレーダーにおいては、空間上に
直線(1次元)、平面(2次元)あるいは6次元的に素
子を配列したアレイを用いてマルチビームを形成し、こ
のマルチビームの離散出力の最大点を求め、該最大点近
傍のマルチビームの出力に対し空間周波数領域において
補間操作を施し、補間後の出力の最大点を求め、該最大
点に対応する空間周波数により信号源位置の方向余弦を
求める方向余弦推定方式が広く用いられている。
Detailed Description of the Invention (Technical Field) The present invention forms multi-beams using a play consisting of an array of receiving elements having the same directivity pattern, and the direction from the output of the multi-beams to the signal source position. This invention relates to a direction cosine estimation method that removes an error in estimating the direction cosine caused by the directivity pattern of the receiving element when estimating the cosine. Form a multi-beam using an array in which elements are arranged in a plane (one-dimensional), a plane (two-dimensional), or six dimensions, find the maximum point of the discrete output of this multi-beam, and output the multi-beam near the maximum point. A direction cosine estimation method is widely used in which an interpolation operation is performed on the signal in the spatial frequency domain, the maximum point of the output after interpolation is determined, and the direction cosine of the signal source position is determined using the spatial frequency corresponding to the maximum point.

ところで、従来の方式では、前記素子の指向性は無指向
性、すなわち方向に対する素子の受波感度は一定である
という仮定を前提としている。ところが、前記素子は通
常ある程度の指向性を持つており、従って従来の方式に
よって方向余弦を推定すると、素子の指向性のために誤
差を生ずるという欠点があった。
By the way, the conventional method is based on the assumption that the directivity of the element is omnidirectional, that is, the receiving sensitivity of the element with respect to the direction is constant. However, the element usually has a certain degree of directivity, and therefore, when the direction cosine is estimated by the conventional method, there is a drawback that an error occurs due to the directivity of the element.

第1図は、アレイが直線(1次元)アレイの場合の幾可
学的説明図でろシ、111,1121・・・、11L。
FIG. 1 is a geometric explanatory diagram when the array is a linear (one-dimensional) array.

・・・、11Mは各々受波素子、12は該受派素子が配
列される基準軸、16は信号源方向を示す直線、θ2は
前記基準軸12に対する前記信号源方向を示す直線16
の方向余弦角である。
. . . , 11M is a receiving element, 12 is a reference axis on which the receiving elements are arranged, 16 is a straight line indicating the signal source direction, and θ2 is a straight line 16 indicating the signal source direction with respect to the reference axis 12.
is the direction cosine angle of .

第2図は、各受波素子の指向性パターンが無指向性であ
ると仮定した従来の方向余弦推定方式の機能ブロック図
であり、211.212.・・・、21Q、・・・。
FIG. 2 is a functional block diagram of a conventional direction cosine estimation method assuming that the directivity pattern of each receiving element is omnidirectional. ..., 21Q, ...

21Mは各々増幅器、221.222.・・・、22L
、・・・、22Mハ各々帯域通過フィルタ、23はビー
ムフォーマ。
21M are amplifiers, 221.222. ..., 22L
, . . . , 22M are each bandpass filters, and 23 is a beam former.

y+ + y2i”+ yn+・・’、 2/−Nはマ
ルチビームの出力、24は第1の最大点検出器、ルmは
マルチビームの出力が最大となる空間周波数の離散値、
25は補間器、となる空間周波数、27は変換器、・・
・令・は前記ある。
y+ + y2i"+ yn+...', 2/-N is the output of the multi-beam, 24 is the first maximum point detector, m is the discrete value of the spatial frequency at which the multi-beam output is maximum,
25 is an interpolator, the spatial frequency to be used, 27 is a converter,...
・Order・ is mentioned above.

信号源が直線(1次元)アレイの開口に比べ充分に遠方
にある場合を考えると、信号源方向13の方向余弦角が
θχであるときの第り番目素子11Lへの入力信号S 
= (、t)は、キャリア成分及び初期位相成分を省略
すると Sz(,1)−A=−る−μζL(1)で与えられる。
Considering the case where the signal source is sufficiently far away compared to the aperture of the linear (one-dimensional) array, the input signal S to the th element 11L when the direction cosine angle of the signal source direction 13 is θχ.
= (,t) is given by Sz(,1)-A=-ru-μζL(1) if the carrier component and initial phase component are omitted.

ただしAAは振幅、ζLは第ル番目素子11カの位置座
標、系は空間周波数で信号の波長をλとすると AAぜイーθz(2) −λ で表わされる。
Here, AA is the amplitude, ζL is the position coordinate of the 11th element, and the system is a spatial frequency, which is expressed as AAZE θz(2) −λ, where λ is the wavelength of the signal.

ビームフォーマ23は、空間周波flAのN個の離散値
’1+ル2.・・・+ ’7L・・・、4Nに対応する
方向余弦角θ2□、θ2□、・・・、θ24.・・・、
θ7N方向にN個のマルチビームを形成し、該マルチビ
ームの出力として次式で与えられる2’++、i2+・
・・、 J−n 、・・、yNt出力する。
The beamformer 23 generates N discrete values '1+ru2.' of the spatial frequency flA. ... + '7L..., directional cosine angles θ2□, θ2□, ..., θ24. ...,
N multi-beams are formed in the θ7N direction, and the output of the multi-beams is 2'++, i2+, given by the following formula.
..., J-n, ..., yNt is output.

(3) ただし、T2−T1は積分時間である。(3) However, T2-T1 is the integration time.

第1の最大点検出器24(l−iy+ + y21・’
、 7n、・・・。
First maximum point detector 24 (l-iy+ + y21・'
, 7n,...

yNの最大値y、mを求め、そのときの空間周波数に?
ルを出力する。
Find the maximum values y and m of yN and find the spatial frequency at that time?
output the file.

補間器25は前記空間周波数4%の近傍のマルチビーム
出力に補間操作を施し、空間周波数ルの連続関数として
ビーム出力y(4)’s:出力する。
The interpolator 25 performs an interpolation operation on the multi-beam output near the spatial frequency of 4%, and outputs the beam output y(4)'s: as a continuous function of the spatial frequency.

第2の最大点検出器26はy(勺の最大値mc−χy(
勺を求め、そのときの空間周波教会全出力する・変換器
27は式(2)に基づいて前記台から方向余弦 無指向性、すなわち素子の規格化した指向性パターンが
全ての空間周波数I6に対して4(A)−1が成立する
ときの、第2図で示される従来の方式の説明図である。
The second maximum point detector 26 detects the maximum value mc−χy(
The converter 27 outputs the entire spatial frequency I6 at that time. Based on equation (2), the converter 27 converts the direction cosine omnidirectionality from the table based on equation (2), that is, the normalized directivity pattern of the element corresponds to all spatial frequencies I6. FIG. 3 is an explanatory diagram of the conventional method shown in FIG. 2 when 4(A)-1 holds true.

’ (A)−1である場合には、従来方式で求められる
前期分は真値と一致し、従って前記・・・企・も真値と
一致する・ 第4図は素子1’l、112+・・・、11.、、・・
・、11Mが無指向性でない場合に、従来方式をそのま
ま適用した場合の説明図である。
' (A) If -1, the previous period obtained by the conventional method matches the true value, and therefore the above ... plan also matches the true value. ..., 11. ,,...
. , 11M is not omnidirectional, and is an explanatory diagram when the conventional method is applied as is.

文献「R,J、14#cA−p4Q7IcQ7J 伺e
rfUnd<hwcLthh Serwnel”、 M
r、Ghaw−fp、ill、 p、 57 。
Literature “R, J, 14#cA-p4Q7IcQ7J
rfUnd<hwcLthh Serwnel”, M
r, Ghow-fp, ill, p, 57.

1967jで明らかにされているように、アレイを構成
する各素子111.1121・・・、ii=、・・・、
11Mが同一の指向性パターンへ勺ヲ持つときのマルチ
ビームの指向性パターンは、前記各素子が無指向性であ
るときのマルチビー、ムの指向性パターンと前記素子の
指向性パターンの積で与えられるから、この場合の前記
ビームフォーマの出カフi+g’、・・・。
1967j, each element 111.1121..., ii=,..., composing the array
The directional pattern of the multi-beam when 11M has the same directional pattern is given by the product of the directional pattern of the multi-beam when each element is omnidirectional and the directional pattern of the element. Therefore, the output power of the beamformer in this case is i+g', . . .

於・、・・・、y埒は各素子が無指向性であるときのビ
ームフォーマの出カフ1 + 72 +・・・、 y、
n 、・・・、yNヲ用いて。
..., y is the output cuff of the beamformer when each element is non-directional 1 + 72 +..., y,
Use n,...,yNwo.

y’n、=h (x−)、、y、、 ; 7L=1.2
.−、x、−、N(5)で表現できる・ここで6(峠)
は空間周波数の離散値ルnにおける指向性パターン値、
すなわち素子感度である。
y'n,=h(x-),,y,,; 7L=1.2
.. -, x, -, can be expressed as N (5) ・Here, 6 (pass)
is the directivity pattern value at the discrete value n of the spatial frequency,
In other words, it is element sensitivity.

従ってパ+ 72 +・・・、 y、’n 、・・・、
 y’Hに補間操作を施し、その最大点から求めた空間
周波数◇は一般に前記分と一致しない。すなわち、従来
の方向余弦推定方式では、アレイを構成する素子が指向
性をもつ場合、推定誤差ΔOyJθ2−λΔ屋(ただし
、1a−Q−’Q)f生ずることになる。
Therefore, pa + 72 +..., y, 'n,...,
The spatial frequency ◇ obtained from the maximum point by performing interpolation on y'H generally does not match the above-mentioned frequency. That is, in the conventional direction cosine estimation method, when the elements constituting the array have directivity, an estimation error ΔOyJθ2−λΔya (where 1a−Q−′Q)f occurs.

(発明の課題) 本発明の目的はこの欠点を除去するため、ビームフォー
マの出力に素子感度の逆数を掛け、等測的に素子が無指
向性である場合と同じビーム出力を得、無指向性でない
素子を使い従来方式を適用することによって生ずる空間
周波数の推定誤差をなくしたものであり、以下詳細に説
明する0(発明の構成および作用) 第5図は、本発明の実施例であって51.、512゜・
、5171.、・・・、51Nは各々乗算器、52 I
+ 5221・・・。
(Problem to be solved by the invention) In order to eliminate this drawback, the purpose of the present invention is to multiply the output of the beamformer by the reciprocal of the element sensitivity to obtain the same beam output isometrically as when the element is omnidirectional. This method eliminates the spatial frequency estimation error caused by applying the conventional method using elements that are not sensitive to each other, and will be described in detail below. 51. , 512°・
, 5171. , . . . , 51N are multipliers, 52 I
+5221...

52、町・−・。52. Town...

′¥21寸は各々レジスタである・レジスタ52.、5
22゜・・・、52.、・・、52NKは素子の指向性
パターンの空間周波数AI+’2+・・・、An、・・
・、ANにおける値の逆数、すなわち素子感度の逆数1
μ(”I) 、 V8 (”2) 。
'¥21 each is a register・Register 52. , 5
22°..., 52. ,..., 52NK is the spatial frequency AI+'2+..., An,... of the directivity pattern of the element.
・, the reciprocal of the value in AN, that is, the reciprocal of the element sensitivity 1
μ(”I), V8(”2).

・・・、1μ(μn)、・・・、1μ(AN)の値が定
数として記憶されており、乗算器511.5121・・
・、51九、・・、51Nは該定数と前記ビームフォー
マ26の出力y′1゜2’2.1・・・、7’n、・・
・、y′N  との積y’v”3 (ルl) + 、′
2μ(/6□)。
..., 1μ (μn), ..., 1μ (AN) are stored as constants, and the multipliers 511, 5121, ...
, 519, . . . , 51N are the constants and the output y'1゜2'2.1..., 7'n, .
・, y'N product y'v"3 (l) + ,'
2μ(/6□).

7”/4 (ATL) 、 ・・・、 2’N/A (
AN) k算出し、前記第1の最大点検出器24と補間
器25に出力する。
7”/4 (ATL), ..., 2'N/A (
AN) k is calculated and output to the first maximum point detector 24 and the interpolator 25.

前記の式(5)より1乗算器51.、522.・・・、
51.、。
From the above equation (5), the 1 multiplier 51. , 522. ...,
51. ,.

・・・、51Nの出力は、 y’n7.e、 (A、、) −a (+n) ・2f
φ&(”−)=yn     ;  n−1,2,・・
・、N(6) で与えられ、従って第1の最大点検出器24による最大
点ルmの検出及び補間器25による補間操作は、素子の
指向性パターンとは無関係に、素子が無指向性である場
合と同じビーム出力y1 + y2 +・パ、ム。
..., the output of 51N is y'n7. e, (A,,) -a (+n) ・2f
φ&(”-)=yn; n-1, 2,...
. , N(6) Therefore, the detection of the maximum point m by the first maximum point detector 24 and the interpolation operation by the interpolator 25 are performed regardless of the directivity pattern of the element. The beam output is the same as when y1 + y2 +・pa,mu.

猾・、 yNに対してなされることになる。This will be done for 猾・, yN.

以上説明したように本発明の実施例では、同一の指向性
をもつ素子を使用する方向余弦推定方式においては、ビ
ームフォーマ出力に受波感度の逆数を掛けることにより
、(6)式で示されるように第1の最大点検出器による
最大点ルーの検出及び補間器による補間操作は、素子の
指向性ノくターンとは無関係に、素子が無指向性である
場合と同じビーム出力に対してなされることになり、従
来方式の適用によって生ずる空間周波数の推定誤差ΔA
を無くすことができ、従って方向余弦の推定誤差ΔQ5
’Jθzf無くすことができるという利点がある。
As explained above, in the embodiment of the present invention, in the direction cosine estimation method using elements with the same directivity, by multiplying the beamformer output by the reciprocal of the receiving sensitivity, As shown, the detection of the maximum point Roux by the first maximum point detector and the interpolation operation by the interpolator are independent of the directivity turn of the element, and for the same beam output as when the element is omnidirectional. The spatial frequency estimation error ΔA caused by the application of the conventional method
can be eliminated, and therefore the estimation error of direction cosine ΔQ5
'Jθzf can be eliminated.

(発明の効果) 本発明は、アレイを構成する素子に指向性がある場合に
も、マルチビームの出力を用いて信号源位置の方向余弦
を正確に推定することができるという利点があり、ソー
ナー、音響測位、レーダーにおける方向余弦推定方式に
利用することができる0
(Effects of the Invention) The present invention has the advantage that even when the elements constituting the array have directivity, it is possible to accurately estimate the direction cosine of the signal source position using the output of the multi-beam. , which can be used for acoustic positioning and directional cosine estimation methods in radar.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、アレイが直線(1次元)アレイの場合の幾可
学的説明図、第2図は、各受波素子の指向性が無指向性
であると仮定した場合の従来の方向余弦推定方式の機能
ブロック図、第6図は各素子が無指向性の場合の従来方
式の説明図、第4図は各素子が無指向性でなく、同一の
指向性ノくターンをもつ場合に従来方式をその″I:、
マ適用した場合の説明図、第5図は本発明の実施例の機
能ブロック図である。 符号の説明(第2図、第5図) 21、、212.・・・、21カ、・・・、21Mは各
々増幅器、22.。 222、・・・、22カ、・・・、22Mは各々帯域通
過フィルタ、23はビームフォーマ、y++ y2+”
’+ 、)’?Ll”’l yNはマルチビームの出力
、24は第1の最大点検出器、 Amはマルチビームの
出力が最大となる空間周波数の離散値、25は補間器、
y (A)は補間後のビーム出力、26は第2の最大点
検出器、沓は前記補間後のビーム出力y−(A)が最大
となる空間周波数、27は変換器、・・・分・は前記金
に対応した方向余弦推定値、28は出力端子である0 51□、51□、 ””、 51 n 、・−,51N
  は乗算器、521゜522、・・・、521.・・
・、52Nはレジスタである。
Figure 1 is a geometric explanatory diagram when the array is a linear (one-dimensional) array, and Figure 2 is a conventional direction cosine diagram assuming that the directivity of each receiving element is omnidirectional. A functional block diagram of the estimation method. Figure 6 is an explanatory diagram of the conventional method when each element is omnidirectional. Figure 4 is an illustration of the conventional method when each element is not omnidirectional and has the same directional turn. The conventional method is ``I:,
FIG. 5 is a functional block diagram of an embodiment of the present invention. Explanation of symbols (Figures 2 and 5) 21, 212. . . , 21, . . . , 21M are amplifiers, 22. . 222,..., 22ka,..., 22M are band pass filters, 23 is a beamformer, y++ y2+"
'+,)'? Ll'''l yN is the output of the multi-beam, 24 is the first maximum point detector, Am is the discrete value of the spatial frequency at which the multi-beam output is maximum, 25 is the interpolator,
y (A) is the beam output after interpolation, 26 is the second maximum point detector, shoe is the spatial frequency at which the beam output y-(A) after the interpolation is maximum, 27 is the converter, . . .・ is the estimated direction cosine value corresponding to the gold, 28 is the output terminal 0 51 □, 51 □, ””, 51 n , ・−, 51N
is a multiplier, 521°522, . . . , 521.・・・
. , 52N are registers.

Claims (1)

【特許請求の範囲】[Claims] 同一の指向性パターンを持つ受波素子の配列から々るア
レイを用いて、空間周波数の複数の離散値に対応する方
向にビーム(以下マルチビームという)を形成し、該マ
ルチビームの出力から信号源位置の方向余弦を推定する
方向余弦推定装置において、前記空間周波数の離散値に
対応する方向の素子感度の逆数と該方向のマルチビーム
出力との積を算出する乗算器と、該乗算器の出力に対し
て補間を行なう補間器と、該補間器の出力が最大となる
空間周波数を求める最大点検出器を有し、該空間周波数
に対応する方向余弦を信号源位置の方向余弦の推定値と
すること全特徴とする方向余弦推定方式。
Using an array of receiving elements with the same directivity pattern, beams (hereinafter referred to as multi-beams) are formed in directions corresponding to multiple discrete values of spatial frequencies, and signals are generated from the output of the multi-beams. A directional cosine estimating device for estimating a directional cosine of a source position, comprising: a multiplier for calculating the product of the reciprocal of the element sensitivity in the direction corresponding to the discrete value of the spatial frequency and the multi-beam output in the direction; It has an interpolator that performs interpolation on the output, and a maximum point detector that determines the spatial frequency at which the output of the interpolator is maximum, and calculates the direction cosine corresponding to the spatial frequency as the estimated value of the direction cosine of the signal source position. A direction cosine estimation method that takes all features as follows.
JP58064547A 1983-04-14 1983-04-14 Directional cosine estimation system Granted JPS59190676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58064547A JPS59190676A (en) 1983-04-14 1983-04-14 Directional cosine estimation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58064547A JPS59190676A (en) 1983-04-14 1983-04-14 Directional cosine estimation system

Publications (2)

Publication Number Publication Date
JPS59190676A true JPS59190676A (en) 1984-10-29
JPH0312710B2 JPH0312710B2 (en) 1991-02-20

Family

ID=13261352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58064547A Granted JPS59190676A (en) 1983-04-14 1983-04-14 Directional cosine estimation system

Country Status (1)

Country Link
JP (1) JPS59190676A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367303U (en) * 1989-11-02 1991-07-01
JPH06258425A (en) * 1992-07-22 1994-09-16 Hughes Aircraft Co System and method for decision and tracking of position of transmitter-receiver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367303U (en) * 1989-11-02 1991-07-01
JPH06258425A (en) * 1992-07-22 1994-09-16 Hughes Aircraft Co System and method for decision and tracking of position of transmitter-receiver

Also Published As

Publication number Publication date
JPH0312710B2 (en) 1991-02-20

Similar Documents

Publication Publication Date Title
US9930448B1 (en) Concentric circular differential microphone arrays and associated beamforming
EP0869697B1 (en) A steerable and variable first-order differential microphone array
EP2070390B1 (en) Improved spatial resolution of the sound field for multi-channel audio playback systems by deriving signals with high order angular terms
US20110274289A1 (en) Sensor array beamformer post-processor
CN108828502B (en) Coherent source direction estimation method based on central symmetry of uniform circular array
Blomberg et al. Adaptive beamforming applied to a cylindrical sonar array using an interpolated array transformation
US6658141B1 (en) Filtering method and apparatus for improving resolution of ultrasound image
US5596550A (en) Low cost shading for wide sonar beams
JPS59190676A (en) Directional cosine estimation system
US7372402B2 (en) Method for enhancing the measuring accuracy in an antenna array
JPH09219616A (en) Reception signal processor
Greening et al. Adaptive beamforming for nonstationary arrays
Tucker Signal/noise performance of super-directive arrays
JPH0138270B2 (en)
Mucci et al. Impact of beam steering errors on shifted sideband and phase shift beamforming techniques
JPH0882664A (en) Estimation method of signal arrival direction
JP2886330B2 (en) Signal direction measurement device
CN110876100A (en) Sound source orientation method and system
CN113030983B (en) Near-field point-by-point focusing DOA method based on depth sounding side-scan sonar
JPS59104577A (en) Correcting system of estimated error of angle
JP2683556B2 (en) Passive ranging equipment
JPH07107549B2 (en) Ranging device
JPS63186171A (en) Azimuth measuring instrument for sounding body
Cox et al. Endfire supergain with a uniform line array of pressure and velocity sensors
JPS63147265A (en) Output device for phase component of digital variable band