JPS59190460A - Secondary intake-air supply device for internal- combustion engine - Google Patents

Secondary intake-air supply device for internal- combustion engine

Info

Publication number
JPS59190460A
JPS59190460A JP58064866A JP6486683A JPS59190460A JP S59190460 A JPS59190460 A JP S59190460A JP 58064866 A JP58064866 A JP 58064866A JP 6486683 A JP6486683 A JP 6486683A JP S59190460 A JPS59190460 A JP S59190460A
Authority
JP
Japan
Prior art keywords
air
negative pressure
intake
control
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58064866A
Other languages
Japanese (ja)
Inventor
Shunpei Hasegawa
俊平 長谷川
Michitaka Shiraiwa
白岩 道孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP58064866A priority Critical patent/JPS59190460A/en
Publication of JPS59190460A publication Critical patent/JPS59190460A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M23/00Apparatus for adding secondary air to fuel-air mixture
    • F02M23/04Apparatus for adding secondary air to fuel-air mixture with automatic control
    • F02M23/08Apparatus for adding secondary air to fuel-air mixture with automatic control dependent on pressure in main combustion-air induction system, e.g. pneumatic-type apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To allow the air-fuel ratio of engine mixture to avoid becoming overrich to aim at enhancing the performance of an engine, by maintaining the opening degree of an air-control valve at its middle value when the engine is in the cold condition. CONSTITUTION:Intake-air is fed to an engine 4 from an atmospheric air suction port 1 through an intake-air passage 3. Gas pressure is fed from a three-way solenoid selector valve 13 to an air control valve 12 connected to a secondary intake-air passage 11. A solenoid 13a is connected to a control circuit 22 through a drive circuit 21. An oxygen sensor 23 is connected to the control circuit 22. The opening degree of the air-control valve 12 is maintained at its middle value when the engine is in the cold condition. With this arrangement, the air-fuel ratio of the engine mixture may avoid becoming overrich, and therefore, the performance of the engine may be enhanced.

Description

【発明の詳細な説明】 本発明は内燃エンジンの吸気2次空気供給装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake secondary air supply device for an internal combustion engine.

排ガス浄化のために三元触媒を排気系に備えた内燃エン
ジンにおいては、供給混合気の空燃比が理論空燃比(例
えば、14.7:1)(−1近のとき三元触媒がちつと
も有効に作用することから空燃比を排ガスの組成及びエ
ンジンの運転状態に応じて理論空燃比付近に制御するこ
とが行われている。
In an internal combustion engine equipped with a three-way catalyst in the exhaust system for exhaust gas purification, when the air-fuel ratio of the supplied mixture is close to the stoichiometric air-fuel ratio (for example, 14.7:1) (-1), the three-way catalyst is Since this is effective, the air-fuel ratio is controlled to around the stoichiometric air-fuel ratio according to the composition of exhaust gas and the operating state of the engine.

この空燃比制御を絞り弁下流に連通する吸気2次空気通
路を設けてその2次空気量を制御することにより行なう
吸気2次空気供給装置がある。
There is an intake secondary air supply device that performs this air-fuel ratio control by providing an intake secondary air passage communicating downstream of the throttle valve and controlling the amount of secondary air therein.

吸気2次空気供給装置としては、受圧室内の気体圧の大
きさに応じて通路断面積を変化せしめる空気制御弁を吸
気2次空気通路に設(プ、1〕[ガス中の酸素濃度を酸
素濃度センサによって検出して該酸素濃度から実際の空
燃比を判定し、空燃比がリッチにあるときには空気制御
弁を閉弁せしめ得る第1制御圧を上記受圧室に供給して
流路断面積を徐々に増大させ、空燃比がリーンにあると
ぎには空気制御弁を閉弁けしめ得る第2制御圧を受圧室
に供給して流路断面積を徐々に減少させてニューマヂッ
ク方式の積分動作によって空燃比制御をなず装置が本出
願人によって既に提案されている。
As the intake secondary air supply device, an air control valve that changes the passage cross-sectional area according to the magnitude of the gas pressure in the pressure receiving chamber is installed in the intake secondary air passage (1). The actual air-fuel ratio is determined from the oxygen concentration detected by a concentration sensor, and when the air-fuel ratio is rich, a first control pressure capable of closing the air control valve is supplied to the pressure receiving chamber to determine the flow passage cross-sectional area. The air-fuel ratio is gradually increased, and when the air-fuel ratio is lean, a second control pressure that can close the air control valve is supplied to the pressure-receiving chamber, and the cross-sectional area of the flow path is gradually decreased, resulting in a pneumatic integral operation. The present applicant has already proposed a device that performs air-fuel ratio control.

かかる吸気2次空気供給装置においては、酸素濃度セン
サとしていわゆる流し込みタイプのセンサが用いられる
ことがある。流し込みタイプの酸素濃度センサの出力電
圧は雰囲気がリーンになるほど降下するようになってい
る。ところで、エンジンの冷間時には酸素濃度センサ自
身も低温であるため内部抵抗が大きくセンサは不活性状
態である故にリーン雰囲気下があっても酸素濃度センサ
の出力電圧は閾値電圧以下ずなわら理論空燃化に対応す
る基準電圧以下に低下しない。酸素濃度センサの出力電
圧VO2は暖機に従ってリッチ雰囲気下であれば第1図
の実線Aの如く降下し、リーン雰囲気下であれば第1図
の破線Bの如く基準電圧Vr以下に降下するのである。
In such an intake secondary air supply device, a so-called pour-in type sensor is sometimes used as the oxygen concentration sensor. The output voltage of a pour-in type oxygen concentration sensor decreases as the atmosphere becomes leaner. By the way, when the engine is cold, the oxygen concentration sensor itself is at a low temperature, so the internal resistance is large and the sensor is in an inactive state. Therefore, even in a lean atmosphere, the output voltage of the oxygen concentration sensor remains below the threshold voltage and remains at the theoretical empty temperature. The voltage does not drop below the reference voltage corresponding to combustion. As the oxygen concentration sensor output voltage VO2 warms up, it drops as shown by the solid line A in Figure 1 in a rich atmosphere, and drops below the reference voltage Vr as shown in the broken line B in Figure 1 in a lean atmosphere. be.

よって、リーン雰囲気下において基準電圧Vrより小な
る活性化判定電圧V1に達しなければ酸素濃度センサが
活性化したと言えず理論空燃比への空燃比制御を行なう
ことができない。しかしながら、エンジンの冷間時には
酸素濃度センサの出力電圧は基準電圧以上であるので空
燃比がリッチであると判別されて空気制御弁の受圧室に
第1制御圧が供給され続【)る。故に、空気制御弁は全
開となり吸気2次空気が条苗にエンジンに供給されるの
で空燃比はオーバリーン(はぼ18)となり運転性能が
悪化してしまうのである。
Therefore, unless the activation determination voltage V1, which is smaller than the reference voltage Vr, is reached in a lean atmosphere, it cannot be said that the oxygen concentration sensor has been activated, and the air-fuel ratio cannot be controlled to the stoichiometric air-fuel ratio. However, when the engine is cold, the output voltage of the oxygen concentration sensor is higher than the reference voltage, so it is determined that the air-fuel ratio is rich, and the first control pressure continues to be supplied to the pressure receiving chamber of the air control valve. Therefore, the air control valve is fully opened and the intake secondary air is supplied to the engine, resulting in an over-lean air-fuel ratio (18) and deterioration of driving performance.

そこC1本発明の目的は、冷機時にお【ブる運転性能の
向」二を図った吸気2次空気供給装置を提供することで
ある。
Therefore, it is an object of the present invention to provide an intake secondary air supply device that improves the operating performance of the engine when it is cold.

本発明による吸気2次空気供給装置は冷機時には空気制
御弁の開度を中間開度に保持ぽしめるようになされてい
ることを特徴としている。
The intake secondary air supply device according to the present invention is characterized in that the opening degree of the air control valve is maintained at an intermediate opening degree when the engine is cold.

以下、本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

第2図に示した本発明の一実施例たる吸気2次空気供給
装置にd3いては、吸入空気は大気吸入口1からエアク
リーナ2、吸気路3を介してエンジン4に供給されるJ
:うになっている。吸気路3には絞り弁5が設置ノられ
、絞り弁5の上流には気化器のベンチュリ6が形成され
、ベンチュリ6より更に−F流にはチョーク弁7が設け
られている。絞り弁5下流の吸気路3の内壁面には負圧
検出孔8が形成され、またベンチコリ6にも負圧検出孔
9が形成されCいる。
In the intake secondary air supply device d3, which is an embodiment of the present invention shown in FIG.
: Sea urchins are turning. A throttle valve 5 is installed in the intake passage 3, a venturi 6 of a carburetor is formed upstream of the throttle valve 5, and a choke valve 7 is provided in the −F flow further from the venturi 6. A negative pressure detection hole 8 is formed in the inner wall surface of the intake passage 3 downstream of the throttle valve 5, and a negative pressure detection hole 9 is also formed in the bench stiffener 6.

絞り弁5の下流、ずなわち吸気マニホールドとエアクリ
ーナ2の空気吐出口近傍とは吸気2次空気通路11によ
って連通されるようになされている。吸気2次空気通路
11には空気制御弁12が設けられ、空気制御弁12は
上記受圧字に相当する負圧W12aと、吸気2次空気通
路11の一部をなす弁室12bと、負圧室12aの一部
を形成するダイアフラム12cと、負圧室12a内に設
けられた弁ばね12dと、弁室121)に設けられ吸気
2次空気通路11を閉塞するように弁ばね12dによっ
てダイアフラム12cを介して付勢されIc弁体12e
とからなり、負圧室12aに作用する負圧の大きさに応
じて吸気2次空気通路11の流路断面積を変化けしめ、
負圧の大きさが大になるに従って流路断面積が大きくな
るようになっている。
The downstream side of the throttle valve 5, that is, the intake manifold and the vicinity of the air discharge port of the air cleaner 2 are communicated with each other by an intake secondary air passage 11. An air control valve 12 is provided in the intake secondary air passage 11, and the air control valve 12 receives a negative pressure W12a corresponding to the above-mentioned pressure receiving character, a valve chamber 12b forming a part of the intake secondary air passage 11, and a negative pressure. A diaphragm 12c forming a part of the chamber 12a, a valve spring 12d provided in the negative pressure chamber 12a, and a valve spring 12d provided in the valve chamber 121) so as to close the intake secondary air passage 11. Ic valve body 12e is energized via
The flow path cross-sectional area of the intake secondary air passage 11 is changed according to the magnitude of the negative pressure acting on the negative pressure chamber 12a,
The cross-sectional area of the flow path increases as the negative pressure increases.

空気制御弁12の負圧室12aには3方電磁弁13から
圧力通路14を介して気体圧が供給されるようになされ
ている。電磁弁13はソレノイド13aと、負圧室12
aと圧ツノ通路14を介して連通した弁室13bと、弁
室13b内に設けられてソレノイド13aと磁気的に結
合した弁体13Cとを備えている。弁室13bは上記第
1制御圧を発生ずる負圧制御部31と負圧通路15を介
して連通するようになされ、また吸気2次空気通路11
の空気制御弁12より上流とも大気圧通路16を介して
連通づるにうになされている。ソレノイド13の非通電
時には負圧通路15側が閉塞されかつ圧力通路14と大
気圧通路16とが弁室1311を介して連通し、通電時
には大気圧通路16側が閉塞されかつ圧力通路14と負
圧通路15とが連通ずる。なd3、負圧通路15にはA
リフイス17が設りられ、また大気圧通路16にはAリ
フイス19が設りられている。
Gas pressure is supplied to the negative pressure chamber 12a of the air control valve 12 from the three-way solenoid valve 13 through the pressure passage 14. The solenoid valve 13 has a solenoid 13a and a negative pressure chamber 12.
The valve chamber 13b is in communication with the valve chamber 13a through the pressure horn passage 14, and the valve body 13C is provided in the valve chamber 13b and magnetically coupled to the solenoid 13a. The valve chamber 13b communicates with the negative pressure control section 31 that generates the first control pressure via the negative pressure passage 15, and also communicates with the negative pressure control section 31 that generates the first control pressure, and also communicates with the negative pressure control section 31 that generates the first control pressure.
The air control valve 12 is in communication with the air control valve 12 via an atmospheric pressure passage 16. When the solenoid 13 is de-energized, the negative pressure passage 15 side is closed and the pressure passage 14 and the atmospheric pressure passage 16 communicate with each other via the valve chamber 1311, and when the solenoid 13 is energized, the atmospheric pressure passage 16 side is closed and the pressure passage 14 and the negative pressure passage are communicated with each other via the valve chamber 1311. 15 is connected. d3, negative pressure passage 15 has A
A refill 17 is provided, and an A refill 19 is provided in the atmospheric pressure passage 16.

ソレノイド13aには駆動回路21を介して制御回路2
2が接続されている。制御回路22にはエンジン4のり
1気路10に設けられた酸素濃度ヒンサ23が接続され
ている。酸素濃度センサ23は排ガス中の酸素濃度に応
じたレベルの電圧を発生するにうになっている。
A control circuit 2 is connected to the solenoid 13a via a drive circuit 21.
2 are connected. An oxygen concentration sensor 23 provided in the air passage 10 of the engine 4 is connected to the control circuit 22 . The oxygen concentration sensor 23 is designed to generate a voltage at a level corresponding to the oxygen concentration in the exhaust gas.

負圧制御部31は負圧応動型の調整弁32及び空気弁3
3から構成され、調整弁32及び空気弁33は負圧室3
2a 、33aと弁ff1321)、33bと、ダイア
フラム32c、33cと、弁ばね32d、33dと、弁
体32e、33eとから各々なる。負圧室32aはフィ
ルタ付の人気吸入口34から絞り弁5の下流に至る制御
吸気路35の途中に設りられ、負圧室32aより下流の
制御吸気路35に弁室33bが位置している。弁体33
eは制御吸気路35を閉塞づるように弁ばね33dにJ
:つてダイアフラム33Cを介して付勢されている。負
圧室33aは負圧検出孔8と負圧通路36を介して連通
し、弁室32bは負圧検出孔9と負圧通路37を介して
連通している。また弁室3211は負圧通路36と連通
す−るようになされ弁体32eが弁室32bから負圧通
路36への通路を閉塞するように弁ばね32dがダイア
フラム32Cを介して弁体32eを(=I勢している。
The negative pressure control unit 31 includes a negative pressure responsive adjustment valve 32 and an air valve 3.
3, the adjustment valve 32 and the air valve 33 are connected to the negative pressure chamber 3.
2a, 33a, valves ff1321), 33b, diaphragms 32c, 33c, valve springs 32d, 33d, and valve bodies 32e, 33e, respectively. The negative pressure chamber 32a is provided in the middle of the control intake passage 35 from the popular intake port 34 with a filter to the downstream of the throttle valve 5, and the valve chamber 33b is located in the control intake passage 35 downstream of the negative pressure chamber 32a. There is. Valve body 33
e is attached to the valve spring 33d so as to close the control intake passage 35.
: It is energized via the diaphragm 33C. The negative pressure chamber 33a communicates with the negative pressure detection hole 8 through the negative pressure passage 36, and the valve chamber 32b communicates with the negative pressure detection hole 9 through the negative pressure passage 37. Further, the valve chamber 3211 is communicated with the negative pressure passage 36, and the valve spring 32d connects the valve body 32e via the diaphragm 32C so that the valve body 32e closes the passage from the valve chamber 32b to the negative pressure passage 36. (=I have a lot of people.

なお、制御吸気路35の負圧室32aの上流側にオリフ
ィス38.39が、下流側にAリフイス40が各々設【
プられ、負圧通路36にはオリフィス41が設(プられ
、また負圧通路37にはオリフィス42が設(プられて
いる。オリフィス41より弁ff32b及び負圧室33
a側の負圧通路36と負圧通路15とが連通している。
In addition, orifices 38 and 39 are provided on the upstream side of the negative pressure chamber 32a of the control intake passage 35, and an A refill 40 is provided on the downstream side.
An orifice 41 is provided in the negative pressure passage 36, and an orifice 42 is provided in the negative pressure passage 37.
The a-side negative pressure passage 36 and the negative pressure passage 15 communicate with each other.

Aリフイス39はオリフィス38J、りも人気吸入口3
4側に位置してJ′3す、オリフィス39を迂回覆るよ
うに補助制御吸気路43が設りられている。補助制御吸
気路43には電磁弁44が設置′jられ、電磁弁44の
ソレノイド44.aには駆動回路/45を介して制御回
路46が接続されている。電磁弁44はソレノイド44
aへの非通電時に補助制御吸気路43を連通せしめ、ソ
レノイド4/laへの通電時に閉弁じて補助制御吸気路
43を閉塞せしめる。
A refill 39 has orifice 38J, Rimo's popular intake port 3
An auxiliary control intake passage 43 is provided on the J'3 side so as to bypass and cover the orifice 39. A solenoid valve 44 is installed in the auxiliary control intake passage 43, and a solenoid 44. A control circuit 46 is connected to a via a drive circuit/45. The solenoid valve 44 is a solenoid 44
When the solenoid a is de-energized, the auxiliary control intake passage 43 is brought into communication, and when the solenoid 4/la is energized, the valve is closed and the auxiliary control intake passage 43 is closed.

一方、エンジン4の冷却水温を検出覆るために冷u1水
渇センサ47が設(プられている。冷N1水温センサ4
7は冷M1水温に応じたレベルの出力電圧を発生し、そ
の出力電圧は制御回路46に供給されるようになされC
いる。
On the other hand, a cold N1 water temperature sensor 47 is provided to detect the cooling water temperature of the engine 4.
7 generates an output voltage at a level corresponding to the temperature of the cold M1 water, and the output voltage is supplied to the control circuit 46.
There is.

かかる構成の本発明による吸気2次空気供給装置におい
て、先ず、負圧制御部31の動作を説明する。
In the intake secondary air supply device according to the present invention having such a configuration, first, the operation of the negative pressure control section 31 will be explained.

エンジン4の運転により負圧検出孔8から負圧通路36
を介して負圧Psが負圧室33aに作用すると、その負
圧Peが弁ばね33dによる付勢力より内のとき弁体3
3eが開弁方向に移動づる。
The negative pressure passage 36 is opened from the negative pressure detection hole 8 by the operation of the engine 4.
When the negative pressure Ps acts on the negative pressure chamber 33a through the negative pressure Pe, the valve body 3
3e moves in the valve opening direction.

空気弁33が開弁すると大気吸入口34から制御吸気路
35を介して外気が絞り弁5下流の吸気路3へ流れ込む
。この外気が通過する負圧室32aの負圧P1及び弁室
33bの負圧P2はオリフィス38.39及び電磁弁4
4とAリフイス40との絞り比によって定まる。
When the air valve 33 opens, outside air flows from the atmospheric air intake port 34 through the control intake passage 35 into the intake passage 3 downstream of the throttle valve 5 . The negative pressure P1 of the negative pressure chamber 32a through which this outside air passes and the negative pressure P2 of the valve chamber 33b are connected to the orifice 38, 39 and the solenoid valve 4.
4 and the aperture ratio of the A refill 40.

次に、負圧検出孔9から弁室32bに作用する負圧Pv
と負圧P+ どの差圧が弁ばね32dによる付勢力より
大のとき弁体32eが開弁方向に移動する。調整弁32
の開弁により負圧pvの一部がオリフィス41を通過し
た負圧P8を希″!J? L、て負圧peとなり電磁弁
13の作動時(こ【よ負圧室12aに作用する。
Next, the negative pressure Pv acting on the valve chamber 32b from the negative pressure detection hole 9
When the differential pressure between and negative pressure P+ is greater than the biasing force exerted by the valve spring 32d, the valve body 32e moves in the valve opening direction. Adjustment valve 32
When the valve is opened, a part of the negative pressure pv passes through the orifice 41 and becomes a negative pressure pe, which acts on the negative pressure chamber 12a when the solenoid valve 13 is operated.

次いで、負圧peの低下により空気弁33の1if1度
が減少して制御吸気路35を流れる空気量も減少する。
Next, as the negative pressure pe decreases, the 1if1 degree of the air valve 33 decreases, and the amount of air flowing through the control intake path 35 also decreases.

この空気量の減少により負圧室32aの負圧P1が低下
して調整弁32は閉弁状態と416゜ぞして、負圧pe
が再び上昇して上記と同様の動作が繰り返され、この繰
り返し動作が高速で′11われるため負圧1)yとpe
との圧力比が負圧P1とP2どの圧力比に等しくなるの
である。
Due to this decrease in the amount of air, the negative pressure P1 in the negative pressure chamber 32a decreases, and the regulating valve 32 deviates from the closed state by 416 degrees, causing the negative pressure pe to decrease.
rises again and the same operation as above is repeated, and this repeated operation is carried out at high speed, so the negative pressure 1) y and pe
The pressure ratio between the negative pressures P1 and P2 becomes equal to the pressure ratio between the negative pressures P1 and P2.

よって、エンジン4の主吸気量が少な0とき(こは負圧
P1が負圧pvより人であるため調整弁32の開度は大
きくなり負圧peは低くなり、主吸気量が多くなるに従
って負圧pvが大きくなるため調整弁32の開度が小さ
くなり負圧pcは高くなる。負圧peは負圧室33aと
共に電磁弁13の作動時に負圧室12aに作用して空気
弁33、空気制御弁12を開弁せしめるため制御吸気路
35を流れる空気量と電磁弁13の作動時(こ吸気2次
空気通路11を流れる2次空気量とは比例し、また吸気
路3内を流れるエンジン4への主吸気量と空気制御弁1
2の開弁によって吸気2次空気通路11を流れる2次空
気量が比例づる。故に負圧peは主吸気量に比例して2
次空気をエンジン吸気路3の絞り弁5下流に導入させる
第1制御圧となる。
Therefore, when the main intake air amount of the engine 4 is small (0) (this is because the negative pressure P1 is higher than the negative pressure PV, the opening degree of the regulating valve 32 becomes larger and the negative pressure pe becomes lower, and as the main intake air amount increases, Since the negative pressure pv increases, the opening degree of the regulating valve 32 becomes smaller and the negative pressure pc increases.The negative pressure pe acts on the negative pressure chamber 12a as well as the negative pressure chamber 33a when the solenoid valve 13 is operated, and the air valve 33, When the solenoid valve 13 is activated, the amount of air flowing through the control intake passage 35 to open the air control valve 12 is proportional to the amount of secondary air flowing through the secondary intake air passage 11; Main intake air amount to engine 4 and air control valve 1
By opening the valve 2, the amount of secondary air flowing through the intake secondary air passage 11 is proportionally increased. Therefore, the negative pressure pe is proportional to the main intake air amount.
This is the first control pressure that causes the second air to be introduced downstream of the throttle valve 5 in the engine intake passage 3.

次に、制御回路22の動作を第3図の動作フロー図に従
って説明覆る。
Next, the operation of the control circuit 22 will be explained according to the operation flow diagram of FIG.

制御回路22はイグニッションスイッヂ(図示せず)が
オンとなって電源が供給されると、先ず、酸素濃度セン
サ23の出力電圧レベルを読み取る(ステップ1)。酸
素温度センサ23は流し込みタイプのセンサであり、雰
囲気がリーンになるに従って出力電圧VO2が降下づる
にうになっている。酸素温度センサ23(の出力電圧V
O2を読み取り後、この出力電圧VO2から混合気の空
燃比を判別するくステップ2)。この判別動作において
は酸素m度ロンザ23の出力電圧VO2が理論空燃比に
対応する基準電圧Vrより大であるか否かによって空燃
比がリッチであるかリーンであるか判断される。VO2
<Vrの場合には空燃比がリーンであると判別して空燃
比をリッチ方向に制御すべくリーン信号を駆動回路21
に供給づる(ステップ3)。一方、VO2≧V「の場合
には空燃比がリッチであると判別して空燃比をリーン方
向に制御すべく駆動回路21にリッチ信号を供給する(
ステップ4)。
When an ignition switch (not shown) is turned on and power is supplied, the control circuit 22 first reads the output voltage level of the oxygen concentration sensor 23 (step 1). The oxygen temperature sensor 23 is a pour-in type sensor, and the output voltage VO2 decreases as the atmosphere becomes leaner. Oxygen temperature sensor 23 (output voltage V
After reading O2, the air-fuel ratio of the air-fuel mixture is determined from this output voltage VO2 (step 2). In this determination operation, it is determined whether the air-fuel ratio is rich or lean depending on whether the output voltage VO2 of the oxygen m degree Lonza 23 is greater than the reference voltage Vr corresponding to the stoichiometric air-fuel ratio. VO2
<Vr, it is determined that the air-fuel ratio is lean, and a lean signal is sent to the drive circuit 21 to control the air-fuel ratio in the rich direction.
(Step 3). On the other hand, in the case of VO2≧V, it is determined that the air-fuel ratio is rich, and a rich signal is supplied to the drive circuit 21 to control the air-fuel ratio in a lean direction (
Step 4).

このように制御回路22から駆動回路21にリーン信号
又はリッチ信号が供給されると、駆動回路21はリーン
信号に応じてソレノイド13aの非通電により電磁弁1
3を不作動状態にせしめ、またリッチ信号に応じてソレ
ノイド13aへの通電により電磁弁13を作動状態にせ
しめる。
When a lean signal or a rich signal is supplied from the control circuit 22 to the drive circuit 21 in this way, the drive circuit 21 de-energizes the solenoid 13a in response to the lean signal and de-energizes the solenoid valve 1.
3 is rendered inoperative, and the solenoid valve 13 is rendered operative by energizing the solenoid 13a in response to the rich signal.

今、制御回路22の出力がリーン信号力日らリッチ信号
に反転したとづると、電磁弁13は作動状態となり、大
気圧通路16側を閉塞して圧力通路14ど負圧通路15
とを連通せしめる。そうづると、負圧制御部31から負
圧peがAリフイス17を介して負圧室12aに供給さ
れる故に負圧室12a内の負圧は徐々に負圧peに近つ
ぎ、空気制御弁12の開度づ−なわち吸気2次空気通路
11の流路断面積が徐々に増大して2次空気量が増大す
る。
Now, when the output of the control circuit 22 is reversed from the lean signal to the rich signal, the solenoid valve 13 becomes activated and closes the atmospheric pressure passage 16 side, thereby closing the pressure passage 14 and the negative pressure passage 15.
communicate with. Then, since the negative pressure pe is supplied from the negative pressure control unit 31 to the negative pressure chamber 12a via the A-refrigerator 17, the negative pressure in the negative pressure chamber 12a gradually approaches the negative pressure pe, and the air control valve 12, that is, the cross-sectional area of the intake secondary air passage 11 gradually increases, and the amount of secondary air increases.

負圧室12a内の負1[が負圧1) eと等しくなると
吸気2次空気通路11を流れる2次空気量が主吸気量に
比例し、エンジン4に主吸気量に比例した量の2次空気
が供給される。
When the negative pressure in the negative pressure chamber 12a becomes equal to the negative pressure 1, the amount of secondary air flowing through the intake secondary air passage 11 is proportional to the main intake air amount, and the amount of secondary air flowing through the intake secondary air passage 11 is proportional to the main intake air amount to the engine 4. Next air is supplied.

次に、制御回路22の出力がリッチ信号からリーン信号
に反転すると、電磁弁13は不作動状態となり、負圧通
路15側を閉塞して圧力通路14と大気圧通路16とを
連通せしめる。そうすると、大気圧がオリフィス19を
介して負圧室12aに供給される故に負圧室12aの負
圧は徐々に大気圧に近づき吸気2次空気通路11の流路
断面積が徐々に減少し2次空気量も減少する。負圧室1
2a内の圧力が大気圧とほぼ等しくなると空気制御弁1
2は閉弁して吸気2次空気通路11を閉塞せしめる故1
に2次空気のエンジン4への供給が停止づる。
Next, when the output of the control circuit 22 is reversed from the rich signal to the lean signal, the solenoid valve 13 becomes inoperative, closing the negative pressure passage 15 side and allowing the pressure passage 14 and the atmospheric pressure passage 16 to communicate with each other. Then, since atmospheric pressure is supplied to the negative pressure chamber 12a through the orifice 19, the negative pressure in the negative pressure chamber 12a gradually approaches atmospheric pressure, and the flow passage cross-sectional area of the secondary intake air passage 11 gradually decreases. The amount of secondary air also decreases. Negative pressure chamber 1
When the pressure inside 2a becomes almost equal to atmospheric pressure, the air control valve 1
2 is because the valve closes and the secondary intake air passage 11 is blocked.
Then, the supply of secondary air to the engine 4 stops.

よって、空燃比を理論空燃比に制御する場合、第4図(
a)に示りようにリッチ信号とリーン信号とが交互に連
通して発生づるため空気制御弁12の開度は第4回出)
に示すようにリッチ信号発生時には増大しリーン信号発
生時には減少づる。故に、吸気2次空気通路11の流路
断面積及び2次空気11も同様に変化りるので空燃比制
御中心値が理論空燃比となるのである。
Therefore, when controlling the air-fuel ratio to the stoichiometric air-fuel ratio, Fig. 4 (
As shown in a), the rich signal and the lean signal are generated in alternating communication, so the opening degree of the air control valve 12 is the fourth output)
As shown in the figure, it increases when a rich signal occurs and decreases when a lean signal occurs. Therefore, since the flow passage cross-sectional area of the intake secondary air passage 11 and the secondary air 11 change similarly, the air-fuel ratio control center value becomes the stoichiometric air-fuel ratio.

次に、本発明による吸気2次空気供給装置においC、エ
ンジン4の冷間時における動作を説明づ−る。
Next, the operation of the intake secondary air supply system according to the present invention when the engine 4 is cold will be explained.

エンジン4の冷間時には酸素濃度レンリ−23が不活性
状態である故に酸素濃度センサ23の出力電圧VO2は
基準電圧Vrより人である。にって、制御回路22がリ
ッチ15号を発生し続(プるため空気制御弁12の負圧
室12aに負圧制御部31から負圧Peが負圧通路15
、電磁弁13及び圧ツノ通路14を介して供給される。
Since the oxygen concentration sensor 23 is in an inactive state when the engine 4 is cold, the output voltage VO2 of the oxygen concentration sensor 23 is lower than the reference voltage Vr. As a result, the control circuit 22 generates a rich No. 15, and the negative pressure Pe is applied from the negative pressure control section 31 to the negative pressure chamber 12a of the air control valve 12 in the negative pressure passage 15.
, the solenoid valve 13 and the pressure horn passage 14.

一方、エンジン4の冷間時には冷却水温センサ47の出
力電圧VtWが所定電圧V1以下となる。
On the other hand, when the engine 4 is cold, the output voltage VtW of the cooling water temperature sensor 47 is lower than the predetermined voltage V1.

制御回路46はこの出力電圧Vtwが所定電圧■1以下
に低下しているときには閉弁信号を駆動回路45に供給
し、この閉弁信号に応じて駆動回路45からソレノイド
44aに重用が供給されることにより電磁弁44が閉弁
する。電磁弁44の閉弁によって補助制御吸気路43が
閉塞されて制御吸気路35の流路断面積が減少づるため
電磁弁44の開弁時に比して空気量の割合が減少し空気
弁32の開度が増加するので負圧PBの負圧通路37へ
のリーク最も増加する故に負圧peは減少して空気制御
弁12を中間開度にせしめる大きさとなる。
The control circuit 46 supplies a valve closing signal to the drive circuit 45 when the output voltage Vtw is lower than a predetermined voltage (1), and in response to this valve closing signal, the drive circuit 45 supplies a heavy duty signal to the solenoid 44a. This causes the solenoid valve 44 to close. When the solenoid valve 44 is closed, the auxiliary control intake passage 43 is closed and the flow passage cross-sectional area of the control intake passage 35 is reduced, so the proportion of air amount is reduced compared to when the solenoid valve 44 is open. Since the opening degree increases, the leakage of the negative pressure PB to the negative pressure passage 37 increases the most, so the negative pressure pe decreases to a size that causes the air control valve 12 to reach an intermediate opening degree.

よって、エンジン4の冷間時には吸気2次空気量が制限
されるので空燃比を気化器のベース空燃比(13)に近
づ【プることができるのである。
Therefore, when the engine 4 is cold, the intake secondary air amount is limited, so the air-fuel ratio can be brought closer to the base air-fuel ratio (13) of the carburetor.

このように、本発明の吸気2次空気供給装置にJ5いて
は、エンジンの冷間時には空気制御弁の開度を中間開度
に保持せしめるようになされているため空燃比のオーバ
リーンを回避づ−ることができる故に運転性能の向上を
図ることができるのである。
As described above, in the intake secondary air supply system J5 of the present invention, the opening degree of the air control valve is maintained at an intermediate opening degree when the engine is cold, thereby avoiding overleaning of the air-fuel ratio. Therefore, driving performance can be improved.

まl〔、第2図に示した本発明による吸気2次空気供給
装冒においCは、空気制御弁を中間開度に保持させるた
めに受圧室に供給する負圧の大きさが吸気量に応じて変
化する故に中間開度の変化によって中間開度にJ3(プ
る2次空気量も吸気用に比例しで変化さけることができ
るという利点もある。
In the intake secondary air supply system according to the present invention shown in FIG. There is also the advantage that the amount of secondary air that is pulled to the intermediate opening can be avoided by changing the intermediate opening in proportion to the amount of intake air.

なお、本発明の吸気2次空気供給装置においては、エン
ジン冷間時を上記実施例の如くエンジン冷u+水温から
判断することに限らず吸気温度、酸素濃度センサの不活
性状態、エンジン始動後の経過時間又は触媒温度等から
判断しても良いのである。
In addition, in the intake secondary air supply device of the present invention, the engine cold time is not limited to being determined from the engine cold u + water temperature as in the above embodiment, but also based on the intake air temperature, the inactive state of the oxygen concentration sensor, and the determination after the engine is started. It may be determined based on the elapsed time or the catalyst temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は流し込みタイプの酸素濃度センサの暖機時の出
力電圧特性を示す図、第2図は本発明の実施例を示す構
成図、第3図は第2図の装置中の制御回路の動作を示す
フロー図、第4図は第2図の装置中の空気制御弁の開度
変化を示づ図である。 主要部分の符号の説明 2・・・・・・エアクリーナ 3・・・・・・吸気路   5・・・・・・絞り弁6・
・・・・・ベンチュリ 8.9・・・・・・負圧検出孔 10・・・・・・排気路 11・・・・・・吸気2次空気通路 12・・・・・・空気制御弁 13.4/l・・・・・・電磁弁 14・・・・・・圧力通路 15.36.37・・・・・・負圧通路16・・・・・
・大気圧通路 17.19.38ないし42・・・・・・オリフィス2
3・・・・・・酸素温度センサ 31・・・・・・負圧制御部 出願人   本田技研工業株式会社 代理人   弁理士  藤村元彦 O2 V+ V+ 第3図 第1図 ■ \ B   −−−−−−−一 時間 第4図
Fig. 1 is a diagram showing the output voltage characteristics during warm-up of a pour-in type oxygen concentration sensor, Fig. 2 is a configuration diagram showing an embodiment of the present invention, and Fig. 3 is a diagram showing the control circuit in the device of Fig. 2. FIG. 4 is a flowchart showing the operation, and is a diagram showing changes in the opening degree of the air control valve in the apparatus of FIG. 2. Explanation of symbols of main parts 2... Air cleaner 3... Intake path 5... Throttle valve 6.
...Venturi 8.9...Negative pressure detection hole 10...Exhaust passage 11...Intake secondary air passage 12...Air control valve 13.4/l...Solenoid valve 14...Pressure passage 15.36.37...Negative pressure passage 16...
・Atmospheric pressure passage 17, 19, 38 to 42... Orifice 2
3...Oxygen temperature sensor 31...Negative pressure control unit Applicant Honda Motor Co., Ltd. Agent Patent attorney Motohiko Fujimura O2 V+ V+ Figure 3 Figure 1■ \ B ----- ---One hour Figure 4

Claims (1)

【特許請求の範囲】 (1) 内燃エンジンの絞り弁下流に連通づる吸気2次
空気通路に設りられ受圧室内の気体圧の大きさに応じて
前記吸気2次空気通路の流路断面積を変化せしめる空気
制御弁と、エンジンの排気の組成がら空燃比を判定して
空燃比信号を発生ずる判定手段と、前記空燃比信号の内
容に応じて前記空気制御弁の開度を制御する制御手段と
を含み、前記エンジンの冷間時には前記空気制御弁の開
度を中間開度に保持せしめるようになされていることを
特徴とする吸気2次空気供給装置。 く2) 前記判定手段はυ1気系に設(プられた流し込
みタイプの酸素温度センサを有し、該酸素濃度臼ンザの
出力電圧レベルがら空燃比を判定するように、なされて
いることを特徴とする特許請求の範囲第1項記載の吸気
2次空気供給装置。 (3) 前記制御手段は前記空気制御弁を開弁せしめる
ための第1制御圧を発生づる第1制御圧発生源と、前記
空気制御弁を閉弁せしめるための第2制御圧を発生する
第2制御圧発生源と、前記空燃比信号の内容に応じて前
記第1又は第2制御圧のいずれか一方を前記受圧室に供
給する連通手段とからなり、前記冷間時の前記第1制御
圧は前記エンジンの暖機後に比して総合的に減少するよ
うになされていることを特徴とする特許請求の範囲第1
項記載の吸気2次空気供給装置。 (4) 前記第1制御圧発生源はエンジン吸気路の絞り
弁近傍又は絞り弁下流J二り延出した第1負圧通路ど、
前記絞り弁上流のベンヂュリ内部から延出した第2負圧
通路と、大気吸入口から前記絞り弁下流に至る制御吸気
路と、第1負圧室が前記制御吸気路の途中に設りられ第
1弁掌が前記第2負圧通路に連通され前記第1負圧室と
前記第1弁室との圧力差に応じて前記第1負圧通路と前
記第2負圧通路とを前記第1弁室を介して連通せしめる
負圧応動型調整弁と、第2負圧室が前記第1負圧通路に
連通され第2弁室が前記第1負圧室より下流の前記制御
吸気路の途中に設けられ前記第2負圧室と前記第2弁室
との圧力差に応じた開度で前記制御吸気路を連通せしめ
る負圧応動型空気弁とからなり、前記第2負圧室に作用
する負圧を前記第1制御圧として出力しかつ前記冷間時
に前記第1負正室より上流の制御吸気路の流路断面積を
減少せしめるようになされていることを特徴とする特許
請求の範囲第3項記載の吸気2次空気供給装置。 (5) 前記冷間時はエンジン冷却水温、吸気温、前記
酸素濃度センサの不活性状態、エンジン始動後の経過時
間及び排気系に設(プられた触媒の温度の少なくとも1
つに基づいて検出されることを特徴とする特許請求の範
囲第1項記載の吸気2次空気供給装置。
[Scope of Claims] (1) A secondary intake air passage is provided in an intake secondary air passage communicating downstream of a throttle valve of an internal combustion engine, and the cross-sectional area of the intake secondary air passage is adjusted according to the magnitude of gas pressure in a pressure receiving chamber. an air control valve that changes the air-fuel ratio; a determining means that determines the air-fuel ratio from the composition of engine exhaust gas and generates an air-fuel ratio signal; and a control means that controls the opening degree of the air-fuel ratio according to the content of the air-fuel ratio signal. An intake secondary air supply device, characterized in that the opening degree of the air control valve is maintained at an intermediate opening degree when the engine is cold. 2) The determination means has a flow-in type oxygen temperature sensor installed in the υ1 air system, and is configured to determine the air-fuel ratio based on the output voltage level of the oxygen concentration sensor. The intake secondary air supply device according to claim 1. (3) The control means includes a first control pressure generation source that generates a first control pressure for opening the air control valve; a second control pressure generation source that generates a second control pressure for closing the air control valve; and a second control pressure source that generates either the first or second control pressure in accordance with the content of the air-fuel ratio signal. and a communication means for supplying the first control pressure to the first control pressure when the engine is cold, and wherein the first control pressure during the cold state is reduced overall compared to after the engine is warmed up.
The intake secondary air supply device described in Section 1. (4) The first control pressure generation source is near the throttle valve in the engine intake passage or a first negative pressure passage extending downstream of the throttle valve, etc.
A second negative pressure passage extending from inside the venturi upstream of the throttle valve, a control intake passage extending from the atmosphere intake port to the downstream of the throttle valve, and a first negative pressure chamber are provided in the middle of the control intake passage. One valve palm communicates with the second negative pressure passage, and the first negative pressure passage and the second negative pressure passage are connected to the first negative pressure passage according to the pressure difference between the first negative pressure chamber and the first valve chamber. a negative pressure responsive regulating valve communicated via a valve chamber, a second negative pressure chamber communicating with the first negative pressure passage, and a second valve chamber downstream from the first negative pressure chamber in the middle of the control intake passage; a negative pressure-responsive air valve that is provided in the second negative pressure chamber and connects the control intake passage with an opening degree depending on the pressure difference between the second negative pressure chamber and the second valve chamber, and acts on the second negative pressure chamber. A negative pressure is outputted as the first control pressure, and a flow passage cross-sectional area of a control intake passage upstream from the first negative positive chamber is reduced during the cold state. The intake secondary air supply device according to scope 3. (5) The cold time includes at least one of the following: the engine cooling water temperature, the intake air temperature, the inactive state of the oxygen concentration sensor, the elapsed time after engine startup, and the temperature of the catalyst installed in the exhaust system.
The intake secondary air supply device according to claim 1, wherein the intake secondary air supply device is detected based on.
JP58064866A 1983-04-12 1983-04-12 Secondary intake-air supply device for internal- combustion engine Pending JPS59190460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58064866A JPS59190460A (en) 1983-04-12 1983-04-12 Secondary intake-air supply device for internal- combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58064866A JPS59190460A (en) 1983-04-12 1983-04-12 Secondary intake-air supply device for internal- combustion engine

Publications (1)

Publication Number Publication Date
JPS59190460A true JPS59190460A (en) 1984-10-29

Family

ID=13270501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58064866A Pending JPS59190460A (en) 1983-04-12 1983-04-12 Secondary intake-air supply device for internal- combustion engine

Country Status (1)

Country Link
JP (1) JPS59190460A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0202665A2 (en) * 1985-05-24 1986-11-26 Axel Jens Blume Fuel economiser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0202665A2 (en) * 1985-05-24 1986-11-26 Axel Jens Blume Fuel economiser

Similar Documents

Publication Publication Date Title
JPH0218419B2 (en)
US5575268A (en) Air-fuel ratio controlling system for internal combustion engine
US4483308A (en) Air intake side secondary air supply system for an internal combustion engine equipped with exhaust gas recirculation control system
US4557242A (en) Air/fuel ratio feedback control system for an internal combustion engine of a vehicle
US4569318A (en) Secondary intake air supply system for internal combustion engines
JPS59190460A (en) Secondary intake-air supply device for internal- combustion engine
US4617900A (en) Air-fuel ratio control system for an internal combustion engine having a control characteristic varying with the engine load
US4553521A (en) Intake secondary air supply system for internal combustion engines
JPS6053653A (en) Supply device of secondary intake air internal- combustion engine
JPS58160540A (en) Control method for exhaust gas reflux in engine
US4503834A (en) Feedback control system for supplying a fluid to an apparatus operable with the fluid
JPS61275556A (en) Secondary intake air feeder for internal-combustion engine
US4584979A (en) Air-fuel ratio control system for an internal combustion engine with a three way catalytic converter
JPS61185667A (en) Fuel gas supply device of gas engine
US4681078A (en) Air-fuel ratio control system for an internal combustion engine
US4558682A (en) Air intake side secondary air supply system for an internal combustion engine
US4617891A (en) Secondary air supply for internal combustion engine
US4594977A (en) Secondary air system for internal combustion engine with deceleration control
JPS59173543A (en) Intake secondary-air supply device in internal- combustion engine
JPS6410655B2 (en)
JPS6112099B2 (en)
JPS5999057A (en) Secondary suction air supplying device for internal- combustion engine
JPS59183060A (en) Secondary suction air supplying device for internal-combustion engine
JPS5999056A (en) Secondary suction air supplying device for internal combustion engine
KR840001349B1 (en) Air-fuel ration controller for carburetor