JPS59189632A - Dry etching method - Google Patents

Dry etching method

Info

Publication number
JPS59189632A
JPS59189632A JP6471783A JP6471783A JPS59189632A JP S59189632 A JPS59189632 A JP S59189632A JP 6471783 A JP6471783 A JP 6471783A JP 6471783 A JP6471783 A JP 6471783A JP S59189632 A JPS59189632 A JP S59189632A
Authority
JP
Japan
Prior art keywords
etching
frequency power
gas
film
dry etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6471783A
Other languages
Japanese (ja)
Other versions
JPH0456451B2 (en
Inventor
Eiichi Hoshino
栄一 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6471783A priority Critical patent/JPS59189632A/en
Publication of JPS59189632A publication Critical patent/JPS59189632A/en
Publication of JPH0456451B2 publication Critical patent/JPH0456451B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To easily detect the end of etching and improve accuracy of mask and productivity by introducing the reactive gas with nitrogen gas into the container accommodating sample to be processed and by removing a film through formation of gas plasma condition by applying a high frequency power. CONSTITUTION:A mask blank having completed the developing process of resist is placed at the specified position on the electrode 3 in a processing container 1 as a sample 18 to be processed. CCl4 and O2 are put in the processing container 1 with the ratio, for example, of about 3:2 and N2 is also usually put into it with the ratio of 10% or less for the total amount of CCl4 and O2. The pressure in the processing container 1 is kept to the specified value. The etching is started by applying a DC voltage and required high frequency power with the electrodes 3, 3' used as the positive electrodes. When the etching of Cr film comes close to the end, an impedance between the electrodes 3 and 3' changes and reflection of high frequency power increases. Accordingly, the increased reflection is accurately detected by a reflection measuring apparatus 15 and the dry etching processing is suspended by a system control apparatus 17.

Description

【発明の詳細な説明】 lal  発明の技術分野 本発明は半導体素子及びマスク等の製造に適用されるド
ライエツチング方法に力)力)す、反応性ガスプラズマ
によって皮膜の除去を行ない、その終了が容易に検出さ
れるドライエツチング方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a dry etching method applied to the manufacture of semiconductor devices, masks, etc., in which a film is removed by reactive gas plasma and its completion is completed. This invention relates to a dry etching method that is easily detected.

(bl  技術の背景 半導体集積回路装置の大規模化のために、そのパターン
の微細化と高集積度化が推進されているが、このパター
ンを実現する微細別工技術は、レジストをパターニング
する技術と、これをマスクとして半導体基本等をエツチ
ングする技術との複合技術である。
(bl Background of technology) In order to increase the scale of semiconductor integrated circuit devices, miniaturization and higher integration of semiconductor integrated circuit devices are being promoted. This is a composite technology that uses this as a mask to etch basic semiconductor materials.

半導体装置の義造工程おけるエツチング方法としては化
学的に選択された溶液を用いるウェット・エツチングが
長い技術的蓄積を基(泥として多く用いられて来ている
が、パターンの微細化のためにエツチング積度の向上が
必要となり、また工程の複雑化を軽減すること、更に環
境保全等の問題かわL−rいる。
As an etching method in the manufacturing process of semiconductor devices, wet etching using a chemically selected solution is based on a long technological accumulation (it has been widely used as a slurry, but etching is It is necessary to improve the loading capacity, reduce the complexity of the process, and furthermore, there are problems such as environmental protection.

(cl  従来技術と問題点 ドライ−I−y千ング方法と総称される技術には、その
エツチング方法が化学反応によるもの、物理反応による
もの並びに化学及び物理反応によるものが含まれる。
(cl. Prior Art and Problems) Techniques collectively referred to as dry etching methods include etching methods based on chemical reactions, physical reactions, and chemical and physical reactions.

物理的ドラ、イエッ(ング方法とは、大きな運動エネル
ギーをもったイオンを固体表面に衝突させたときに起こ
るスパッタ現象を利用するエツチング法である。この方
法には、予め試料表面をパターニンクざイ9た工2−F
ンク速耽の小ぎい材料でマスクして応き、試料全面(ご
−保1よイオンビームを照射する迎常スバッlエツチン
クと呼はれる方法き、予めマスクを設けることなく試料
表面をイオビームで選択的に定食するイオンビームエツ
チング法とがある。こわ、らの方法は方向性のそろった
一様な入射イオンビームを用いることζこよりでアスク
下へのアンダーカットを抑制することができ微細加工に
適するが、被処理材料についての選択性に乏しく、また
イオンの衝撃によるダメージの危険性が多い。
The physical dry etching method is an etching method that utilizes the sputtering phenomenon that occurs when ions with large kinetic energy collide with a solid surface.This method involves patterning the sample surface in advance. 9th grade 2-F
In this method, the entire surface of the sample is irradiated with an ion beam by masking it with a small piece of material made of a metal ion beam. There is an ion beam etching method that selectively etches.Kowa et al.'s method uses a uniformly incident ion beam with uniform directionality, which can suppress undercuts below the mask and improve microfabrication. However, it has poor selectivity with respect to the material to be treated, and there is a high risk of damage due to ion bombardment.

化学的ドライエツチング方法の例にはプラズマエツチン
グ方法があげられる。通常プラズマエラ千ン〃で用いら
れる低温ガスプラズマは、反応管中に適当な反応性ガス
を01乃全10(Torr:l程度に導入し、これに高
周波電力を印〃口することによって得ら右ている。この
低温ガスプラズマの電離度は小さいが、各種の衝突過程
によって励起状態とされた原子や分子が含まれる。この
ような励起状ml“にある原子や分子は化学的活性度が
高(、ガスプラズマが接する試料表面の原子との間に化
学反応が起こり、この反応の結果揮発性の物質が形成さ
れると試料表面力)ら原子が取り去られてエツチングさ
I″lることとなる。
An example of a chemical dry etching method is a plasma etching method. The low-temperature gas plasma normally used in Plasma Erasen is obtained by introducing an appropriate reactive gas into a reaction tube at a pressure of about 0.1 to 10 Torr (1 Torr), and then applying high-frequency power to it. The degree of ionization of this low-temperature gas plasma is small, but it contains atoms and molecules that have been brought into an excited state by various collision processes.Atoms and molecules in such an excited state have low chemical activity. When a chemical reaction occurs between the atoms on the surface of the sample that the gas plasma contacts, and volatile substances are formed as a result of this reaction, atoms are removed from the sample surface and etched. That will happen.

このプラズマエツチング方法は被処理材料に対する選択
性を有するが、そのエツチング方向は等方的であって微
細加工性に乏しい。
Although this plasma etching method has selectivity with respect to the material to be processed, the etching direction is isotropic and the microfabriability is poor.

先をこ説明したスパッタエツチング方法においては雰囲
気は不活性ガスが用いられているが、これを反応性ガス
とすることによって化学反応及び物理反応が共存して、
被処理材料に対する選択性が得られ更に意図する材料に
ついてのエツチング速度を増大することが可能となる。
In the sputter etching method described above, an inert gas is used as the atmosphere, but by using a reactive gas, chemical and physical reactions coexist.
Selectivity to the material to be processed is obtained, and furthermore, it becomes possible to increase the etching rate for the intended material.

このエツチング方法はりアクティブイオンエッチンタ方
法又はリアクティブスバッlエッチンク方法に曇品子蟲
i°゛と呼ばれているが、 高周波電力を閉力lit、、τプラズマを形成する場合
が多イ。このエツチング方法はアンターカットの少IS
い異方性エツチングが可能である。
This etching method is called an active ion etching method or a reactive sub-etching method, but in many cases high-frequency power is used to form a plasma. This etching method uses a small IS of undercut.
Highly anisotropic etching is possible.

半4本集積回路装置の製造工程において実用化さI7て
いるドライエツチング方法は、以上説明したエツチング
方法を折衷・被合し最適化さ2゛1ている場合が多く、
そのエツチング機構も4純ではtい0 この様にして進行オ6ドライエッ千ンクの終点を確実に
検出することは、エツチングの信頼性とエタ町ンク装置
を自動化するために極めて重要である。このために従来
多くの終点検出手段がそのドライエツチング方法及び材
料等の条件ζこ対応して行なわれている。従来知られて
いる検出手段として(ま下記の例がある。
Dry etching methods that have been put to practical use in the manufacturing process of semi-quadruple integrated circuit devices are often optimized by combining and combining the etching methods described above.
The etching mechanism is also not pure. Reliably detecting the end point of the advancing dry etching process in this manner is extremely important for the reliability of etching and for automating the etching process. For this reason, conventionally, many end point detection means have been implemented depending on the conditions such as the dry etching method and material. Conventionally known detection means include the following examples.

(イ1ンリコン(SL)と活性楢との反応との際に圧す
る発光を利用するケミガルミ不センス沃、(Olエッチ
ンクさ′I7る膜の、E折率、吸収係数及び膜厚をエリ
プソメータで測定する光学測定法、(/1試料にレーザ
元を照射して反射される+e反形lこよって検出するレ
ーザ検出法、(−4放電lこよって励起され外線を通し
て、放電空間内の分子ζこよる吸収スペクトルを測定す
る赤外吸収分光分析法、ヒタ排気等を質量分析し、特定
の質量スペクトルの強度変化によって検出する質量分析
法、(ト1放奄空間内に入わた探針に電圧を加えて、ブ
′ラスマ状悪の変化を電流−電圧%注によって判断する
探針法、(七エッチンク前後に旧いて放電インピータン
スが変化することを用いた放電インピータンヌ法、(1
ハアルミニウム(A−1)のエツチング前後の圧力変化
によって検出する圧力変化法。などがある。
(Measurement of E refractive index, absorption coefficient, and film thickness of the film formed by the chemical etch process, which utilizes the light emitted during the reaction between SL and activated oak, using an ellipsometer. optical measurement method, (/1 laser detection method that detects by irradiating the laser source onto the sample and detecting the reflected +e anti-shape l, (-4 discharge l, which is excited and passes the external line, and detects the molecules ζ in the discharge space. Infrared absorption spectroscopy, which measures the absorption spectrum of gases, and mass spectrometry, which analyzes the mass of exhaust gas and detects it by the intensity change of a specific mass spectrum. In addition, the probe method, which judges changes in plasma-like defects by current-voltage percentage, (7) the discharge impedance method, which uses the fact that the discharge impedance changes before and after etching, and (1)
A pressure change method that detects pressure changes before and after etching halumium (A-1). and so on.

以上説明した如きドライエツチング方法は、半導体装置
の製造に用いるマスクの製造工程にも適している。すな
わち高品質のカラス基板上に例えば70〔μm〕程度の
クロム((、:r )膜を蒸着才たはスパッlで形成し
たクロムマスクのマスクパターン形成のためのエツチン
グ処理を、例えは四塩化炭素(CCt、)と酸素(0,
)との混合カスにょるガスプラズマによって行なうこと
によって、従来の例えば硝酸第2セリウムアンモンを用
いるウエッ1−エンチンク方法より寸法変化の少ないパ
ターンを形成することができる。
The dry etching method as described above is also suitable for the manufacturing process of masks used in manufacturing semiconductor devices. In other words, an etching process for forming a mask pattern of a chromium mask in which a chromium ((,:r) film of, for example, about 70 μm thick is formed by vapor deposition or sputtering on a high-quality glass substrate, for example, using tetrachloride). Carbon (CCt, ) and oxygen (0,
), it is possible to form a pattern with less dimensional change than the conventional wet-enching method using, for example, ceric ammonium nitrate.

このクロムマスクのドライエツチング処理の終点の検出
方法としては、レーザ光を照射してその反射光を検出す
る方法などが適用可能であるがパターンによって照射位
置の調整が必要であり、質量分析法等の方法もその実施
は容易ではない。この終点検出の繁雑さを避けるために
、ドライエツチング実施時間を標準化して時間によって
管理する場合もあるが、エツチングによって除去される
面積の広狭によって実際の所要時間には差があるために
、通常余裕時間が過大となってエツチング精度が低下す
るとともに、時間の無駄でもある。
As a method for detecting the end point of the dry etching process for this chrome mask, a method such as irradiating laser light and detecting the reflected light can be applied, but the irradiation position needs to be adjusted depending on the pattern, and mass spectrometry etc. This method is also not easy to implement. In order to avoid the complexity of detecting the end point, the dry etching execution time is sometimes standardized and managed by time, but the actual time required varies depending on the area to be removed by etching, so it is usually The margin time becomes excessive, which reduces etching accuracy and is also a waste of time.

ドライエンチング方法のこの様な実施形態の際に実施が
容易な終点検出手段が要望される。
There is a need for an end point detection means that is easy to implement in such embodiments of the dry enching method.

+d+  発明の目的 本発明は、反応性ガスプラズマによって皮膜の除去を行
なうドライエツチング方法について、意図する皮膜の除
去の終了が容易に検出されるドライエツチング方法を提
供すめことを目的とする。
+d+ OBJECTS OF THE INVENTION An object of the present invention is to provide a dry etching method in which a film is removed using reactive gas plasma, in which the completion of intended film removal can be easily detected.

[el  発明の構成 本発明の前記目的は、除去する皮膜を表出させた被処理
試料を容器内に収容し、該容器内に窒素ガスが添加され
た反応性ガスを導入し、該反応性ガスに高周波電力を印
加してガスプラズマ状態を形成し、該カスプラズマによ
りて前記皮膜を除去    −し、前記高周波電力の供
給回路に生ずる反射波の増加によって前記皮膜の除去の
終了を検出することにより達成される。
[el Structure of the Invention The above-mentioned object of the present invention is to accommodate a sample to be treated with a film to be removed exposed in a container, introduce a reactive gas to which nitrogen gas is added into the container, and remove the reactive gas. Applying high-frequency power to the gas to form a gas plasma state, removing the film by the gas plasma, and detecting completion of removal of the film by an increase in reflected waves generated in the high-frequency power supply circuit. This is achieved by

なお、このような現象は窒素ガスを容器内に導入し、高
周波電力を印刀口するとバイアス電圧が増加することが
一般的に知られていることからこのバイアス電圧の増加
によりインピーダンス整合が大きくズレ、反射波の増加
を顕著に導くものと推測される。
It should be noted that this phenomenon is caused by the fact that it is generally known that the bias voltage increases when nitrogen gas is introduced into the container and high-frequency power is applied to the seal. It is presumed that this leads to a significant increase in reflected waves.

tfJ  発明の実施例 以下本発明を実施例により図面を参照して具体的に睨明
する。
tfJ EXAMPLES OF THE INVENTION The present invention will be specifically explained below by way of examples with reference to the drawings.

第1[ン1は本発明の実施に適する装置の一例を示オブ
ロノク図である。図において1は処理容器、2はカス流
出管、3及び3′は電極、4.5及び6はガス容器、7
はレギーレー118及び8′はシャツトバルブ、9は流
量計、10はリークバルブ、]lは具空耐、11;t)
ラップ、1:H;を真空ポンプ、14は高尚e電源、1
5は反射波測定装置、16は直a電源、17はンステム
制御装置、18は被処理試料を示す。
1 is a diagram illustrating an example of an apparatus suitable for carrying out the present invention. In the figure, 1 is a processing container, 2 is a waste outlet pipe, 3 and 3' are electrodes, 4.5 and 6 are gas containers, and 7
Reggie relays 118 and 8' are shirt valves, 9 is a flow meter, 10 is a leak valve,] l is a air force, 11; t)
Lap, 1:H; the vacuum pump, 14 is the noble e power supply, 1
5 is a reflected wave measuring device, 16 is a direct a power source, 17 is a system control device, and 18 is a sample to be processed.

本発明をガラス基板上にCrfL膜を設けたマスクのパ
ターン形成ζこ適用する場合には、ガス容器4に例えば
四塩化炭素(CCt、)、5に酸素(’J2)。
When the present invention is applied to pattern formation of a mask in which a CrfL film is provided on a glass substrate, the gas container 4 is filled with carbon tetrachloride (CCt), and the gas container 5 is filled with oxygen ('J2).

6に窒素(N2)を準備する。レジストの現像処理が終
了した前f4eマスクグランクを被処理試料18として
処理容器1内の電極3上の所定の位置に置く。CCt、
及び02を例えば3:2程度の比率で、N2をcc4と
O7との合計流量に対して通常10〔チ〕以下、例えば
4〔係〕程度の比率として処理容器1内に導入し、処理
容器内の圧力を所定の圧力とする。本実施例においては
0.1乃至1 (Torr)程度とする。
6. Prepare nitrogen (N2). The pre-f4e mask grunk, on which the resist development process has been completed, is placed at a predetermined position on the electrode 3 in the processing container 1 as the sample 18 to be processed. CCt,
and 02, for example, at a ratio of about 3:2, and N2 is introduced into the processing vessel 1 at a ratio of usually 10 [ch] or less, for example, about 4 [ch] to the total flow rate of cc4 and O7. The pressure inside is set to a predetermined pressure. In this embodiment, it is set to about 0.1 to 1 (Torr).

電極3及び泊こ、電極3′を正の極性とする例えば1.
00(V)程度の直流を比及びf9r要の腎、周波電力
、本実施例においては約soo[W)、を印〃lしてエ
ツチングを開始する。この際に高周波電力についてイン
ピータンス整合を行ない、電極3及び3′側よi)電源
への反射波を0.2〔チ〕程度以下に消去する。
For example, 1. In which the electrode 3 and the electrode 3' are of positive polarity.
Etching is started by applying a direct current of about 00 (V) to a ratio and a frequency power of f9r, approximately soo [W] in this embodiment. At this time, impedance matching is performed for the high frequency power, and reflected waves from the electrodes 3 and 3' side to i) the power source are eliminated to about 0.2 [chi] or less.

Cr皮膜のエラ千ンク進行中はインピータンス整合が保
たれるが、Cr皮膜のエラ十ング終点近(に。
Impedance matching is maintained during the progress of the Cr film's error, but near the end of the Cr film's error.

なると電極3と3′との間のインピータンスが変化して
高周波電力の反射波が増加する。
Then, the impedance between the electrodes 3 and 3' changes, and the reflected waves of high-frequency power increase.

この反射波の増7J11は反応ガス中にN2を添加しな
い場合には、第2図に鎖線Aで例示する如く、入射電力
5ooCW)に対して反射電力は多くと63〔W〕すな
わち0.6〔チ〕程度に過ぎないのに比較して、本発明
なよってN2を添加することによってインピータンスの
変化を大きくして、第2図に実線Bで例示する如く、反
射電力を10〔ν■〕すなわち2〔チ〕程度とすること
ができる。
This increase in reflected waves 7J11 is due to the fact that when N2 is not added to the reaction gas, as illustrated by the chain line A in FIG. Compared to this, the present invention increases the change in impedance by adding N2, and increases the reflected power to 10 [ν■], as illustrated by the solid line B in FIG. ] In other words, it can be about 2 [chi].

この様に工゛u大された反射波を反射波測定装置15に
よって適確に俟出し、システム制御装置17によってド
ライエツチング処理を停止する。
The thus magnified reflected waves are accurately measured by the reflected wave measurement device 15, and the system control device 17 stops the dry etching process.

以上説明した実施例はCr皮膜のCC74及び(J。The embodiments described above include Cr film CC74 and (J).

を反応ガスとするエツチングであるが、本発明はその他
の類以のドライエツチング処理にも適用することができ
、例えば反応ガスとしてフレオン(CF4)と酸素(0
2)の混合ガスを用いてもよい。
Although this is an etching process using CF4 as a reactive gas, the present invention can also be applied to other types of dry etching processes. For example, using Freon (CF4) and oxygen
A mixed gas of 2) may also be used.

tgl  発明の詳細 な説明した如く本発明によれば、反応性ガスプラズマに
よって皮膜の除去を行なうドライエツチング法に関して
、そのエツチング終点を容易に恢出てることが可能とな
り、半導体素子及びその製造に使用するマスク等の精度
及び生産性を向上する効果によって、半導体装置特に大
規模集積回路装置等の進歩と普及に寄与する。
tgl As described in detail, according to the present invention, it is possible to easily determine the end point of dry etching in which a film is removed using reactive gas plasma, and it is suitable for use in semiconductor devices and their manufacturing. The effect of improving the precision and productivity of masks, etc. that can be used contributes to the advancement and spread of semiconductor devices, especially large-scale integrated circuit devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に適する装置の一例を示すブロッ
ク図、第2図は高周波電力の反射波の変化の一例を示す
図である。 図において、1は処理容器、3及び3′は′[h極、4
.5及び6けカス容器、13は真空ポンプ、■4は高周
波電源、15は反射波測定装置、1664直流電源、1
7はシステム制御装置、18は被処理試料を示す。 本I 閃 翳2閉 L・・す;7  一時開 終上
FIG. 1 is a block diagram showing an example of a device suitable for implementing the present invention, and FIG. 2 is a diagram showing an example of changes in reflected waves of high-frequency power. In the figure, 1 is a processing container, 3 and 3' are '[h poles, 4
.. 5 and 6 waste containers, 13 is a vacuum pump, 4 is a high frequency power source, 15 is a reflected wave measuring device, 1664 is a DC power source, 1
7 is a system control device, and 18 is a sample to be processed. Book I Senkyou 2 Close L...7 Temporary Open End Top

Claims (1)

【特許請求の範囲】[Claims] 除去する皮膜を表出暮せた被処理試料を容器内に収容し
・、該容器内に窒累ガスが添加された反応性ガスを導入
し、該反応性ガスに高周波″電力を印加してガスプラズ
マ状態を形成し、該ガスプラズマによって前記皮膜を除
去し、前記高周波電力の供給回路に生ずる反射波の増加
によって前配反膜の除去の終了を検出することを%徴と
するドライエツチング方法。
The sample to be treated with the film to be removed exposed is placed in a container, a reactive gas to which nitrogen gas has been added is introduced into the container, and high frequency power is applied to the reactive gas to remove the gas. A dry etching method characterized by forming a plasma state, removing the film by the gas plasma, and detecting completion of removal of the pre-distribution film by an increase in reflected waves generated in the high-frequency power supply circuit.
JP6471783A 1983-04-13 1983-04-13 Dry etching method Granted JPS59189632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6471783A JPS59189632A (en) 1983-04-13 1983-04-13 Dry etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6471783A JPS59189632A (en) 1983-04-13 1983-04-13 Dry etching method

Publications (2)

Publication Number Publication Date
JPS59189632A true JPS59189632A (en) 1984-10-27
JPH0456451B2 JPH0456451B2 (en) 1992-09-08

Family

ID=13266176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6471783A Granted JPS59189632A (en) 1983-04-13 1983-04-13 Dry etching method

Country Status (1)

Country Link
JP (1) JPS59189632A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139036A (en) * 1994-11-09 1996-05-31 Hitachi Electron Eng Co Ltd Plasma cvd equipment
US7754394B2 (en) 2006-11-14 2010-07-13 International Business Machines Corporation Method to etch chrome for photomask fabrication

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139036A (en) * 1994-11-09 1996-05-31 Hitachi Electron Eng Co Ltd Plasma cvd equipment
US7754394B2 (en) 2006-11-14 2010-07-13 International Business Machines Corporation Method to etch chrome for photomask fabrication

Also Published As

Publication number Publication date
JPH0456451B2 (en) 1992-09-08

Similar Documents

Publication Publication Date Title
Coburn In situ Auger electron spectroscopy of Si and SiO2 surfaces plasma etched in CF4‐H2 glow discharges
TWI508162B (en) Plasma processing methods and computer readable memory media
US3837856A (en) Method for removing photoresist in manufacture of semiconductor devices
JPH0427113A (en) Resist treatment device, resist treatment method, and resist pattern
Deutsch et al. Basic mechanisms in plasma etching
JPS6158975B2 (en)
JPS59189632A (en) Dry etching method
JPS6211493B2 (en)
JPS5879722A (en) Controlling method of plasma etching
Bergendahl et al. Optimization of plasma processing for silicon-gate FET manufacturing applications
Stanishevsky et al. Testing new chemistries for mask repair with focused ion beam gas assisted etching
Flowers et al. Application of dynamic in-situ ellipsometry and quadrupole mass spectrometry to plasma-assisted etching: polymer formation and removal
JPH0484429A (en) Electron beam excitation dry etching and its device
Shabushnig et al. Applications of optical emission spectroscopy to semiconductor processing
CN116759299A (en) Preparation method of mask and dry etching equipment
Tzeng et al. Plasma etching with tetrafluoromethane and nitrous oxide: the role of oxygen in the etching of silicon materials
CN117004949A (en) Etching method
JPH05275391A (en) Reactive ion etching
US6875698B2 (en) Dry etching method
KR920007449B1 (en) Surface treatment method and there apparatus of semiconductor device manufacturing process
JPH02183530A (en) Manufacture of semiconductor element
Tan et al. Direct trim etching process of Si/SiO 2 gate stacks using 193 nm ArF patterns
JPH04352327A (en) Dry etching device
JPH01288853A (en) Dry etching method
Savage et al. Applications of Optical Emission Spectroscopy to Semiconductor Processing