JPS59189318A - Production of multicolor display device - Google Patents

Production of multicolor display device

Info

Publication number
JPS59189318A
JPS59189318A JP58064117A JP6411783A JPS59189318A JP S59189318 A JPS59189318 A JP S59189318A JP 58064117 A JP58064117 A JP 58064117A JP 6411783 A JP6411783 A JP 6411783A JP S59189318 A JPS59189318 A JP S59189318A
Authority
JP
Japan
Prior art keywords
display device
dye
substrate
multicolor display
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58064117A
Other languages
Japanese (ja)
Other versions
JPH0345803B2 (en
Inventor
Mitsuru Suginoya
充 杉野谷
Koji Iwasa
浩二 岩佐
Hitoshi Kamamori
均 釜森
Yutaka Sano
豊 佐野
Yumiko Terada
寺田 由美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP58064117A priority Critical patent/JPS59189318A/en
Priority to US06/563,947 priority patent/US4522691A/en
Priority to EP19830307818 priority patent/EP0113237B1/en
Priority to DE8383307818T priority patent/DE3374726D1/en
Publication of JPS59189318A publication Critical patent/JPS59189318A/en
Publication of JPH0345803B2 publication Critical patent/JPH0345803B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE:To obviate deviation in patterns even if display patterns are fine and to enable color change without application of special prevention for dying by using a thin conductive film on a substrate as an electrode and forming a colored layer by electrodeposition from a soln. prepd. by dispersing a high polymer and a dye hardly soluble or insoluble in water. CONSTITUTION:A methyl cellosolve dissolved therein with a dye is added to an aq. soln. dissolved therein with ''ESVIA ED-3000'' to disperse uniformly the dye therein. A display substrate 6 on which display electrodes 7 is formed is dipped in such electrodeposting bath. The electrodes desired to be colored to the same color among the electrodes 7 patterned to a stripe shape are selected and 10V voltage is impressed for 3min on the selected electrodes as an anode. The substrate 6 is pulled out after the conduction of electricity and is thoroughly rinsed so that the soln. sticking on the parts not impressed with the voltage is washed away. When the substrate is dried after the rinsing, the colored layer having good transparency is formed on the electrodes impressed with the voltage. The polyester resin and melamine resin in the colored layer formed by the electrodeposition are stoved to effect a condensation reaction, by which the resins are cured.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、カラーフィルターを応用した多色表示装置
の製造方法に関し、特に、電着によって形成される高分
子層によって卿造さねたカラーフィルターを有する多色
表示装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for manufacturing a multicolor display device using a color filter, and in particular, to a method for manufacturing a multicolor display device using a color filter. The present invention relates to a method of manufacturing a multicolor display device.

従来技術 第1図に、カラーフィルターを応用した多色表示装置σ
)−例を示した。第1図において、1は透明基板、2は
任意の図形または文字をパターニングさhfr透明導電
膜より成る表示極、3は表示極2表面に密着して形成さ
f′したカラーフィルター、4は透明な対向電極、5は
透明々対向基板である。
Conventional technology Figure 1 shows a multicolor display device σ that uses color filters.
) - gave an example. In FIG. 1, 1 is a transparent substrate, 2 is a display electrode made of an HFR transparent conductive film patterned with arbitrary figures or characters, 3 is a color filter formed in close contact with the surface of the display electrode 2, and 4 is transparent. 5 is a transparent counter substrate.

2枚の基板1,5で挾4i、た空間に、液晶またはエレ
クトロクロミック材料等の、電圧印加によって開閉する
光学シャッターとして機能する物質を満たし、カラーフ
ィルター5.3’、 5”を相異なる色調に形成してお
けば、表示極2 、2/ 、 211と対同電極4の間
に選択的に電圧を印加することにより、多色の表示が可
能である。
The space between the two substrates 1 and 5 is filled with a substance, such as liquid crystal or electrochromic material, that functions as an optical shutter that opens and closes when voltage is applied, and the color filters 5.3' and 5'' are colored in different colors. If the display electrodes 2, 2/2, 211 and the counter electrode 4 are formed in such a manner that a voltage is selectively applied between them, multicolor display is possible.

カラーフィルターを用いる表示の多色化は、方法が簡便
であり、自由な色調が得られ易く、様々な表示材料、方
式と組み合せて用いることが可能と考えられるから、実
用的効果が極めて大きい。
Multicolor display using color filters is a simple method, it is easy to obtain free color tones, and it is thought that it can be used in combination with various display materials and methods, so it has extremely large practical effects.

しかし、カラーフィルターを用いる多色の表示装置を製
造しようとする場合には、表示極のパターンと、表示極
表面に形成されるカラーフィルターのパターンとが、ズ
レを生じないように製造しなければならない。特に、3
原色の微細パターンを用いる刀う−グラフィック表示を
実現しようとする場合には、表示極とカラーフィルター
とのパターンの一致は、製造上の困難が大きい重要な問
題である。1だ多色にするための免責えも工程を複雑化
する要因でおり、特に着色を染料による染色によって実
現しようとすると、丁でにM色された部分が次の染色工
程によって二度染めされ方いように防染という工程が間
に入り、さらに複雑化する。さらに防染技術自体も染料
によって個々に検討されなければならない因#j、な問
題である。
However, when manufacturing a multicolor display device using color filters, it is necessary to manufacture the display device in such a way that there is no misalignment between the pattern of the display electrode and the pattern of the color filter formed on the surface of the display electrode. No. In particular, 3
When attempting to realize a graphic display using fine patterns of primary colors, pattern matching between display poles and color filters is an important issue that is difficult to manufacture. The process of obtaining one or more colors is also a factor that complicates the process, especially when trying to achieve coloring by dyeing, the area that is colored M in the first step is dyed twice in the next dyeing process. The process of resist dyeing is added in between, making the process even more complicated. Furthermore, the resist dyeing technique itself is a problem that must be considered individually depending on the dye.

一般的に、カラーフィルター全作成する方法としては、
スクリーン印刷やフォトリングラフイー等の手段を利用
するものが考えられている。スクリーン印■1jでは防
染の必要はないが、パターンの微細化には限度があり、
多色化が進むほど印刷位置の精度は悪くなり、表示パタ
ーンとのずれが生じる。フォトリソグラフィーでは微細
パターンは可能であるが、免責えの度にフォトリソグラ
フィ一工程を通す必要があ□す、染色の際に2度染めが
されないような防染法が必要とな9、工程が極めて複雑
になり、簡便な多色化手段という利点は失なわれてくる
Generally, the way to create all color filters is as follows:
Methods using methods such as screen printing and photophosphorography are being considered. Screen stamp ■1j does not require resist dyeing, but there is a limit to the miniaturization of the pattern.
As the number of colors increases, the precision of the printing position deteriorates, causing misalignment with the displayed pattern. Although it is possible to create fine patterns with photolithography, it is necessary to go through one photolithography process each time, and a resist dyeing method that prevents double dyeing is required9. This becomes extremely complicated, and the advantage of a simple means for multicoloring is lost.

発明の目的 そこで本発明は簡便な方法で、表示パターンが微細にな
ってもパターンずれが生じず、免責えが特殊な防染をほ
どこさなくても可能であり、且つ、堅牢なカラーフィル
ターを用いた多色表示装置の製造方法を提案することを
目的とし、そのために基鈑上の導電性薄膜’r’l!極
とし、高分子と水に難溶もしくは不溶の染料を分散させ
た溶液から着色層を電着により形成する方法によってカ
ラーフィルターを製造したものである。
Purpose of the Invention Therefore, the present invention provides a simple method that does not cause pattern shift even when the display pattern becomes fine, that can be used without any special resist dyeing, and that provides a robust color filter. The purpose of this study is to propose a manufacturing method for a multicolor display device using a conductive thin film 'r'l!' on a substrate. A color filter is manufactured by using a method in which a colored layer is formed by electrodeposition from a solution in which a polymer and a dye that is sparingly soluble or insoluble in water are dispersed.

この方法によれば導電性薄膜を、マスクを利用 5− した蒸着、スパッタリング、もしくはエツチング等によ
り所望のパターニングをほどこすことにより、高分子と
染料が電圧を印加した導電部分に選択的に電着し、パタ
ーン位置のずれのない渭色層を形成することが可能であ
る。またこの操作を繰り返すことにより、一度電着され
、た部分には再度着色層は形成さねないので、多色化も
容易に可能である。この方法に用いられる基板は、表面
が絶縁性であれば、基板との密着性の良い導電性薄膜層
を選ぶことにより、その材質、形状については制限G・
まない。
According to this method, a conductive thin film is patterned in a desired manner by vapor deposition, sputtering, or etching using a mask, and then polymers and dyes are selectively electrodeposited on conductive areas to which a voltage is applied. However, it is possible to form a dark blue layer with no deviation in pattern position. Furthermore, by repeating this operation, a colored layer will not be formed again on the part that has been electrodeposited once, so it is possible to easily create multiple colors. If the substrate used in this method has an insulating surface, a conductive thin film layer with good adhesion to the substrate is selected, and there are no restrictions on its material and shape.
No.

発明の構成 以下、本発明の重要点である高分子の電着による着色層
の形成方法について述べる。高分子を電極上に電着させ
る手段の1つとして、単量体を電極上で電気化学的に重
合させる方法がある。この方法の一例として、鉄板上で
種々のビニル化合物を電気化学的に重合させ、高分子皮
膜を得たという報告がある(金属表面技術Vo1.19
.AI2.1968)。また最近では、ピロール、チ 
6− オフエン等を電気化学的に重合させ、ポリピロール、ポ
リチェニレン等の導′覗性高分子を電極上に作成した研
究も盛んに行なわれている。しかし、このような、直接
単量体を電気化学的に重合させる手段は、効率がまだ良
くない、得られた膜がすでに着色しており、着色の任意
性に欠ける等、本発明に用いるには問題点を有している
。電極上に高分子を電着させるもう1つの方法として、
高分子溶液より゛電極上に高分子を不浴化、析出させる
方法がある。この−例としては、高分子水溶液に顔料全
分散させ、金属を浸漬し電極として用い、該金属上vc
M色層を電着させる電着塗装と呼ばね。
Structure of the Invention The method for forming a colored layer by electrodeposition of a polymer, which is an important point of the present invention, will be described below. One method for electrodepositing a polymer on an electrode is to electrochemically polymerize a monomer on the electrode. As an example of this method, there is a report that a polymer film was obtained by electrochemically polymerizing various vinyl compounds on an iron plate (Metal Surface Technology Vol. 1.19).
.. AI2.1968). Also, recently, pyrrole,
6- Research is also actively being carried out on electrochemically polymerizing offene and the like to create conductive polymers such as polypyrrole and polythenylene on electrodes. However, such a method of directly electrochemically polymerizing monomers is not suitable for use in the present invention because the efficiency is still low, the obtained film is already colored, and the coloring is not arbitrary. has problems. Another method of electrodepositing polymers on electrodes is
There is a method in which polymers are deposited on the electrode from a polymer solution in a bath-free manner. As an example of this, a pigment is completely dispersed in an aqueous polymer solution, a metal is immersed, and used as an electrode.
It's called electrodeposition painting, in which the M color layer is electrodeposited.

る方法が工業的に知られており、自動車ボディのプレコ
ーティング等に用いられている。この方法の原理は、高
分子に親水性基、例えばカルボキシル基を導入し、その
カルボキシル基を無機アルカリ、有機アミン等で中和、
水溶化したものを用いる。そして水溶化した高分子の水
溶液に電極を浸漬し、電圧全印加すると、水浴液中で解
離しているカルポキンルアニオンが陽極に向って゛電気
泳動し、電極上で水の電気分解により生じたプロトンと
反応することによって高分子が不溶化析出してぐる。す
なわち、陽極上では次式に示す反応が起こり、高分子の
析出が見らJzることになる。
This method is known industrially and is used for pre-coating automobile bodies. The principle of this method is to introduce a hydrophilic group, such as a carboxyl group, into a polymer, and then neutralize the carboxyl group with an inorganic alkali, organic amine, etc.
Use water-soluble one. Then, when the electrode is immersed in an aqueous solution of the water-soluble polymer and a full voltage is applied, the carpoquine anion dissociated in the water bath solution is electrophoresed toward the anode, and is generated by electrolysis of water on the electrode. By reacting with protons, the polymer is insolubilized and precipitated. That is, the reaction shown in the following formula occurs on the anode, and polymer precipitation is observed.

2H20−)4H++02↑+4e− また、親水性基に塩基性基(例えばポリアミン)を用い
、酸により中和、水溶化すれば、逆に陰極上で高分子の
析出か見られることになる。
2H20-)4H++02↑+4e- If a basic group (for example, polyamine) is used as the hydrophilic group and is neutralized and water-solubilized with an acid, on the contrary, polymer precipitation will be observed on the cathode.

電着さオした高分子が電気絶緻性の場合、電極が高分子
で被覆されるとともに電流が減少し、それ以上の被覆を
妨げるため膜厚の増大は期待できないと考えられるが、
実際は水の電気分解による発生酸素の気泡のため初期の
完全被覆に避けられ、絶縁層となるまでにある程度の膜
厚が得られることとなる。通常、電着塗装では100〜
200Vの電圧印加で10〜20μmの膜厚を得ている
が、本発明によるカラーフィルターでに着色層は薄い方
がよく、2μm以下が望ましl/″1oそのため後の実
施例で述べるように、樹脂濃度、電圧、溶媒組成1を適
に設定する必要がある。また得られる高分子膜は電気浸
透の効果により水分含量が少なく、塗布法等で作製した
膜よりも密着性の良い均一な膜となる。
If the electrodeposited polymer is electrically dense, the current decreases as the electrode is coated with the polymer, preventing further coating, so an increase in film thickness cannot be expected.
In reality, due to the bubbles of oxygen generated by the electrolysis of water, complete coating is avoided in the initial stage, and a certain degree of film thickness is obtained by the time it becomes an insulating layer. Usually, 100~ for electrodeposition coating
A film thickness of 10 to 20 μm was obtained by applying a voltage of 200 V. However, in the color filter according to the present invention, the colored layer should be thinner, and preferably 2 μm or less. It is necessary to appropriately set the resin concentration, voltage, and solvent composition 1.Also, the resulting polymer film has a low water content due to the effect of electroosmosis, and has a uniform and better adhesion than films made by coating methods. It becomes a membrane.

アニオン電着用の高分子としては、天然乾性油とマレイ
ン酸の付加物、カルボキシル基ヲ導入したアルキド樹脂
、エポキシ樹脂とマレイン酸の付加物、カルボキシル基
を導入したポリブタジェン樹脂、アクリル酸ff、たは
メタクリル酸とそのエステルとの共重合体等が用いられ
、定着皮膜の特性により他の高分子膜たは官能基を持つ
有機化合物を高分子骨格中に導入する場合もある。本発
明のようにカラーフィルターを通した光を見る場合、着
色層に透明性が要求さね、そわ、にはアクリル系もしく
はポリエステル系の高分子が適している。
Polymers for anion electrodeposition include adducts of natural drying oil and maleic acid, alkyd resins with carboxyl groups introduced, adducts of epoxy resins with maleic acid, polybutadiene resins with carboxyl groups, acrylic acid ff, or A copolymer of methacrylic acid and its ester is used, and depending on the properties of the fixing film, another polymer film or an organic compound having a functional group may be introduced into the polymer skeleton. When viewing light through a color filter as in the present invention, transparency is required for the colored layer, and acrylic or polyester polymers are suitable for the material.

−また高分子中のカルボキシル基、水酸基等の親水性官
能基の量は重要であり、親水性基が多すぎると電着層の
不溶化が十分でなく不均一な膜となり、少なすぎると中
和時の水溶性が不充分となる。高 9− 分子の溶媒としては水が主成分であるが、インプロパツ
ール、n−ブザルチルコール、t−7”チルアルコール
、メチルセロソルフ、エチルセロソルブ、イソプロピル
セロソルブ、ブチルセロソルブ。
- Also, the amount of hydrophilic functional groups such as carboxyl groups and hydroxyl groups in the polymer is important; if there are too many hydrophilic groups, the electrodeposition layer will not be sufficiently insolubilized, resulting in an uneven film, and if there is too little, it will be neutralized. water solubility becomes insufficient. Water is the main component of the solvent for high 9-molecules, and examples include inpropatol, n-buzaltylchol, t-7'' ethyl alcohol, methyl cellosolve, ethyl cellosolve, isopropyl cellosolve, and butyl cellosolve.

ジエチレングリコールメチルエーテル、ジエチレンクリ
コールエチルエーテル、ジアセトンアルコール等の鋤水
性溶媒が高分子の重合用溶媒として含まわる。含まれる
親水性溶媒の種類、量はやはり膜厚や電着層の均一性に
太きく影響する。
Aqueous solvents such as diethylene glycol methyl ether, diethylene glycol ethyl ether, and diacetone alcohol are included as solvents for polymerization of polymers. The type and amount of the hydrophilic solvent included greatly influences the film thickness and uniformity of the electrodeposited layer.

着色する方法は、電着塗装では顔料が用いられ、帯電し
た顔料が高分子とともに電気泳動し、膜中に取り込まれ
るが、本発明のように透明性のあるカラーフィルターの
場合は顔料の隠ぺいカは必要なく、また膜厚が薄くなっ
た場合、着色度に欠ける。そこで本発明では、染料を高
分子とともに電着させる方法を考案した。染料を高分子
とともに電着ざぜるには染料分子が帯電し、!気泳動す
ることが必要であるが、水溶性染料の場合、解離した染
料イオンが支持塩を加えた効果をもたらし、電流の増大
、膜厚の増大、膜の不均一化となって−10− 表われる。水に難溶もしくは不溶の染料は、通常水中で
凝集してしまうが、電着高分子は疎水性基と親水性基が
ある一種のセッケンとみなすことができ、有機染料分子
に対しである程度、分散作用を示し、適当な分散媒と組
み合わせる事により微粒子化でき、高分子と一緒に電着
できる事を見い出した。この場合、染料と高分子の電着
速度を同程度にする必要があるが、溶液組成により制御
することが可能である。
The method of coloring is that pigments are used in electrodeposition coating, and the charged pigments are electrophoresed together with polymers and incorporated into the film, but in the case of transparent color filters like the one of the present invention, pigments are hidden. is not necessary, and if the film thickness becomes thin, the degree of coloring will be lacking. Therefore, in the present invention, a method was devised in which a dye is electrodeposited together with a polymer. In order to electrodeposit the dye along with the polymer, the dye molecules are charged and! However, in the case of water-soluble dyes, the dissociated dye ions have the effect of adding a supporting salt, resulting in increased current, increased film thickness, and non-uniformity of the film. appear. Dyes that are sparingly soluble or insoluble in water usually aggregate in water, but electrodeposited polymers can be regarded as a type of soap with hydrophobic and hydrophilic groups, and to some extent, organic dye molecules It was discovered that it exhibits a dispersion effect, and that it can be made into fine particles by combining with a suitable dispersion medium, and that it can be electrodeposited together with polymers. In this case, it is necessary to make the electrodeposition rates of the dye and the polymer comparable, but this can be controlled by the solution composition.

実施例 以下、カラーフィルターを用いた多色表示装置の製造方
法について実施例をもとに12体的に説明する。
EXAMPLES Below, a method for manufacturing a multicolor display device using color filters will be explained in detail based on examples.

(実施例1) 第2図1は、本発明によるカラーフィルターの製造方法
を応用した多色表示装置の応用例である。
(Example 1) FIG. 2 is an application example of a multicolor display device to which the method of manufacturing a color filter according to the present invention is applied.

以下、第2図のような多色表示装置の製造方法について
具体的に述べる。
Hereinafter, a method for manufacturing a multicolor display device as shown in FIG. 2 will be specifically described.

■ パターニング工程 6は透明材料よりなる表示基板で、該表示基板上にスプ
レーコート法により酸化スズ透明導電膜が形成さねる。
(2) In the patterning step 6, a display substrate made of a transparent material is used, and a tin oxide transparent conductive film is formed on the display substrate by a spray coating method.

該透明導電膜全エツチングによりストライブ状にパター
ニングし、表示′1!極7を得る。
The entire transparent conductive film is patterned into stripes by etching, and the display '1! Get pole 7.

■ 電着工程 次に下記組成の塗料(ニスピアFD−3000神東塗別
製) ニスビアED−3[]00 を用い、以下の組成の電着浴を作る。
(2) Electrodeposition process Next, an electrodeposition bath having the following composition is prepared using a paint having the following composition (Nispier FD-3000 manufactured by Shinto Nuribetsu) Nisvia ED-3[]00.

使用する油溶性染料は、親水性溶媒可溶型のものに限定
され、耐光性が非常にすぐれている金属錯塩構造のもの
が望聾しい。例えば次式のような分子構af持つものが
ある。
The oil-soluble dyes to be used are limited to those soluble in hydrophilic solvents, and those having a metal complex salt structure with very good light resistance are preferable. For example, some molecules have a molecular structure af as shown in the following formula.

(製品名ではAizen 5pilon、 01eo8
o11 H3 カラーインデックス番号5o1vent Rea 8・
浴の作成手順はニスビアBD−3DODi水に溶解させ
る。次に染料をメチルセロソルブに溶解させる。このと
き、染料重量比Xはメチルセロソルブに対する染料の溶
解Kk超えない範囲で任意に選ばれる。染料全溶解させ
たメチルセロソルブを前記水溶液に加え、染料を均一に
分散させる。このときメチルセロソルブは分散媒として
働いているが、添加−rhカ多くなったり、セロソルブ
のアルキル基−16− の炭素数が増えると、膜厚の増大、膜の不拘−化金もた
らす。
(The product name is Aizen 5pilon, 01eo8
o11 H3 Color Index Number 5o1vent Rea 8・
The bath preparation procedure is to dissolve Nisbia BD-3DODi in water. The dye is then dissolved in methyl cellosolve. At this time, the dye weight ratio X is arbitrarily selected within a range that does not exceed the solubility Kk of the dye in methyl cellosolve. Methyl cellosolve in which the dye has been completely dissolved is added to the aqueous solution to uniformly disperse the dye. At this time, methyl cellosolve acts as a dispersion medium, but when the amount of rh added increases or the number of carbon atoms in the alkyl group -16- of cellosolve increases, the film thickness increases and the film becomes unbound.

以上のように作製した電着浴中に、表示電極7が形成さ
れた表示基8!6を浸漬する。ストライブ状にパターニ
ングさ力り表示電極7の中で同一色に着色したい電極を
選択し、選択さf″した電極ケ陽喰として10Vの電圧
全3分間印加する。このとき電流は連成直後、大きな電
流が流れるが、しだいに減少し、はとんど0に近づく。
The display base 8!6 on which the display electrode 7 is formed is immersed in the electrodeposition bath prepared as described above. Select the electrodes to be colored in the same color among the strain display electrodes 7 patterned in a stripe shape, and apply a voltage of 10 V for a total of 3 minutes to the selected electrodes f'' for a total of 3 minutes.At this time, the current is applied immediately after coupling. , a large current flows, but it gradually decreases and approaches 0.

通電後、表示基板6を引き上げ充分に水洗し、電圧が印
加されていない部分に付着した浴液を洗い流す。水洗後
、乾燥させると、電圧を印加した電極には透明性のよい
着色層が形成されている。
After energization, the display substrate 6 is pulled up and thoroughly washed with water to wash away the bath liquid adhering to the parts to which no voltage is applied. After washing with water and drying, a highly transparent colored layer is formed on the electrode to which voltage has been applied.

■ 硬化工程 次に、電着により形成した着色層中のポリエステル樹脂
とメラミン樹脂を焼付けにより縮合反応を行なわせ硬化
させる。焼付けは空・気中、175℃で60分行乞えば
、着色層は完全に硬化する。このときの着色層の膜厚は
−14− 1、5 It ?ylであった。
(2) Curing process Next, the polyester resin and melamine resin in the colored layer formed by electrodeposition are baked to undergo a condensation reaction and cured. The colored layer is completely cured by baking at 175°C for 60 minutes in the air. The thickness of the colored layer at this time is -14-1,5 It? It was yl.

硬化した着色層は完全な絶縁層となっており、再び電着
浴中に浸漬2通電しても再電着や二度染めは起らないの
で、二度目以降の着色層の形成については、再び他の同
一色にする表示電極を選択し、異なった色調の染料全分
散させた電着浴中で電着、硬化という工程を盪り逗子こ
とにより実現される。
The cured colored layer is a complete insulating layer, and even if it is immersed in the electrodeposition bath again and energized twice, no redeposition or double dyeing will occur. This is achieved by selecting another display electrode of the same color again and performing the steps of electrodeposition and curing in an electrodeposition bath in which a dye of a different color tone is completely dispersed.

本実施例では、赤、青、緑の順の200μm幅のストラ
イブ状カラーフィルター8を、バターニング工程→赤屯
極の・電着工程→硬化工程→青電極の電着工程→硬化工
程→緑″LI!極の電着工程→硬化工程、という方法で
製造し、非常に簡便に行なわね、た。得られたカラーフ
ィルターは色ずれは見られず、且つ均一で、酸、アルカ
リ、各種有機溶剤。
In this example, striped color filters 8 with a width of 200 μm in the order of red, blue, and green are formed in a buttering process → red electrode electrodeposition process → curing process → blue electrode electrodeposition process → curing process → It is manufactured using the electrodeposition process of the green "LI!" electrode followed by the curing process, and is extremely simple to perform.The resulting color filter shows no color shift, is uniform, and is resistant to acids, alkalis, and various other substances. Organic solvent.

熱水等に犯されにぐい性質?有していた。また、使用し
た金属錯塩染料は、着色層中で極めて安定で、カーボン
アーク試験360時間を経た後も初期光吸収率の95係
以上の値を示し、すぐれた耐光性を有していた。
Is it resistant to being exposed to hot water, etc.? had. Further, the metal complex dye used was extremely stable in the colored layer, and even after 360 hours of the carbon arc test, it exhibited a value of 95 or more of the initial light absorption coefficient, and had excellent light resistance.

このような方法でカラーフィルター8に表示電極Z上に
形成さ力1、表示基板6は透明な対向電極9がストライ
プ状に形成さノ″lた透明な対向基板10とスペーサー
11を介して表示電極7と対向′電極9のストライブが
直角に7叉するように一体化され、セルを(拷成する。
In this way, a force 1 is formed on the color filter 8 on the display electrode Z, and a transparent counter electrode 9 is formed on the display substrate 6 in the form of a stripe. The stripes of the electrode 7 and the opposite electrode 9 are integrated so as to cross at right angles to form a cell.

該セル中に、表示材料12とL7てTN−F’EM;液
晶を充填し、多色液晶表示装置を作製した。この場合、
表示′i1¥極7と対向電極9の間に電圧を印加し、セ
ル全透過軸が平行な偏光子と検光子で挾み、表示基鈑6
もしくは対向基;filoの方向から見ると透明性のあ
るカラーフィルター8の色が表示され、電圧印加を打ち
切ると黒色になる。対向基f!10の方向力)ら光合照
射すると、セルの透明性が良いたぬ、カラーフィルター
8の色がより効果的に表示される。このように本実砲例
の多色表示装置の等漬方法は、簡便な製造方法にもかか
わらず、表示品位を損う事なく、微細なパターンのカラ
ーフィルターが得らノ1、シかも信頼件の高いマトリク
ス駆動のカラーグラフィック表示Hft k提供するの
に適したものであることが明らかになった。
The display material 12 and L7 were filled with TN-F'EM; liquid crystal to produce a multicolor liquid crystal display device. in this case,
A voltage is applied between the display 'i1\ electrode 7 and the counter electrode 9, and the display board 6 is sandwiched between a polarizer and an analyzer whose total cell transmission axes are parallel.
Alternatively, when viewed from the direction of the opposing group filo, the color of the transparent color filter 8 is displayed, and when the voltage application is stopped, the color becomes black. Opposite group f! When combined light is irradiated from a directional force of 10), the transparency of the cell is good, and the color of the color filter 8 is displayed more effectively. In this way, although the method of dipping the multicolor display device in this example is a simple manufacturing method, it is possible to obtain a color filter with a fine pattern without impairing the display quality, and it is reliable. It has been found that the present invention is suitable for providing matrix-driven color graphic displays of high quality.

(実施例2) 実施例1における表示材料12を、黒の二色性色素を用
いたネガタイプゲストホス)i晶、fi示基板6を白色
材料(白色セラミック)として、以下、実施例1と同様
に多色液晶表示装置全作成した。この場合、表示電極7
と対向゛電極9の間に電圧を印加し、偏向板を介し透明
な対向基板10の方向から見ると、カラーフィルター8
の色カ明るく表示され、電圧印加を打ち切ると液晶中の
二色性色素の色である黒となる。本実施例においても、
実姉例1と同様の効果が得られた。
(Example 2) The following procedure was the same as in Example 1, except that the display material 12 in Example 1 was a negative type guest phosphor using a black dichroic dye, and the FI display substrate 6 was a white material (white ceramic). A complete multicolor liquid crystal display device was created. In this case, the display electrode 7
A voltage is applied between the opposite electrode 9 and the color filter 8 when viewed from the direction of the transparent opposite substrate 10 through the polarizing plate.
The color is displayed brightly, and when the voltage application is stopped, the color changes to black, which is the color of the dichroic pigment in the liquid crystal. Also in this example,
The same effect as in sister example 1 was obtained.

実施例 実施例1における表示材料12iDSM液晶とし、表示
基板6中にマスク蒸着法によりアルミニウムをパターニ
ングして表示電極7とした。そして実施例1と同様に多
色液晶表示装置を作成した。この場合、表示電極7と対
向電極9の間に電圧全印加し、透明な対向基8!1oの
方向から見ると、DSM液晶が光散乱状態となり、乳白
色の中= 17− にカラーフィルター8の色が表示される。電圧印加を打
ち切ると、光散乱状態が消滅するため、暗色状態となる
。なおりEIM液晶の光散乱状態を効率良く発生させる
には、ある程IWのイオン電流を流す必要があり、カラ
ーフィルター8の高抵抗性(はその妨げとがる。そのた
めカラーフィルター8上にパターンを表示室$7と一致
させた秀明電極ケ設け、該透明′電極を′aイ圧印加用
′ボ、極とすることにより1、駆動電圧全低減でき、実
施例1と同様の効果が得られた。
EXAMPLE The display material 12 in Example 1 was a DSM liquid crystal, and aluminum was patterned into the display substrate 6 by mask evaporation to form the display electrodes 7. A multicolor liquid crystal display device was then produced in the same manner as in Example 1. In this case, a full voltage is applied between the display electrode 7 and the counter electrode 9, and when viewed from the direction of the transparent counter group 8!1o, the DSM liquid crystal becomes a light scattering state, and the color filter 8 appears in the milky white inside = 17-. Color is displayed. When the voltage application is stopped, the light scattering state disappears, resulting in a dark state. In order to efficiently generate the light scattering state of the EIM liquid crystal, it is necessary to flow an IW ion current to a certain extent, and the high resistance of the color filter 8 (the high resistance of the color filter 8 prevents this. Therefore, a pattern is formed on the color filter 8. By providing a Hideaki electrode that coincides with the display chamber $7 and using the transparent electrode as the pole for applying pressure, the driving voltage can be completely reduced, and the same effect as in Example 1 can be obtained. It was done.

(実施例4) 実姉例1における電着浴を下5e組成の塗料(パワーマ
イト 6000−10  日本ペイント製) パワーマイト 3000−10 を用い、以下の組成の電1着浴を作る。
(Example 4) Using the electrodeposition bath in Example 1 below, an electrodeposition bath having the following composition was prepared using Powermite 3000-10, a paint with a composition of 5e (Powermite 6000-10 manufactured by Nippon Paint).

−18− 使甲する分散染料は、通常、市販品に1・まアニオン系
の分散剤か含−1ねでいる場合が多(、この分散剤が浴
中でイオンとなり、電流値を増大させる原因となるため
、分散剤の含まれていないものが望ましい。浴の調整法
は、分散染料をx (1,5の範囲でエチレングリコー
ルに均一に分散させ、パワーマイ)3000−10i水
に溶解させた溶液に添加する。
-18- Commercially available disperse dyes often contain anionic dispersants or anionic dispersants (this dispersant turns into ions in the bath and increases the current value). It is preferable to use a bath that does not contain a dispersant, as this can cause dispersion.The method for preparing the bath is to dissolve the disperse dye in x (uniformly dispersed in ethylene glycol in the range of 1.5, Power My) 3000-10i water. Add to the solution.

以下、実施例1と同様に、多色液晶表示装置を作成した
ところ、実施例1と同様の効果が得られた。しかし、カ
ラーフィルターの耐光性は、金属錯塩型油溶染料のよう
にすぐf″Lだ特性を持つものは限られた染料であるこ
とが明らかにかつた。
Hereinafter, a multicolor liquid crystal display device was produced in the same manner as in Example 1, and the same effects as in Example 1 were obtained. However, it has become clear that only a limited number of dyes, such as metal complex type oil-soluble dyes, have the property of quickly f''L when it comes to the light resistance of color filters.

実施例 実施例1における電着浴を下記の組成にした。Example The electrodeposition bath in Example 1 had the following composition.

この場合の浴の調整法は、ニスビアED−3000に油
浴染料をx(1,0の範囲で添加し、混練、超音波等の
方法で均一に分散させる。その後、水を添加し、電着浴
とした。以下、実施例1と同様に多色表示装置を作成し
たところ、実帳例1と同様の効果が得らf′Lだ。この
場合、電着浴中の高分子濃度が高いため、着色層は2.
0μmの厚さどあった。本実施例に使用する油浴染料(
は、親水性溶媒可溶な染料にldl限定す′f1ないが
、耐光性にすぐれたものが望ましいことは言うまでもな
い。
The method for adjusting the bath in this case is to add an oil bath dye to Nisbia ED-3000 in the range of x (1, 0) and disperse it uniformly by kneading, ultrasonication, etc. Then, add water and Hereinafter, a multicolor display device was created in the same manner as in Example 1, and the same effect as in Actual Example 1 was obtained (f'L).In this case, the polymer concentration in the electrodeposition bath Because it is expensive, the colored layer is 2.
The thickness was 0 μm. Oil bath dye used in this example (
is not limited to dyes that are soluble in hydrophilic solvents, but it goes without saying that dyes with excellent light resistance are desirable.

発明の効果 以上、実殉例で具体的に述べたように、本発明による多
色表示装置の製造方法は簡便であり、多色化のための色
を分離させるための防染等の特別な手段を用いずにカラ
ーフィルターを製造することができる。また、そのカラ
ーフィルターは堅牢で、パターンずれのないものであり
、液晶等の表示材料と組み合わせても、高い表示品位と
信頼性を実現できるものである。
In addition to the effects of the invention, as specifically described in the actual examples, the method for manufacturing a multicolor display device according to the present invention is simple and requires special methods such as resist dyeing to separate the colors for multicolorization. Color filters can be manufactured without using any means. Furthermore, the color filter is robust and free of pattern shift, and can achieve high display quality and reliability even when combined with display materials such as liquid crystal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はカラーフィルターを応用した多色表示装置の一
例。第2図は本発明の製造方法による多色表示装置の一
例。 1.6・・・・・・表示基鈑 2.7・・・・・・表示電極 3.8・・・・・・カラーフィルター 4.9・・・・・・対向電極 5.10・・・・・・対向基板 12 ・・・・・・表示材料 以上 出願人 株式会社 第二精工舎 第1図 第2図
Figure 1 is an example of a multicolor display device that uses color filters. FIG. 2 is an example of a multicolor display device manufactured by the manufacturing method of the present invention. 1.6... Display board 2.7... Display electrode 3.8... Color filter 4.9... Counter electrode 5.10... ...Counter substrate 12 ...Display material Applicant Daini Seikosha Co., Ltd. Figure 1 Figure 2

Claims (5)

【特許請求の範囲】[Claims] (1)カラーフィルターを応用した多色表示装置におい
て、前記カラーフィルターを、基板上に互に絶縁さ第1
て配置された複数の導電層全形成し、次に、そわらの導
電層上に、電着性高分子と水に耐湿もしくは不溶の染料
を分散させた浴液がら、電着fより選択的に着色層を形
成し、以後その操作を異なる色の染料で繰り返すことに
よって製造することを特徴とする多色表示装置の製造方
法。
(1) In a multi-color display device using color filters, the color filters are placed on a substrate with first
Then, on the conductive layer of soft straw, a bath solution containing an electrodepositable polymer and a moisture-resistant or water-insoluble dye is selectively applied to the electrodeposited layer. 1. A method for manufacturing a multicolor display device, comprising forming a colored layer and repeating the operation using dyes of different colors.
(2)前記の基板上に互Vこ絶綻・されて配置さ;hた
複数の導藏層は、酸化スズ、酸化インジウム、または、
酸化アンチモンを主成分とする透明導電層であり、それ
らの透明導電層十に選択的に電着された高分子層に基づ
く噺色層の形成は、基本的に、アニオン電活性高分子を
含む浴液中から陽樹電解によってa解析出させた高分子
層に基づく着色層の形成であることを特徴とする特許請
求の範囲第1項記載の多色表示装置の製造方法。
(2) A plurality of conductive layers are disposed on the substrate in a mutually discontinuous manner;
It is a transparent conductive layer mainly composed of antimony oxide, and the formation of a yellowish layer based on a polymer layer selectively electrodeposited on the transparent conductive layer basically includes an anionic electroactive polymer. 2. The method of manufacturing a multicolor display device according to claim 1, wherein the colored layer is formed based on a polymer layer that is a-deposited from a bath solution by electrolysis.
(3)前記アニオン電着性高分子は、カルボキシル基を
有するアクリル〜τ1指、もしくけカルボキシル基を有
するポリエステル樹脂をアルカリで中和し水溶性にした
もの、捷たはそれらに水溶性メラミン樹脂を混合し1女
ものであること全特徴とする特許請求の範囲第2項紀載
の多色表示装置の製造方法。
(3) The anionic electrodepositable polymer may be acrylic to τ1 resin having a carboxyl group, a polyester resin having a carboxyl group neutralized with an alkali to make it water-soluble, or a water-soluble melamine resin added to them. 2. A method for manufacturing a multicolor display device as claimed in claim 2, characterized in that the multicolor display device is made of a single color.
(4)前記水にr$:夢もしくは不溶の染料が分散染料
または油溶性染料であること全特徴とする特許請求の範
囲第1項記載の多色表示装置の製造方法。
(4) The method for manufacturing a multicolor display device according to claim 1, wherein the water-insoluble dye is a disperse dye or an oil-soluble dye.
(5)前記油溶性染料が金属錯塩構造をとり、親水性溶
媒に可溶なものであることを特徴とする特許請求の範囲
第4項記載の多色表示装置の製造方法。
(5) The method for manufacturing a multicolor display device according to claim 4, wherein the oil-soluble dye has a metal complex salt structure and is soluble in a hydrophilic solvent.
JP58064117A 1982-12-22 1983-04-12 Production of multicolor display device Granted JPS59189318A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58064117A JPS59189318A (en) 1983-04-12 1983-04-12 Production of multicolor display device
US06/563,947 US4522691A (en) 1982-12-22 1983-12-21 Method for manufacturing a multicolor filter and a multicolor display device
EP19830307818 EP0113237B1 (en) 1982-12-22 1983-12-21 Method for manufacturing a multicolour filter and a multicolour display device
DE8383307818T DE3374726D1 (en) 1982-12-22 1983-12-21 Method for manufacturing a multicolour filter and a multicolour display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58064117A JPS59189318A (en) 1983-04-12 1983-04-12 Production of multicolor display device

Publications (2)

Publication Number Publication Date
JPS59189318A true JPS59189318A (en) 1984-10-26
JPH0345803B2 JPH0345803B2 (en) 1991-07-12

Family

ID=13248798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58064117A Granted JPS59189318A (en) 1982-12-22 1983-04-12 Production of multicolor display device

Country Status (1)

Country Link
JP (1) JPS59189318A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023834A (en) * 1983-07-19 1985-02-06 Seiko Instr & Electronics Ltd Production of matrix type multicolor display device
JPH02198419A (en) * 1989-01-27 1990-08-06 Seiko Instr Inc Production of multicolor display device
US5345191A (en) * 1992-07-31 1994-09-06 Leader Electronics Corp. Broad-band amplifier
US7980000B2 (en) * 2006-12-29 2011-07-19 Applied Materials, Inc. Vapor dryer having hydrophilic end effector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817405A (en) * 1981-07-23 1983-02-01 Fuji Photo Film Co Ltd Multicolored optical filter and its manufacture
JPS5817404A (en) * 1981-07-23 1983-02-01 Fuji Photo Film Co Ltd Multicolored optical filter and its manufacture
JPH0259446A (en) * 1988-08-26 1990-02-28 Hitachi Chem Co Ltd Production of silica glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817405A (en) * 1981-07-23 1983-02-01 Fuji Photo Film Co Ltd Multicolored optical filter and its manufacture
JPS5817404A (en) * 1981-07-23 1983-02-01 Fuji Photo Film Co Ltd Multicolored optical filter and its manufacture
JPH0259446A (en) * 1988-08-26 1990-02-28 Hitachi Chem Co Ltd Production of silica glass

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023834A (en) * 1983-07-19 1985-02-06 Seiko Instr & Electronics Ltd Production of matrix type multicolor display device
JPH0345804B2 (en) * 1983-07-19 1991-07-12 Seiko Instr & Electronics
JPH02198419A (en) * 1989-01-27 1990-08-06 Seiko Instr Inc Production of multicolor display device
US5345191A (en) * 1992-07-31 1994-09-06 Leader Electronics Corp. Broad-band amplifier
US7980000B2 (en) * 2006-12-29 2011-07-19 Applied Materials, Inc. Vapor dryer having hydrophilic end effector
US8205352B2 (en) 2006-12-29 2012-06-26 Applied Materials, Inc. Vapor dryer having hydrophilic end effector

Also Published As

Publication number Publication date
JPH0345803B2 (en) 1991-07-12

Similar Documents

Publication Publication Date Title
JPH0335648B2 (en)
EP0113237B1 (en) Method for manufacturing a multicolour filter and a multicolour display device
JPS6033506A (en) Manufacture of color solid-state image pickup element
JPS60179703A (en) Manufacture of multicolored display device
JPH0476062A (en) Resin composition for colored thin film
US4999094A (en) Method for manufacturing a color member
JPH0259966B2 (en)
JPH0259446B2 (en)
JPH03606B2 (en)
JPS59189318A (en) Production of multicolor display device
US4781444A (en) Color member having electrodeposited color layer composed of polymer and coloring matter bonded to polymer and method for manufacturing same
JPH0345804B2 (en)
JPH042161B2 (en)
JPH0260164B2 (en)
JPS61210330A (en) Production of polychromatic display device
JPS6023805A (en) Preparation of colored layer
JPS6023806A (en) Preparation of multicolor polarizing plate
JPS6023803A (en) Preparation of color filter
JPH0464875B2 (en)
JPS6023804A (en) Preparation of color filter
JPS60184841A (en) Manufacture of multi-color surface colored body
JPS61209272A (en) Highly dielectric high polymer electrodeposition composition
JPS60186803A (en) Multi-color display device and its production
JPS60184201A (en) Production of multi-color display device
JPS60184837A (en) Manufacture of multi-color surface colored body having conductivity