JPS59189306A - Focusing mechanism - Google Patents

Focusing mechanism

Info

Publication number
JPS59189306A
JPS59189306A JP6359783A JP6359783A JPS59189306A JP S59189306 A JPS59189306 A JP S59189306A JP 6359783 A JP6359783 A JP 6359783A JP 6359783 A JP6359783 A JP 6359783A JP S59189306 A JPS59189306 A JP S59189306A
Authority
JP
Japan
Prior art keywords
lens
focusing
optical
parallel
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6359783A
Other languages
Japanese (ja)
Inventor
Masamichi Ito
正道 伊藤
Koji Ichikawa
市川 厚司
Toru Hayayama
早山 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6359783A priority Critical patent/JPS59189306A/en
Publication of JPS59189306A publication Critical patent/JPS59189306A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To enable easy focusing without driving a large objective lens by constituting a titled mechanism of the objective lens, parallel lens and focusing lens and driving the focusing lens in the optical axis direction. CONSTITUTION:The laser beam past an objective lens 9 is focused on the plane of an optical tape 10 and the laser beam reflected therefrom returns in the same route. When the tape 10 fluctuates, a focusing lens 5 is moved in the same direction where the tape 10 fluctuates, thereby focusing the beam on the plane of the tape 10. The relation between the displacement Z of the tape 10 and the displacement x of the focusing lens is made equal and the focusing is accomplished by moving the displacement x by as much as the displacement Z at which the tape 10 moves. The focal depth of the objective lens is + or -3.5mum, which indicates that a + or -3.5mum error is permitted in moving the lens 5.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は焦点合わせ機構に係り、特に焦点合わせをする
のに対物レンズを大きく駆動させるのが困難な場合に好
適な、対物レンズ以外のレンズを駆動して焦点合わせを
する、焦点合わせ機構に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a focusing mechanism, and particularly relates to a focusing mechanism that uses a lens other than an objective lens, which is suitable when it is difficult to drive the objective lens greatly for focusing. It relates to a focusing mechanism that is driven and focused.

〔発明の背景〕[Background of the invention]

近年新たなディジタルメモリとして尤メモリが注目され
ている。光メモリの特徴としてコスト安。
In recent years, digital memory has been attracting attention as a new type of digital memory. One of the characteristics of optical memory is its low cost.

大容昔、非接触での記録・再生、保存寿命が半永久的な
どが上げられる。例λは光メモリの具体例として光テー
プ装置が考えられる。光テープ装置とは第1(ヅ1に示
す光記録材料をテープ状のものに蒸着した光チー110
面一上にレーザ光線を用いて情報を穴として配録し、レ
ーザ光線を用いて穴があるか否かを検11」シて記録し
た情報を再生する装置である。光テープ装置を実現上せ
る光学機構は光テープ10面上に焦点を合わせる焦点合
わせ機構と光スポットを光テープ10面上に移動させる
走査機構が必要である。光テープ10面上に光スポット
を移動させる方向には第1図に示すトラッキング方向D
!と走査方向D2がある。!特に走査機構では光テープ
10の幅程度走査方向に走査する必要がある。
In the past, contactless recording and playback, semi-permanent storage life, etc. were mentioned. For example λ, an optical tape device can be considered as a specific example of an optical memory. The optical tape device is an optical tape device 110 in which the optical recording material shown in (1) is deposited on a tape-like material.
This is a device that uses a laser beam to record information as holes on the same surface, detects whether there are holes using the laser beam, and reproduces the recorded information. An optical mechanism for realizing an optical tape device requires a focusing mechanism for focusing on the optical tape 10 surface and a scanning mechanism for moving a light spot onto the optical tape 10 surface. The direction in which the light spot is moved on the optical tape 10 is the tracking direction D shown in FIG.
! and a scanning direction D2. ! In particular, the scanning mechanism needs to scan in the scanning direction about the width of the optical tape 10.

光スポットを大きく走査させる装置の例としてレーザプ
リンタがあり、光記録材料に情報を記録・再生する装置
の例として光デイスク装置がある。
A laser printer is an example of a device that scans a light spot over a large distance, and an optical disk device is an example of a device that records and reproduces information on an optical recording material.

第2図がレーザプリンタの説明図である。レーザプリン
タはポリゴンミラー19でレーザ光線を反射させてダブ
レットスフエリカルレンズ18に通過させることで光ス
ポットを感光紙面上に走査する。レーザプリンタは走査
距離を長くするために焦点距離を非常に長くしである。
FIG. 2 is an explanatory diagram of the laser printer. A laser printer scans a light spot on a photosensitive paper by reflecting a laser beam by a polygon mirror 19 and passing it through a doublet spherical lens 18. Laser printers have very long focal lengths to increase scanning distance.

そのため、ダブレットスフエリカルレンズ18の直径が
焦点距離に比べて非常に矩いため反射光が戻らない。反
射光を利用して記録した情報を再生する光テープ装置に
はこの光学機構は適用出来ないととがわかる。
Therefore, since the diameter of the doublet spherical lens 18 is very rectangular compared to the focal length, the reflected light does not return. It can be seen that this optical mechanism cannot be applied to an optical tape device that reproduces recorded information using reflected light.

光デイスク装置は光テープ装置と同様にレーザ光線を用
いて情報の記録と再生をする装置である。
An optical disk device, like an optical tape device, is a device that records and reproduces information using a laser beam.

第3図が光デイスク装置Nの原理図である。レーザ光線
をガルバノミラ−14で反射させて対物レンズ16に入
射させ、光デイスク15面上に光スポットを移動させる
。ガルバノミラ−14をθ/2傾けると光スポットがα
tanθ程度移動する。光デイスク15面上に焦点を合
わすために対物レンズ16を光ディスク15の面の法線
方向に移動する。
FIG. 3 is a diagram showing the principle of the optical disk device N. The laser beam is reflected by the galvanometer mirror 14 and is made incident on the objective lens 16 to move the light spot onto the surface of the optical disk 15. When the galvano mirror 14 is tilted by θ/2, the light spot changes to α
It moves by about tanθ. In order to focus on the surface of the optical disk 15, the objective lens 16 is moved in the direction normal to the surface of the optical disk 15.

光デイスク装置の光スポットの移動距離tけ数百μm程
度である。光テープ装置の走査距離tけ少なくとも数■
程度は必要であるからこの!、!f、の光デイスク装置
の光学機構では利用できない。光スポットの移動距離t
を長く取れない理由は光デイスク装置の対物レンズ16
の画角が狭いためである。解像度を光デイスク装置の対
物レンズ16と同様に保ち、両角を広くするとレンズの
大きさが大きくなる。大きなレンズを動かして光テープ
10面上に焦点をμmオーダで合わす機構は困難である
The moving distance t of the light spot of the optical disk device is approximately several hundred μm. The scanning distance of the optical tape device is at least several ■
This degree is necessary! ,! It cannot be used with the optical mechanism of the optical disk device f. Travel distance t of light spot
The reason why it cannot be obtained for a long time is because of the objective lens 16 of the optical disk device.
This is because the angle of view is narrow. If the resolution is kept the same as that of the objective lens 16 of the optical disk device and both corners are widened, the size of the lens becomes larger. A mechanism for moving a large lens to focus on the surface of the optical tape 10 on the μm order is difficult.

以上、光メモリの光学系としては、レーザプリンタの光
学系では反射光が戻らないので適用できず、光デイスク
装置の光学系では光スポットの移動距離を大きく出来な
いので適用できない。
As described above, the optical system of a laser printer cannot be used as an optical system for an optical memory because the reflected light does not return, and the optical system of an optical disk device cannot be used because the distance traveled by the light spot cannot be increased.

〔発明の目的〕[Purpose of the invention]

本発明の目的は対物レンズの駆動が困難な場合に対物レ
ンズ以外の焦点合わせレンズを駆動して焦点を合わせる
ことが出来る焦点合わせ機構を提供することにある。
An object of the present invention is to provide a focusing mechanism that can focus by driving a focusing lens other than the objective lens when it is difficult to drive the objective lens.

〔発明の概要〕[Summary of the invention]

大きな対物レンズを駆動して焦点合わせをすることは困
難であるから別の小さな焦点合わせレンズを駆動して容
易に焦点合わせが出来るようにする。第4図が本発明の
焦点合わせ機構の構成図である。
Since it is difficult to focus by driving a large objective lens, another small focusing lens is driven to facilitate focusing. FIG. 4 is a block diagram of the focusing mechanism of the present invention.

本発明はトラッキング方向に光スポットを移動させる偏
向のための光学部材20と焦点を合わせるためのレンズ
5と光を拡大してレンズ9にほぼ平行光を入射するため
のレンズ7と走査方向に光スポットを走査する偏向のた
めの光学部材21と焦点を合わすレンズ9からなる。
The present invention includes an optical member 20 for deflection that moves a light spot in the tracking direction, a lens 5 for focusing, a lens 7 for enlarging the light and making it almost parallel to the lens 9, and a light beam in the scanning direction. It consists of an optical member 21 for deflection to scan the spot and a lens 9 for focusing.

レンズ5とレンズ7とレンズ9けそれぞれ焦点合わせレ
ンズ5と平行レンズ7と対物レンズ9と呼ぶことにし、
それぞれの焦点距離はそれぞれf5 +  f7 + 
 f9 とする。光源側からの光はほぼ平行光で入射す
るものとするがここでは説明を簡単にするため平行光で
光が入射することにする。
Lens 5, lens 7, and lens 9 will be referred to as focusing lens 5, parallel lens 7, and objective lens 9, respectively.
The focal length of each is f5 + f7 +
Let it be f9. It is assumed that the light from the light source side enters as almost parallel light, but here, to simplify the explanation, it will be assumed that the light enters as parallel light.

また2つの光軸を偏向する光学部材20.21は本発明
の説明で省略しても問題がないので省略する。光軸を偏
向する光学部材を省略した本発明における動作原理図を
第5図に示す。
Furthermore, the optical members 20 and 21 that deflect the two optical axes can be omitted in the description of the present invention without causing any problems, so they will be omitted. FIG. 5 shows a diagram of the principle of operation of the present invention in which the optical member for deflecting the optical axis is omitted.

距離すは光テープ10と対物レンズ9の距離yが焦点距
離f9になるように設定される。入射光が平行光の場合
、距離すは焦点距離f5とf7の和になる。ただし焦点
合わせレンズ5け必要に応じて駆動出来るようにする。
The distance is set so that the distance y between the optical tape 10 and the objective lens 9 becomes the focal length f9. When the incident light is parallel light, the distance is the sum of the focal lengths f5 and f7. However, the five focusing lenses can be driven as necessary.

光軸間距離Cは後で説明する。対物レンズ9が焦点距離
f9で焦点を合わせる理由は入射光が平行光の状態を基
準として設計されたレンズと考えるためである。第5図
の矢印方向を焦点方向の正方向として距離yがf9とな
る状態を基準として光学系を設計しである場合について
以下説明する。
The distance C between optical axes will be explained later. The reason why the objective lens 9 focuses at the focal length f9 is that the lens is designed based on the condition that the incident light is parallel light. A case in which the optical system is designed based on a state in which the distance y is f9 with the arrow direction in FIG. 5 as the positive focal direction will be described below.

光テープ10の位置が基準状態から変動してない場合、
焦点合わせレンズ5に平行光で入射して来た光は平行レ
ンズ7によって拡大された平行光になる。拡大した平行
光にする理由は対物レンズ9の実効的なNA(開口数)
を確保するためである。拡大された平行光は対物レンズ
9に入射されて光が光テープ10面上に焦点を合わす。
If the position of the optical tape 10 does not change from the reference state,
The light that has entered the focusing lens 5 as parallel light is expanded by the parallel lens 7 and becomes parallel light. The reason for the expanded parallel light is the effective NA (numerical aperture) of the objective lens 9.
This is to ensure that The expanded parallel light is incident on the objective lens 9 and focused on the optical tape 10 surface.

光テープIOKよって反射された光は同じ経路を戻る。The light reflected by the optical tape IOK returns along the same path.

光テープ10の位置が基準状態から変位Z変動している
場合焦点合わせレンズ5を変位X動かし光テープ10面
上に焦点を合わす。第5図から次の関係式が成立する。
If the position of the optical tape 10 has changed by a displacement Z from the reference state, the focusing lens 5 is moved by a displacement X to focus on the surface of the optical tape 10. From FIG. 5, the following relational expression is established.

1/(f9+Z)+1/a=1/f9   ・−−・・
(1)−1/(a−C)+1/(f7−X)=1/f7
・・・・・・・・・・・・(2) X<f7        ・・・・・・・・・・・川・
・・・・・・(3)Z < f s         
 ・・・・・・・・・・・・・・・・・・・・・(4)
(1)式と(2)式からXについて解くとx =f”l
 ・Z/((f7+f9−C) −z+f: ) −(
5)となる。距離Cがf7とf9の和の場合(5)式は
X= (f7/f9)2・Z    ・・・・・・・・
・・・・(6)となる。(3)式と(6)式から Z〈(f9/f7)・f9    ・・・・・・・・・
・・・川(7)となる。光軸間距離をf7とf9の和と
した場合XとZの関係は正比例する。感度けf7とf9
の比の二乗とすることが出来る。f7(fgのとき(4
)式を満たすよりなf7とf9を選択しf7≧f9のと
き(7)式を満たすようなf7とf9を選するととて感
度を変えることが出来る。
1/(f9+Z)+1/a=1/f9 ・---・
(1)-1/(a-C)+1/(f7-X)=1/f7
・・・・・・・・・・・・(2) X<f7 ・・・・・・・・・・・・River・
・・・・・・(3) Z < f s
・・・・・・・・・・・・・・・・・・・・・(4)
Solving for X from equations (1) and (2), x = f”l
・Z/((f7+f9-C) -z+f: ) -(
5). If the distance C is the sum of f7 and f9, equation (5) is X = (f7/f9)2・Z...
...(6). From equations (3) and (6), Z〈(f9/f7)・f9...
...becomes a river (7). When the distance between optical axes is the sum of f7 and f9, the relationship between X and Z is directly proportional. Sensitivity f7 and f9
It can be the square of the ratio of f7 (when fg (4
), and when f7≧f9, the sensitivity can be changed by selecting f7 and f9 that satisfy the equation (7).

光軸間距離Cがf7とf9の和と異なる場合(5)式は x=f子/(fy+fe  C) 十fLf:/II−((h+fs  CLZ+f:)・
(fy+fe−C))        ・・・・・・・
・・(8)となる。光軸間距離Cがf7とf9の和と異
なる場合XとZの関係は非線形となる。
When the distance C between optical axes is different from the sum of f7 and f9, equation (5) is x=f/(fy+fe C) 10fLf:/II-((h+fs CLZ+f:)・
(fy+fe-C)) ・・・・・・・・・
...(8). When the distance C between optical axes is different from the sum of f7 and f9, the relationship between X and Z becomes nonlinear.

第6図に示す本発明における動作原理図では焦(9) 点合わせレンズ5′の焦点距離が負となるレンズを用い
た場合である。この焦点合せレンズ5′の焦点距離をf
5として第5図に示した原理から式を立てる。第6図に
おいては、第5図のα)式、(2)式。
The principle of operation of the present invention shown in FIG. 6 shows a case where a focal length (9) of the focusing lens 5' is negative. The focal length of this focusing lens 5' is f
5, an equation is established based on the principle shown in FIG. In FIG. 6, equation α) and equation (2) in FIG.

(4)式と等しくなシ、(3)式が異なる。(3)式に
対応する式は f7)x−f5       ・・・・・・・・・・・
・(9)となる。光軸間距離Cがf7とf9の和とした
場合(6)式と(9)式から Z< (fs/h)”・(fy+fs)    ・・・
・・・・・・αOとなる。光軸間距離Cをf7とf9の
和とした場合Xl!:Zの関係は正比例する。感度ばf
7とf9の比の二乗とすることができる。(4)式と0
0式の両式を満たすようなf5とf7とf9を選択する
ことで感度を変えることが出来る。
Equation (4) is the same as Equation (3), but Equation (3) is different. The formula corresponding to formula (3) is f7)x−f5 ・・・・・・・・・・・・
・It becomes (9). When the distance C between optical axes is the sum of f7 and f9, from equations (6) and (9), Z<(fs/h)"・(fy+fs)...
・・・・・・αO. If the distance between optical axes C is the sum of f7 and f9, then Xl! :The relationship between Z is directly proportional. Sensitivity f
It can be the square of the ratio of 7 and f9. (4) Formula and 0
Sensitivity can be changed by selecting f5, f7, and f9 that satisfy both equations.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の焦点合わせ機構の具体的実施例を第7図
及び第8図を用いて説明する。第7図は正面から見た図
であり、第8図は側面から見た図である。光テープ10
の幅を8m+、光軸を偏向す(10) る光学部品としてガルバノミラ−を用いた光テープ装置
を示す。
Next, a specific embodiment of the focusing mechanism of the present invention will be described using FIGS. 7 and 8. FIG. 7 is a front view, and FIG. 8 is a side view. optical tape 10
The optical tape device has a width of 8 m+ and uses a galvanometer mirror as an optical component to deflect the optical axis (10).

レーザ1からレーザ光線が発生してコリメートレンズ2
に入射される。コリメートレンズ2で平行光となったレ
ーザ光線はビームスプリッタ3に入射される。ビームス
プリッタ3を通過したレーザ光線はλ/4板4に入射さ
れ直線偏光から楕円偏光に変換される。λ/4板4に反
射光がもどって来ると反射光は楕円偏光から直線偏光に
なる。
A laser beam is generated from laser 1 and collimated lens 2
is incident on the The laser beam, which has been made into parallel light by the collimating lens 2, is incident on the beam splitter 3. The laser beam that has passed through the beam splitter 3 is incident on a λ/4 plate 4, where the linearly polarized light is converted into elliptically polarized light. When the reflected light returns to the λ/4 plate 4, the reflected light changes from elliptically polarized light to linearly polarized light.

入射されたレーザ光線はP波であり反射されたレーザ光
線はS波である。S波とP波を分離する性質のあるビー
ムスプリッタ3で反射光は入射光と分離され、光デイテ
クタエ3により検出される。
The incident laser beam is a P wave, and the reflected laser beam is an S wave. The reflected light is separated from the incident light by a beam splitter 3 which has the property of separating S waves and P waves, and is detected by an optical detector 3.

これ寸での光学機構は光デイスク装置と同じである。λ
/4板を通過した平行光は第1図のトラッキング方向に
移動するガルバノミラ−6に入射される。入射された平
行光は4笥φとする。レーザ光線を4Wφとするのは光
学素子を小さくしコストを下げるため及び位置制御を容
易にするためである。4祁φのレーザ光線が入射される
のでガル(11) バノミラ−6は各辺が8W+と6ttvnの長方形のミ
ラーとする。平行光であるレーザ光線はガルバノミラ−
6によって反射され、平行光のまま焦点合わせレンズ5
に入射される。ガルバノミラ−6によって第1図のトラ
ッキング方向に光スポットを50μm程度移動出来れば
よいので焦点合わせレンズ5は光デイスク装置の対物レ
ンズ相当のものとし、焦点距離が8謔、NA(開口数)
が0.45、重さが1g程度、直径が8聰φ、長さが1
0+o+の凸レンズとする。焦点合わせレンズ5を通過
したレーザ光線は平行レンズ7に入射される。平行レン
ズ7と焦点合わせレンズ5け光テープ10の位置が対物
レンズ9の焦点位置にある場合を基準として平行レンズ
7と焦点合わせレンズ5の焦点距離の和程度に設定する
。焦点合わせレンズ5は必要に応じて光軸方向に駆動出
来き距離すを変えられる。平行レンズ7は対物レンズ9
と同じものを用いることとして平行レンズ7の説明は対
物レンズ9で説明する。平行レンズ7を通過したレーザ
光線はガルバノミラ−8に入射される。ガルバノ(12
) ミラー8は第1図の走査方向に光スポットを走査させる
ものである。後で説明する平行レンズ7の焦点距離は2
8.7W+であるのでレーザ光線は14.9朔φになる
。ゆえにガルバノミラ−8は各辺が30能と17W+の
長方形とする。ガルバノミラ−8が大きくなるのが欠点
である。ガルバノミラ−8に反射されたレーザ光線は対
物レンズ9に入射される。平行レンズ7と対物レンズ9
の光軸間距離は各レンズの焦点距離の和で設定する。こ
の実施例では57.4wRの光軸間距離をとる必要があ
る。
The optical mechanism at this size is the same as an optical disk device. λ
The parallel light that has passed through the /4 plate is incident on a galvanometer mirror 6 that moves in the tracking direction shown in FIG. The incident parallel light has a diameter of 4 mm. The reason why the laser beam is set to 4Wφ is to make the optical element smaller and reduce cost, and to facilitate position control. Since a laser beam having a diameter of 4 mm is incident, the mirror mirror 6 is a rectangular mirror with sides of 8W+ and 6ttvn. The laser beam, which is parallel light, is a galvanometer mirror.
6 and remains parallel to the focusing lens 5.
is incident on the Since it is sufficient to move the light spot by about 50 μm in the tracking direction shown in FIG. 1 using the galvanometer mirror 6, the focusing lens 5 should be equivalent to the objective lens of an optical disk device, with a focal length of 8 cm and a NA (numerical aperture).
is 0.45, weight is about 1g, diameter is 8mm, length is 1
Let it be a 0+o+ convex lens. The laser beam that has passed through the focusing lens 5 is incident on the parallel lens 7. The parallel lens 7 and the focusing lens 5 are set to approximately the sum of the focal lengths of the focusing lens 5 on the basis of the case where the optical tape 10 is at the focal position of the objective lens 9. The focusing lens 5 can be driven in the optical axis direction and its distance can be changed as required. Parallel lens 7 is objective lens 9
The parallel lens 7 will be explained using the objective lens 9, assuming that the same lens is used. The laser beam that has passed through the parallel lens 7 is incident on the galvanometer mirror 8. Galvano (12)
) The mirror 8 scans the light spot in the scanning direction shown in FIG. The focal length of the parallel lens 7, which will be explained later, is 2.
Since the power is 8.7W+, the laser beam has a diameter of 14.9 mm. Therefore, the galvanometer mirror 8 is a rectangle with each side having 30 power and 17 W+. The disadvantage is that the galvano mirror 8 becomes large. The laser beam reflected by the galvanometer mirror 8 is incident on the objective lens 9. Parallel lens 7 and objective lens 9
The distance between the optical axes of is set by the sum of the focal lengths of each lens. In this example, it is necessary to provide a distance between optical axes of 57.4 wR.

平行レンズと対物レンズ9け焦点距離28.7m。Parallel lens and 9 objective lenses, focal length 28.7m.

NA(開口数)が0.28、画像サイズ81WIIφ、
有効口径19需φ、重さが400 g、直径が45■φ
、長さが70鰭である。対物レンズ9を通過したレーザ
光線は光テープ10面上で焦点が合わされ、反射したレ
ーザ光線が同じ経路を戻る。光テープ10が変動すると
光テープ10が変動した方向と同方向に焦点合わせレン
ズ5を動かし、光テープ10面上に焦点を合わす。(5
)式から光テープ10の変位Zと焦点合わせレンズの変
位Xの関(13) 係は等しくなり光テープ10が動いた変位Zだけ変位X
を動かせば焦点合わせが出来る。対物レンズの焦点深度
は±3.5μmなので焦点合わせレンズ5を移動するの
に±3.5μmの誤差があってもよいことになる。
NA (numerical aperture) is 0.28, image size is 81WIIφ,
Effective diameter: 19mm, weight: 400g, diameter: 45mm
, 70 fins long. The laser beam passing through the objective lens 9 is focused on the surface of the optical tape 10, and the reflected laser beam returns along the same path. When the optical tape 10 moves, the focusing lens 5 is moved in the same direction as the direction in which the optical tape 10 moves to focus on the surface of the optical tape 10. (5
) From the equation (13), the relationship between the displacement Z of the optical tape 10 and the displacement X of the focusing lens is equal, and the displacement
You can focus by moving. Since the depth of focus of the objective lens is ±3.5 μm, there may be an error of ±3.5 μm in moving the focusing lens 5.

なお、焦点合わせレンズを光軸方向と第1図で示したト
ラッキング方向の二方向に駆動出来るようにすれば光軸
を偏向するガルバノミラ−6を省略することが出来る。
Note that if the focusing lens can be driven in two directions: the optical axis direction and the tracking direction shown in FIG. 1, the galvanometer mirror 6 for deflecting the optical axis can be omitted.

光デイスク装置の直接対物レンズを駆動する方法では重
さが400g5直径が45mφ、長さが70mの対物レ
ンズ9を光テープ10の変位Zだけ駆動しなければなら
ないのに対し本発明によれば重さ1g程度、直径8m+
φ、長さ10mの焦点合わせレンズ5を動かせばよいの
で安易に焦点合わせが出来る。
In the method of directly driving the objective lens of an optical disk device, the objective lens 9, which weighs 400 g, has a diameter of 45 mφ, and is 70 m long, must be driven by the displacement Z of the optical tape 10. Approximately 1g, diameter 8m+
Focusing can be easily achieved by simply moving the focusing lens 5 with a length of 10 m.

また本発明の説明で対物レンズ9が大きな場合を示した
が対物レンズ9が小さな場合でも本発明を適用出来る。
Further, in the description of the present invention, the case where the objective lens 9 is large is shown, but the present invention can be applied even when the objective lens 9 is small.

ただし平行レンズ7は対物レンズ9程度の小さなレンズ
となり、対物レンr9には(14) ぼ平行光を送る役目は変わらない。
However, the parallel lens 7 becomes a lens as small as the objective lens 9, and the role of sending approximately (14) parallel light to the objective lens r9 remains the same.

〔発明の効果〕〔Effect of the invention〕

本発明によれば光スポットを大きく走査する光学機構に
おいて、対物レンズを直接駆動して焦点を合わすことが
困難な場合に小さな焦点合わせレンズを駆動して焦点合
わせが出来るので焦点精度を上げる効果がある。
According to the present invention, in an optical mechanism that scans a large light spot, when it is difficult to focus by directly driving the objective lens, it is possible to focus by driving a small focusing lens, which has the effect of increasing focusing accuracy. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光メモリ装置における光テープを説明する概念
図、第2図はレーザプリンタの概略を説明する原理図、
第3図は光デイスク装置の焦点合わせと光スポットを移
動させる方法を示す原理図、第4図は本発明の焦点合わ
せ機構構成を説明する図、第5図及び第6図は本発明の
焦点合わせ機構の動作原理を示す図、第7図及び第8図
は本発明の焦点合わせ機構の実施例を示す図である。 1・・・レーザ、2・・・コリメートレンズ、3・・・
ビームスプリッタ、4・・・λ/4板、5・・・焦点合
わせレンズ、6,8.14・・・ガルバノミラ−17・
・・平行レンズ、9.16・・・対物レンズ、10・・
・光テープ、(15) 11.12・・・ガルバノミラ−駆動用モータ、13・
・・光ディテクタ、15・・・光ディスク、17・・・
ドラム、18−°・ダブレットスフエリカルレンズ、1
9・・・ポリゴンミラー、20.21・・・光軸を偏向
する光学部材。 (16) %5  図 猶7図   第3図
FIG. 1 is a conceptual diagram explaining an optical tape in an optical memory device, FIG. 2 is a principle diagram explaining an outline of a laser printer,
FIG. 3 is a principle diagram showing the method of focusing the optical disk device and moving the light spot, FIG. 4 is a diagram explaining the configuration of the focusing mechanism of the present invention, and FIGS. 5 and 6 are the focal points of the present invention. FIGS. 7 and 8 are diagrams showing the operating principle of the focusing mechanism, and are diagrams showing embodiments of the focusing mechanism of the present invention. 1...Laser, 2...Collimating lens, 3...
Beam splitter, 4... λ/4 plate, 5... Focusing lens, 6, 8.14... Galvano mirror 17.
...Parallel lens, 9.16...Objective lens, 10...
・Optical tape, (15) 11.12... Galvano mirror drive motor, 13.
...Optical detector, 15... Optical disc, 17...
Drum, 18-° doublet spherical lens, 1
9... Polygon mirror, 20.21... Optical member that deflects the optical axis. (16) %5 Figure 7 Figure 3

Claims (1)

【特許請求の範囲】 1、平行またはほぼ平行の光を入射させレンズを用いて
物体に焦点を合わせる光学機構において、少なくとも1
枚の対物レンズと少なくとも1枚の平行レンズと少なく
とも1枚の焦点合わせレンズからなり、前記焦点合わせ
レンズを光軸方向に駆動して焦点を合わせることを特徴
とする焦点合わせ機構。 2、光源側に焦点合わせレンズを設定し、物体側に対物
レンズを設定し、焦点合わせレンズと対物レンズの間に
平行レンズを設定したことを特徴とする特許請求の範囲
第1項記載の焦点合わせ機構。 3、平行レンズと対物レンズの間に光軸を偏向して光ス
ポットを走査するための光学部品を挿入したことを特徴
とする特許請求の範囲第2項記載の焦点合わせ機構。 4、焦点合わせレンズを光軸方向とトラッキング方向の
二方向に駆動できるように構成したことを特徴とする特
許請求の範囲第2項または第3項記載の焦点合わせ機構
。 5、平行レンズと対物レンズの焦点距離をそれぞれf7
とfsとするとき光軸間距離がf7とfsの和に固定し
て設置しであることを特徴とする特許請求の範囲第2項
〜第4項のいずれか1項に記載の焦点合わせ機構。 6、光源側から平行光が入射される場合焦点合わせレン
ズと平行レンズの焦点距離をそれぞれ’II +  f
7とするとき前記焦点合わせレンズと平行レンズの光軸
間距離がfsとf7の和程度にして設定しであることを
特徴とする特許請求の範囲第2項〜第5項のいずれか1
項に記載の焦点合わせ機構。 7、物体の変動を2として焦点合わせレンズの変位をX
とする場合、fs〉oのとき(f9/ft )・fs>
Zかつfs>Zの条件を満たし、fsくOのとき(f9
/f7)2・(h十f5)>Zかつfs:>Zの条件を
満たすように構成したことを特徴とする特許請求の範囲
第2項〜第6項のいずれか1項に記載の焦点合わせ機構
[Claims] 1. An optical mechanism that makes parallel or nearly parallel light incident and focuses it on an object using a lens, which includes at least one
A focusing mechanism comprising two objective lenses, at least one parallel lens, and at least one focusing lens, the focusing mechanism being characterized in that the focusing lens is driven in an optical axis direction to focus. 2. The focus according to claim 1, characterized in that a focusing lens is set on the light source side, an objective lens is set on the object side, and a parallel lens is set between the focusing lens and the objective lens. Matching mechanism. 3. The focusing mechanism according to claim 2, further comprising an optical component inserted between the parallel lens and the objective lens to deflect the optical axis and scan the light spot. 4. The focusing mechanism according to claim 2 or 3, characterized in that the focusing lens is configured to be able to be driven in two directions: the optical axis direction and the tracking direction. 5. Set the focal length of the parallel lens and objective lens to f7.
and fs, the focusing mechanism according to any one of claims 2 to 4, wherein the distance between the optical axes is fixed to the sum of f7 and fs. . 6. When parallel light is incident from the light source side, the focal lengths of the focusing lens and the parallel lens are 'II + f, respectively.
7, the distance between the optical axes of the focusing lens and the parallel lens is set to approximately the sum of fs and f7.
Focusing mechanism as described in Section. 7. Let the displacement of the focusing lens be X with the variation of the object being 2.
When fs〉o, (f9/ft)・fs〉
Z and fs>Z, and when fs<O (f9
/f7)2・(h10f5)>Z and fs:>Z The focal point according to any one of claims 2 to 6, characterized in that it is configured to satisfy the following conditions: Matching mechanism.
JP6359783A 1983-04-13 1983-04-13 Focusing mechanism Pending JPS59189306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6359783A JPS59189306A (en) 1983-04-13 1983-04-13 Focusing mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6359783A JPS59189306A (en) 1983-04-13 1983-04-13 Focusing mechanism

Publications (1)

Publication Number Publication Date
JPS59189306A true JPS59189306A (en) 1984-10-26

Family

ID=13233836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6359783A Pending JPS59189306A (en) 1983-04-13 1983-04-13 Focusing mechanism

Country Status (1)

Country Link
JP (1) JPS59189306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052146A (en) * 1991-06-24 1993-01-08 Nec Corp Beam positioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052146A (en) * 1991-06-24 1993-01-08 Nec Corp Beam positioner

Similar Documents

Publication Publication Date Title
US4425023A (en) Beam spot scanning device
US4333173A (en) Optical information processor with prismatic correction of laser beam shape
US5218595A (en) Device for reading oblong segments of an advancing storage medium
JPH07326065A (en) Optical information processor
JPH0519211B2 (en)
EP0848379B1 (en) Method and device for initializing optical recording medium of phase change type, and optical recording medium
US5768031A (en) Objective lens
JPS6120055B2 (en)
JPS59189306A (en) Focusing mechanism
KR870005376A (en) Optical reading and writing devices
KR930009643B1 (en) Optical head
JP2698109B2 (en) Optical pickup device
JPS6251045A (en) Optical information reader
US6181491B1 (en) Optical head device, information recording and reproducing apparatus and optical system
JPS6329337B2 (en)
JP2745673B2 (en) Optical memory device
HUT62419A (en) Optical scanner
JPS621141A (en) Optical head
JPH03116449A (en) Focusing method utilizing polarization switch and device therefor
US5027340A (en) Object lens head assembly
JPH11176007A (en) Solid submersion lens for optical recording and reproducing and optical recording and reproducing device using the lens
JPH03185639A (en) Optical pickup
JPS6292144A (en) Optical recording and reproducing device having plural optical spots
JP2513237B2 (en) Optical head device
JPS61120352A (en) Focal point error detecting device