JPS59188592A - Method and device for controlling burnup of reactor - Google Patents

Method and device for controlling burnup of reactor

Info

Publication number
JPS59188592A
JPS59188592A JP58063361A JP6336183A JPS59188592A JP S59188592 A JPS59188592 A JP S59188592A JP 58063361 A JP58063361 A JP 58063361A JP 6336183 A JP6336183 A JP 6336183A JP S59188592 A JPS59188592 A JP S59188592A
Authority
JP
Japan
Prior art keywords
fuel assembly
water
uranium
combustion control
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58063361A
Other languages
Japanese (ja)
Inventor
下重 孝則
章 西村
年宏 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58063361A priority Critical patent/JPS59188592A/en
Publication of JPS59188592A publication Critical patent/JPS59188592A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は沸騰水型原子炉における燃焼制御方法及び装置
に係シ、特に燃料集合体自体又はそれらの間隙等におけ
る水対ウラン比の調整によるボイド率変化を利用して燃
焼度の増大が図れるようにした燃焼制御方法及び装置に
関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a method and apparatus for controlling combustion in a boiling water nuclear reactor, and in particular to a method and apparatus for controlling combustion in a boiling water nuclear reactor, and in particular, to eliminate voids by adjusting the ratio of water to uranium in the fuel assemblies themselves or in their gaps. The present invention relates to a combustion control method and apparatus that can increase burnup by utilizing rate changes.

〔発明の背景〕[Background of the invention]

沸騰水型原子炉では、軸方向にボイド分布を有するため
、炉心上部に比べ炉心下部における中性子の熱化が進み
、出力ピークの位置が炉心下部にひずむという特徴を持
っている。
Boiling water reactors have a void distribution in the axial direction, so neutrons heat up more in the lower core than in the upper core, and the power peak position is shifted toward the lower core.

ところが現在の炉心設計では、燃料健全性の確保とプラ
ント利用率向上の観点から、出力ピークをでさるだけ低
下させ、線出力密度を低く抑える設計が行われているた
め、炉心下部の出力ピーク位置に制御棒を浅く挿入した
り、出力ピークが発生する位置に可燃性噸物ガドリ丘ア
(GdgOs )を入れた燃料棒を用いる等の対策を施
してきた。
However, in the current core design, from the perspective of ensuring fuel integrity and improving plant utilization, the power peak is reduced as much as possible and the linear power density is kept low. Countermeasures have been taken, such as inserting control rods shallowly into the reactors, and using fuel rods containing flammable GdgOs at the locations where peak output occurs.

また近年開発された濃縮度上下2領域燃料は、軸方向出
力分布平坦化の効果が、前記の対策に比べて特に優れて
いることが立証され、広く採用されるようになってきた
Furthermore, recently developed fuel with two enrichment regions, upper and lower, has been proven to be particularly effective in flattening the axial power distribution than the above-mentioned measures, and has come to be widely adopted.

しかしながら、近年の燃料技術開発の結果、バリア燃料
等のPCI (燃料−被覆管作用)対策が開発されるに
従って、上記のような出力分布平坦化は特に必要がなく
なシ、線出力密度については燃料の健全性が維持できる
範囲内で上昇させることができる。このような炉心では
沸騰水型原子炉の特徴を活用した新たな炉心設計が望ま
れる。
However, as a result of recent fuel technology development, as countermeasures against PCI (fuel-cladding effect) such as barrier fuels have been developed, the flattening of the power distribution as described above is no longer necessary, and the linear power density It can be increased within a range that maintains the health of the fuel. For such cores, a new core design that takes advantage of the features of boiling water reactors is desired.

ところで、軽水原子炉の炉心は、同一形状の燃料集合体
を単位とし、これを複数配列して1A成される。この燃
料棒と燃料棒との間および燃料集合体と燃料集合体間の
隙間は、減速材(軽水)で満されている。
Incidentally, the core of a light water reactor is constructed by arranging a plurality of fuel assemblies of the same shape as a unit to form a 1A core. The gaps between the fuel rods and between the fuel assemblies are filled with moderator (light water).

軽水原子炉の炉心内では核分裂直後の高速中性子がこの
減速材によって減速され熱中性子となり、これが235
Uの核分裂を引き起す。
In the core of a light water reactor, fast neutrons immediately after nuclear fission are moderated by this moderator and become thermal neutrons, which become 235
Causes nuclear fission of U.

一般にこのような軽水炉では主として235 Uの核分
裂反応(燃焼)が起りやすいような中性子束のエネルギ
ー分□布としているが、この状態では238Uの利用が
必ずしも十分になされていない。
Generally, in such a light water reactor, the energy distribution of the neutron flux is such that the fission reaction (combustion) of 235 U is likely to occur, but in this state, 238 U is not necessarily fully utilized.

この2■Uを有効利用する上では燃焼の程度に応じて減
速材体積を調節することが有益である。しかしながら従
来の軽水炉心ではこのような減速材体積を調節するのに
適した手段は無かった。
In order to effectively utilize this 2U, it is beneficial to adjust the moderator volume depending on the degree of combustion. However, in conventional light water reactor cores, there was no suitable means for adjusting the moderator volume.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情に着目してなされたもので、そ
の目的は燃焼期間中にボイド率を制御して燃焼後半での
反応度を増加させることにより燃焼度の増大を図ること
にある。
The present invention has been made in view of these circumstances, and its purpose is to increase the burnup by controlling the void fraction during the combustion period and increasing the reactivity in the latter half of the combustion.

〔発明の概要〕[Summary of the invention]

沸騰水型原子炉では原子炉運転中にボイドが発生し、高
いボイド率で運転された燃料集会体は、低いボイド率で
運転された燃料乗合体よシも中性子スペクトルが硬化す
るためにプルトニウムの蓄積が多くなる特徴がある。こ
の効果は、高いボイド率での燃焼期間に比例して増大す
る。
In boiling water reactors, voids are generated during reactor operation, and fuel assemblies operated at high void rates are more susceptible to plutonium than those operated at low void rates due to hardening of the neutron spectrum. It is characterized by increased accumulation. This effect increases proportionally with the duration of combustion at high void fractions.

そこで、燃料果合体の炉内装荷期間の内、前半は高いボ
イド率で燃焼させプルトニウムの生成の増大を促し、後
半はボイド率を低下させることにより生成されたプルト
ニウムによる反応度への寄与を利用し、原子炉の反応度
を高め、燃焼度を増大させる運転法が考えられる。これ
はスペクトルシフト効果の適用である。
Therefore, during the loading period of the fuel mixture into the reactor, the first half is combusted with a high void ratio to promote the increase in plutonium production, and the second half is to reduce the void ratio to utilize the contribution of the generated plutonium to the reactivity. However, operating methods that increase reactor reactivity and burnup can be considered. This is an application of the spectral shift effect.

第1の発明に係る燃焼制御方法では上記スペクトルシフ
ト効果を得るために、燃料集合体間体について水対ウラ
ン比調整を行なうようにしている。
In the combustion control method according to the first aspect of the invention, in order to obtain the above spectrum shift effect, the water-to-uranium ratio is adjusted for the fuel assembly inter-assembly.

例えば炉内装荷期間中の前半は燃料集合体上部領域の水
対ウラン比を下部領域の水対ウラン比に較べ小さくする
部材を装着することにより出力分布を下方にふくらませ
高いボイド率を実現し、後半は燃料集合体上部領域の水
対ウラン比を下部領域の水対ウラン比と同一となる部材
と交換し前半に比し出力分布を相対的に上方にもち上げ
ることにより低いボイド率を実現する。このようにして
スペクトルシフト効果を可能にしているものである。
For example, in the first half of the loading period in the reactor, a member is installed that makes the water-to-uranium ratio in the upper region of the fuel assembly smaller than the water-to-uranium ratio in the lower region, thereby inflating the power distribution downward and achieving a high void ratio. In the second half, the water-to-uranium ratio in the upper region of the fuel assembly is replaced with a member whose water-to-uranium ratio is the same as the water-to-uranium ratio in the lower region, and a lower void ratio is achieved by raising the power distribution relatively upward compared to the first half. . In this way, the spectral shift effect is made possible.

また、第2の発明に係る制御装置では沸騰水型原子炉の
燃料集合体の燃焼を制御する燃焼制御装置であって、前
記燃料集合体の内部に水対ウラン比を調整する調整部を
設けている。
Further, a control device according to a second invention is a combustion control device for controlling combustion of a fuel assembly of a boiling water reactor, and includes an adjustment section for adjusting a water to uranium ratio inside the fuel assembly. ing.

さらに、第3の発明に係る制御方法では沸騰水型原子炉
用燃料集合体のスペクトルシフト効果に基づく燃料制御
方法であって、各燃料集合体の間隙に水対ウラン比を変
更する処理を施すことによシ燃焼を制御するようにして
いる。
Furthermore, the control method according to the third invention is a fuel control method based on the spectral shift effect of fuel assemblies for boiling water reactors, in which processing is performed to change the water to uranium ratio in the gaps of each fuel assembly. In particular, it is intended to control combustion.

即ち、各燃料集合体の間隙の水ギャップに中性子吸収断
面積の小さい物質例えばZ2の球体を充填した管を並べ
て水の体積を調節するものである。
That is, the volume of water is adjusted by arranging tubes filled with spheres of a material having a small neutron absorption cross section, such as Z2, in the water gap between each fuel assembly.

水の体積が減少すると中、高速中性子束の割合が相対的
に増し238Uの中性子吸収が増え”’tryが生成さ
れる。サイクル末期付近ではとのZ、の球体を炉心外へ
移動させ、これに代えて管内に水を満たすことにより水
の体積を増やし23’Umを燃やして燃焼度の向上をは
かるようにしている。
When the volume of water decreases, the proportion of medium and fast neutron flux increases relatively, and the absorption of 238U neutrons increases, producing "try." Near the end of the cycle, the spheres of Z and Z are moved out of the core, and this Instead, by filling the pipe with water, the volume of water is increased and 23'Um is burned to improve burnup.

(なお、以下ではこのZr球体をハイドロボールと称す
る。) さらにまた、第tの発明に係る制御装置では沸騰水型原
子炉の燃焼集合体の燃焼を制御する燃焼制御装置であっ
て、前記燃料集合体間の間隙に中注子減速能及び中性子
吸収の小さな材質からなる調整部材を配置し、的記間隙
における減速材の体積を調整可能としている。
(This Zr sphere will be referred to as a hydroball hereinafter.) Furthermore, the control device according to the tth invention is a combustion control device for controlling combustion of a combustion assembly of a boiling water reactor, wherein the An adjustment member made of a material with a small neutron moderating ability and a small neutron absorption is arranged in the gap between the aggregates, so that the volume of the moderator in the target gap can be adjusted.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

まず、第1及び第2の発明に係る実施例を第1図〜第9
図によって説明する。
First, embodiments according to the first and second inventions are shown in FIGS. 1 to 9.
This will be explained using figures.

第°1図及び第2図に燃料集合体を示しである。The fuel assembly is shown in Figures 1 and 2.

この実施例に係る燃料集合体11では、チャンネルボッ
クス1の中央部分に中空な、つまり減速材が封入する棒
体3が、燃料棒2と共に収容されている。この棒体3は
、軸方向に上部領域Aと下部領域Bとに内部において分
割し、その下部領域Aに水対ウラン比を小さくする小棒
体としての調整棒4(ジルカロイ棒)を挿脱可能に装着
している。即ち、第3図及び第4図に拡大して示すよう
に、この棒体3(以下、SSロッドと略称する)におい
ては、調整棒4の挿入、引板により軸方向上部領域の水
対ウラン比が調整可能となるようにしている。つまり、
調整棒4はSSロッド3の軸方向中間部の内側面に突出
した調整棒受台8にその下端を支持されておシ、またそ
の1喝は取出バネ5によって880ンド上端部の外周面
の取出バネ骨太7を介して固定しである。従って、調整
棒4を8Sロツド3から取り出す場合には、取出バネ5
を取出バネ骨太7から外した後上方に引き抜くようにし
ている。なお、調整棒4は最初の炉心装荷時(燃料集合
体構成時)に挿入しておくものである。また、引き抜き
操作は、定期検査時等の場合に行うようにする。なお、
この調整棒4は、中性子減速効果の小さいもので、例え
ばジルカロイ棒を使用している。従って、調整棒4が挿
入されている場合には、燃料束合体下部より流入した炉
水はSSロッド3の下部領域では中間部壁に穿設した孔
6から流出し、SSロッド3の上部領域には水が流入し
ないことになる。また、調整棒4が引き抜かれた場合に
は、燃料果合体下部から流入した炉水はSSロッド3に
おいても軸方向下部から上部へ流れることになシ、先の
a1整棒が挿入されている場合と比較して流路ml積が
増加したことになり、従って、調整4JI4の挿入、引
き抜きにより水対ウラン比のA歪が可能となるものであ
る。
In the fuel assembly 11 according to this embodiment, a hollow rod body 3, in which a moderator is enclosed, is housed together with the fuel rods 2 in the central portion of the channel box 1. This rod 3 is internally divided into an upper region A and a lower region B in the axial direction, and an adjustment rod 4 (Zircaloy rod) as a small rod for reducing the water to uranium ratio is inserted into and removed from the lower region A. It is installed if possible. That is, as shown enlarged in FIGS. 3 and 4, in this rod 3 (hereinafter abbreviated as SS rod), the water and uranium in the upper region in the axial direction are adjusted by inserting the adjusting rod 4 and by pulling the pull plate. The ratio is adjustable. In other words,
The lower end of the adjustment rod 4 is supported by an adjustment rod holder 8 that protrudes from the inner surface of the axially intermediate portion of the SS rod 3, and the outer peripheral surface of the upper end of the adjustment rod 4 is supported by a take-out spring 5. It is fixed via the take-out spring bone 7. Therefore, when taking out the adjustment rod 4 from the 8S rod 3, use the take-out spring 5.
After the spring is removed from the spring frame 7, it is pulled out upward. Note that the adjustment rod 4 is inserted when the core is first loaded (when configuring the fuel assembly). In addition, the pulling operation should be performed during periodic inspections, etc. In addition,
This adjustment rod 4 has a small neutron moderating effect, and is made of, for example, a Zircaloy rod. Therefore, when the adjustment rod 4 is inserted, the reactor water that has flowed in from the lower part of the fuel bundle assembly flows out from the hole 6 drilled in the intermediate wall in the lower region of the SS rod 3, and flows out from the hole 6 bored in the middle wall in the lower region of the SS rod 3. Water will not flow into the area. In addition, when the adjusting rod 4 is pulled out, the reactor water that has flowed in from the lower part of the fuel assembly will not flow from the lower part to the upper part in the axial direction in the SS rod 3, and the a1 adjustment rod mentioned above is inserted. This means that the ml volume of the flow path has increased compared to the case, and therefore, A distortion of the water to uranium ratio can be achieved by inserting and withdrawing Adjustment 4JI4.

第5図は燃料集会体を装荷した炉心の状態を示す。同図
において、ラベル(1,2,3,4)の数値は炉内に滞
在させるサイクル数を示す。このものにおいて、ラベル
1と2の燃料集会体は、前記調整棒4を挿入したSSロ
ッド3が装荷された(11) ものとしている。+た、ラベル3と4の燃料集合体は、
調整棒4が引き抜かれたSSロッド3が装荷されたもの
としている。
FIG. 5 shows the state of the core loaded with fuel assemblies. In the figure, the numbers on the labels (1, 2, 3, 4) indicate the number of cycles in which the particles are allowed to stay in the furnace. In this example, the fuel assemblies labeled 1 and 2 are loaded with the SS rod 3 into which the adjustment rod 4 is inserted (11). +The fuel assemblies labeled 3 and 4 are:
It is assumed that the SS rod 3 with the adjustment rod 4 pulled out is loaded.

第6図は、調整棒4が挿入されている場合(破線a)と
、引き抜かれている場合(実線b)との軸方向ボイド分
布を示す。調整棒4の引抜きにより、ボイド分布の上昇
がみられる。
FIG. 6 shows the axial void distribution when the adjustment rod 4 is inserted (broken line a) and when it is pulled out (solid line b). As the adjustment rod 4 is pulled out, an increase in the void distribution is observed.

第7図は、燃料集合体を第5図に示す炉心構成に従って
配置した場合における燃料集会体の無限増倍率の特性を
示す。この第7図に示す如く、本実施例によればrA整
棒引抜後(3サイクル目)の無限増倍率を高めることが
可能となり、燃料集会体の取出燃焼度が増加することに
なる。
FIG. 7 shows the characteristic of the infinite multiplication factor of the fuel assembly when the fuel assembly is arranged according to the core configuration shown in FIG. As shown in FIG. 7, according to this embodiment, it is possible to increase the infinite multiplication factor after pulling out the rA rod (third cycle), and the extraction burnup of the fuel assembly increases.

なお、前記実権例ではSSロッド3を2本、燃料集合体
の中央部に収容したが、例えば第8図に示すように、燃
料集合体周辺部に装荷してもよく、また、第9図に示す
ように、中央配置で多数収容してもよい。
In the above example, two SS rods 3 are housed in the center of the fuel assembly, but they may also be loaded in the periphery of the fuel assembly, as shown in FIG. 8, for example. As shown in the figure, a large number may be accommodated in a central arrangement.

なお、水対ウラン比を小さく設定した燃料集合体は、全
装荷燃料集合体の25%から80%の範(12) 囲とし、他は水対ウラン比は大きく設定することが実機
上では望ましい。
In addition, it is desirable for fuel assemblies with a low water-to-uranium ratio to be in the range of 25% to 80% (12) of all loaded fuel assemblies, and for other fuel assemblies to have a high water-to-uranium ratio in actual aircraft. .

また、前記実施例に係る水対ウラン比の変更操作は、燃
料集合体を軸方向で上部領域と下部領域とに分割して上
部領域と下部領域とのウラン濃縮度に差を設けるとか、
或いは燃料棒内の可燃性毒物の濃度を燃料集合体の上下
で異ならせた状態下で行なうようにすれば一層効果的で
ある6例えば、燃料集合体において、ウラン濃縮度につ
いて軸方向で上部領域と下部領域とに分割し、前記上部
領域のウラン濃縮度は前記下部領域のウラン濃縮度より
も高くシ、さらに、可燃性毒物入シ燃料棒本数について
も軸方向で上下に分割し、下部領域の可燃性毒物入り燃
料棒の数を上部領域の可燃性毒物入り燃料棒の数より多
くした状態で部材引出し等を行なうものである。
Further, the operation of changing the water to uranium ratio according to the embodiment includes dividing the fuel assembly into an upper region and a lower region in the axial direction and creating a difference in uranium enrichment between the upper region and the lower region.
Alternatively, it is more effective if the concentration of burnable poison in the fuel rods is varied between the upper and lower parts of the fuel assembly. The uranium enrichment in the upper region is higher than the uranium enrichment in the lower region, and the number of fuel rods containing burnable poison is also divided vertically in the axial direction. The member is pulled out with the number of fuel rods containing burnable poison in the upper region being greater than the number of fuel rods containing burnable poison in the upper region.

また、燃料集合体において、ウラン濃縮度について軸方
向で上部領域と下部領域とに分割し、前記上部領域のウ
ラン濃縮度はi配下部領域のウラン濃縮度よシも高くシ
、さらに、可燃性毒物の濃(13) 度についても軸方向に上下分割し、下部領域の可燃性毒
物の濃度を、上部領域の可燃性毒物の濃度より高くした
状態で操作する。
In addition, the fuel assembly is divided into an upper region and a lower region in the axial direction with respect to uranium enrichment, and the uranium enrichment in the upper region is higher than the uranium enrichment in the lower region under i. The concentration of poison (13) is also divided into upper and lower parts in the axial direction, and the operation is performed with the concentration of burnable poison in the lower region being higher than that in the upper region.

さらに、燃料集合体において、ウラン濃縮度について軸
方向で上部領域と下部領域とに分割し、前記上部領域の
ウラン濃縮度は前記下部領域のウラン濃縮度よりも高く
シ、さらに、可燃性毒物入り燃料棒本数についても軸方
向で上下に分割し、下部領域の可燃性毒物入シ燃料棒の
数を上部領域の可燃性毒物入υ燃料棒の数より少なくし
た状態で制御する。
Furthermore, the fuel assembly is divided into an upper region and a lower region in the axial direction with respect to uranium enrichment, the uranium enrichment in the upper region is higher than the uranium enrichment in the lower region, and The number of fuel rods is also divided into upper and lower parts in the axial direction, and the number of fuel rods containing burnable poison in the lower region is controlled to be smaller than the number of fuel rods containing burnable poison in the upper region.

さらにまた、燃料集会体において、ウラン濃縮度につい
て軸方向で上部領域と下部領域とに分割し、前記上部領
域のウラン濃縮度は前記下部領域のウラン濃縮度よりも
高くシ、さらに、可燃性毒物の濃度についても軸方向に
上下分割し、下部領域の可燃性毒物の濃度を、上部領域
の可燃性毒物の濃度より高くした状態で制御する。
Furthermore, in the fuel assembly, the uranium enrichment is divided into an upper region and a lower region in the axial direction, and the uranium enrichment in the upper region is higher than the uranium enrichment in the lower region, and The concentration of the burnable poison is also divided into upper and lower regions in the axial direction, and the concentration of the burnable poison in the lower region is controlled to be higher than the concentration of the burnable poison in the upper region.

次に、第3及び第4の発明に係る実施例を第10図〜1
3図によって説明する。
Next, examples according to the third and fourth inventions are shown in FIGS. 10 to 1.
This will be explained using Figure 3.

(14) この実施例に係る制御装置では、第10図に示すように
、調整部材としてのハイドロボール10を装填したハイ
ドロボール管20をケース30に収容し、この管20の
一端をポンプ80に連結し、他端ヲハイドロボールタン
ク70に連結している。
(14) In the control device according to this embodiment, as shown in FIG. The other end is connected to a hydroball tank 70.

なお、このタンク70とポンプ80とはハイドロボール
10の流入規制用の弁60を介して水循環用管路によっ
て連結しである。ハイドロボール1−Oはハイドロボー
ル管20の一端から注入する水の圧力によって移動させ
ることができる。その結果ハイドロボール管20の他端
から押し出されたハイドロボール10は、ハイドロボー
ルタンク70に貯蔵される。なお、タンク下の弁60を
1ツDくとハイドロボール10が落下したのち水圧によ
ってハイドロボール管20の一端側からケース30内に
循環するようにし、この弁60によってハイドロボール
、10の循環量を制御し得るようにしている。
The tank 70 and the pump 80 are connected by a water circulation pipe via a valve 60 for regulating the inflow of the hydro ball 10. The hydroball 1-O can be moved by the pressure of water injected from one end of the hydroball tube 20. As a result, the hydroball 10 pushed out from the other end of the hydroball tube 20 is stored in the hydroball tank 70. When the valve 60 under the tank is turned 1D, the hydroball 10 falls and is circulated from one end of the hydroball pipe 20 into the case 30 by water pressure, and this valve 60 controls the amount of circulation of the hydroball 10. I'm trying to get it under control.

ハイドロボール循環系は第11図及び第12図に示すよ
うに、各燃料集合体40の間隙部に配置(15) されている。
As shown in FIGS. 11 and 12, the hydroball circulation system is disposed (15) in the gap between each fuel assembly 40.

ハイドロボール10は中性子吸収及び中性子減速能の小
さな物質、例えばZ、、At、これらの合金又は酸化物
製の球体とされている。
The hydroball 10 is a sphere made of a material with low neutron absorption and neutron moderation ability, such as Z, At, alloys or oxides thereof.

本実施例では、ハイドロボール10を直径が8閣の21
球とし、またハイドロボール管20を外径が10−1管
厚が0.8冒のものとし、ハイドロボール管収納ケース
30を肉厚が1■のものとしている。なお、ハイドロボ
ール10は中空として軽量化を図ってもよい。
In this embodiment, the hydroball 10 is 21 mm in diameter with 8 diameters.
The hydroball tube 20 has an outer diameter of 10 -1 and a tube thickness of 0.8 mm, and the hydroball tube storage case 30 has a wall thickness of 1 cm. Note that the hydroball 10 may be hollow to reduce its weight.

ハイドロボール10の装填された状態で原子炉が稼動す
ると、このハイドロボール10が充填されている領域で
は中性子減速が少なく、相対的に中・高速中性子の割合
が大きい。このためハイドロボール10を充填しない場
合に比べてzasUからの239 pmの生成・蓄積が
容易に行なわれる。
When a nuclear reactor is operated with the hydroballs 10 loaded, neutron moderation is small in the region filled with the hydroballs 10, and the proportion of medium and fast neutrons is relatively large. Therefore, 239 pm from zasU can be generated and accumulated more easily than in the case where the hydroball 10 is not filled.

そこで燃料の燃焼に応じてハイドロボール管20に水を
流通させ、ハイドロボール10を排出すれば、ハイドロ
ボール10の減少分だけ水の体積が増大し、中性子減速
が大きくなるので熱中性子の(16) 割合が増え、生成した239 p 、を燃焼できる。
Therefore, if water is circulated through the hydroball tube 20 and the hydroballs 10 are discharged according to the combustion of the fuel, the volume of water increases by the amount of decrease in the hydroballs 10, and neutron moderation increases, so thermal neutrons (16 ) ratio increases, and the generated 239p can be burned.

第13図はハイドロボールを100%挿入の状態で運転
し、燃料の燃焼度が約220W d / tの時点で徐
々にハイドロボールを排出した場合の反応度利得状態を
示す。反応度利得が生じるのは、238Uが燃焼して2
39p、が生成され、蓄積するためである。
FIG. 13 shows the reactivity gain state when the hydroball is operated with 100% insertion and the hydroball is gradually discharged when the fuel burnup is about 220 W d/t. The reactivity gain occurs when 238U is burned and 2
This is because 39p is generated and accumulated.

よって、ハイドロボール10の排出は、サイクル末期付
近で行なうのが望ましい。排出操作を行なうべきハイド
ロボール管20の選択及び排出量の調整は任意に可能で
ある。特に高い燃焼度を持つ燃料集合体の付近でハイド
ロボール10を抜き出せば反応度利得は大きくなる。従
ってあらかじめ高い燃焼度の集合体を何体かずつ炉心内
に集めて局在させ、この部分のハイドロボール10のみ
を操作するようにして反応度利得を大きくすることもで
きる。
Therefore, it is desirable to discharge the hydroball 10 near the end of the cycle. It is possible to select the hydroball tube 20 to perform the discharge operation and adjust the discharge amount as desired. If the hydroball 10 is extracted near a fuel assembly with particularly high burnup, the reactivity gain will be increased. Therefore, it is also possible to increase the reactivity gain by gathering and localizing several high-burnup aggregates in the reactor core in advance and operating only the hydroballs 10 in these areas.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、沸騰水型原子炉のスペ
クトルシャフト効果を増大することが町(17) 能石なり、例えば軽水炉用燃料に含まれる238Uをよ
り有効に利用して”’Pw”e生成させ、燃焼度を増大
することができ、燃料経済性を向上さ亡ることかできる
As described above, according to the present invention, it is possible to increase the spectral shaft effect of a boiling water reactor by making more effective use of, for example, 238U contained in light water reactor fuel. Pw''e can be generated, burnup can be increased, and fuel economy can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第9図は第1及び第2の発明の実施例を示すも
ので、第1図は燃料集合体を拡大して示す横断面図、第
2図は調整用神体を示す部分断面図、第3図及び第4図
は夫々調整小棒体の挿入及び取出し状態を示す拡大断面
図、第5図は炉心構成を示す説明図、第6図はボイド分
布を示す特性図、第7図は、無限増倍率の燃焼特性を示
す特性図、第8図及び第9図は夫々調整用棒体の他の配
置例を示す燃料集合体の横断面図、第10図〜第13図
は第3及び第4の発明の冥施例を示す本ので、第10図
は調整部材とj−でのハイドロボールの循環系を示す概
略縦断面図、第11図は第10図の拡大横断面図、第1
2図は第11図に示すハイドロボール循環系の炉内への
全体的配置図、第13図は反応度利得を示す特性図であ
る。 (18) 2・・・燃料棒、3・・・調整用棒体(880ツド)、
4・・・小棒体(調整棒)、10・・・調整部材(ハイ
ドロボール)、11.40・・・燃料集合体。 代理人 弁理士 鵜沼辰之 rlQ) へ++l 第30      寮手閃 第5 (イ) 第 3国 鰻9 口 第10囚 第11圀 寮17国□
Figures 1 to 9 show embodiments of the first and second inventions, with Figure 1 being an enlarged cross-sectional view of the fuel assembly, and Figure 2 being a partial cross-section showing the adjustment body. Figures 3 and 4 are enlarged sectional views showing the insertion and removal states of the small adjustment rods, Figure 5 is an explanatory diagram showing the core configuration, Figure 6 is a characteristic diagram showing the void distribution, and Figure 7 is an explanatory diagram showing the core configuration. The figure is a characteristic diagram showing the combustion characteristics of infinite multiplication factor, Figures 8 and 9 are cross-sectional views of the fuel assembly showing other arrangement examples of the adjustment rods, and Figures 10 to 13 are Since this is a book showing practical examples of the third and fourth inventions, Fig. 10 is a schematic longitudinal cross-sectional view showing the adjusting member and the circulation system of the hydroball at j-, and Fig. 11 is an enlarged cross-sectional view of Fig. 10. Figure, 1st
FIG. 2 is an overall layout diagram of the hydroball circulation system shown in FIG. 11 in the furnace, and FIG. 13 is a characteristic diagram showing reactivity gain. (18) 2...Fuel rod, 3...Adjustment rod (880 d),
4... Small rod body (adjustment rod), 10... Adjustment member (hydro ball), 11.40... Fuel assembly. Agent Patent Attorney Tatsuyuki Unuma rlQ) To++l 30th Dormitory Hand Sen 5th (a) 3rd Country Eel 9 Mouth 10th Prisoner 11th Country Dormitory 17th Country □

Claims (1)

【特許請求の範囲】 1、沸騰水型原子炉用燃料果會体のスペクトルシフト効
果に基づく原子炉の燃焼制御方法であって、燃料集合体
上部領域の水対ウラン比を炉内装荷期間中の所定時期に
おける部材取出しによって変更することを特徴とする原
子炉の燃焼制御方法。 2、燃料果合体の水対ウラン皆を変更する操作は、炉内
装荷期間中の前半で燃料集合体上部領域の水対ウラン比
を下部領域よシも小さくする部材を該燃料果せ体に装着
して出力分布を下方に膨ませる行程と、後半で燃料集合
体上部領域の水対ウラン比が下部領域と同一となる部材
と交換して出力分布を相対的に上方に移動させる行程と
を有すると“とを特徴とする特許請求の範囲第1項記載
の原子炉の燃焼制御方法。 3、燃料果合体の水対ウラン比を変更する操作は燃料集
会体がウラン濃縮度について軸方向で上下領域に分割さ
れて上部領域のウラン濃縮度が下部領域よりも高く、か
つ可燃性毒物入り燃料棒本数について軸方向で上下領域
に分割されて上部領域の可燃性毒物入り燃料棒の本数が
下部領域よシも多い状態で行なうことを特徴とする特許
請求の範囲第1項記載の原子炉の燃焼制御方法。 4、燃料果合体の水対ウラン比を変更する操作は、燃料
集合体がウラン濃縮度について軸方向で上下領域に分割
されて上部領域のウラン濃縮度が下部領域よりも高く、
かつ可燃性毒物の濃度について軸方向で上下領域に分割
されて上部領域の可燃性毒物の濃度が下部領域よシも高
い状態で行なうことを特徴とする特許請求の範囲第1項
記載の原子炉の燃焼制御方法。 5、燃料果合体の水対ウラン比を変更する操作は、燃料
集合体がウラン濃縮度について軸方向で上下領域に分割
されて上部領域のウラン濃縮度が下部領域よりも高く、
かつ可燃性毒物の濃度について軸方向で上下領域に分割
されて上部領域の可燃性毒物の濃度が下部領域よシも低
い状態で行なうことを特徴とする特許請求の範囲第1項
記載の原子炉の燃焼制御方法。 6.沸騰水型原子炉の燃料集合体の燃焼を制御する燃焼
制御装置であって、前記燃料集合体の内部に水対ウラン
比を調整する調整部を設けたことを特徴とする燃焼制御
装置。 7、水対ウラン比の調整部は、燃料集合体内に収容され
減速材が存在する所要数の棒体と、との各棒体の上部に
着脱可能に挿入され減速材を不存在とする小棒体とから
なることを特徴とする特許請求の範囲第6項記載の燃焼
制御装置。 8、棒体は燃料集合体の中央部又は周辺部に配置されて
いることを特徴とする特許請求の範囲第6項記載の燃焼
制御装置≧ 9、水対ウラン比を小さく設定する燃料集合体は、全装
荷燃料集合体の25%から80%とし、残シの燃料集合
体においては、水対ウラン比が大きく設定されることを
特徴とする特許請求の範囲第6項記載の燃焼制御装置。 10、沸騰水型原子炉用燃料集合体のスペクトルシフト
効果に基づく燃焼制御方法であって、各燃焼制御装置。 11、沸騰水型原子炉の燃料集合体の燃焼を制御する燃
焼制御装置であって、前記燃料集合体間の間隙に中性子
減速能及び中性子吸収の小さな材質からなる調整部材を
配置し、前記間隙における減速材の体積を調整可能とし
たことを特徴とする燃焼制御装置。 12調整部材は球体を流動可能に装填した管からなるこ
とを特徴とする特許請求の範囲第11項記載の燃焼制御
装置。
[Claims] 1. A nuclear reactor combustion control method based on the spectral shift effect of a fuel assembly for a boiling water reactor, the method comprising controlling the water-to-uranium ratio in the upper region of a fuel assembly during the loading period into the reactor. A combustion control method for a nuclear reactor, characterized in that the combustion control method is changed by removing parts at a predetermined time. 2. The operation of changing the ratio of water to uranium in the fuel assembly is performed by adding a member to the fuel assembly that reduces the water to uranium ratio in the upper region of the fuel assembly as well as in the lower region in the first half of the loading period in the reactor. There is a process in which the fuel assembly is installed to expand the power distribution downward, and a process in which the power distribution is relatively moved upward by replacing the member with a member whose water-to-uranium ratio in the upper region of the fuel assembly is the same as in the lower region in the latter half. 3. The operation of changing the water-to-uranium ratio of the fuel assembly is performed when the fuel assembly is axially oriented in terms of uranium enrichment. It is divided into upper and lower regions, and the upper region has a higher uranium enrichment than the lower region, and the number of fuel rods containing burnable poison is divided into upper and lower regions in the axial direction, and the number of fuel rods containing burnable poison in the upper region is higher than that of the lower region. The combustion control method for a nuclear reactor according to claim 1, characterized in that the combustion control method is performed in a state where the fuel assembly has a large amount of uranium. Regarding enrichment, it is divided into upper and lower regions in the axial direction, and the uranium enrichment in the upper region is higher than that in the lower region.
The nuclear reactor according to claim 1, wherein the reactor is divided into upper and lower regions in the axial direction with respect to the concentration of burnable poison, and the nuclear reactor is operated in a state where the concentration of burnable poison in the upper region is higher than that in the lower region. combustion control method. 5. The operation of changing the water-to-uranium ratio of the fuel assembly is performed by dividing the fuel assembly into upper and lower regions in the axial direction with respect to uranium enrichment, and the uranium enrichment in the upper region is higher than that in the lower region;
The nuclear reactor according to claim 1, wherein the reactor is divided into upper and lower regions in the axial direction with respect to the concentration of burnable poison, and the nuclear reactor is operated in a state where the concentration of burnable poison in the upper region is lower than that in the lower region. combustion control method. 6. 1. A combustion control device for controlling combustion of a fuel assembly of a boiling water nuclear reactor, characterized in that an adjustment section for adjusting a water-to-uranium ratio is provided inside the fuel assembly. 7. The water-to-uranium ratio adjustment section includes a required number of rods housed in the fuel assembly and containing a moderator, and a small rod that is removably inserted into the upper part of each rod and has no moderator present. 7. The combustion control device according to claim 6, comprising a rod body. 8. Combustion control device according to claim 6, characterized in that the rod is disposed at the center or the periphery of the fuel assembly 9. Fuel assembly in which the water-to-uranium ratio is set to a small value is set to 25% to 80% of all loaded fuel assemblies, and the water to uranium ratio is set to be large in the remaining fuel assemblies. . 10. A combustion control method based on the spectral shift effect of a fuel assembly for a boiling water reactor, and each combustion control device. 11. A combustion control device for controlling combustion of fuel assemblies of a boiling water reactor, wherein an adjustment member made of a material with low neutron moderating ability and neutron absorption is disposed in a gap between the fuel assemblies, and the gap between the fuel assemblies is A combustion control device characterized in that the volume of a moderator in can be adjusted. 12. The combustion control device according to claim 11, wherein the adjustment member comprises a tube fluidly loaded with spheres.
JP58063361A 1983-04-11 1983-04-11 Method and device for controlling burnup of reactor Pending JPS59188592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58063361A JPS59188592A (en) 1983-04-11 1983-04-11 Method and device for controlling burnup of reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58063361A JPS59188592A (en) 1983-04-11 1983-04-11 Method and device for controlling burnup of reactor

Publications (1)

Publication Number Publication Date
JPS59188592A true JPS59188592A (en) 1984-10-25

Family

ID=13227045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58063361A Pending JPS59188592A (en) 1983-04-11 1983-04-11 Method and device for controlling burnup of reactor

Country Status (1)

Country Link
JP (1) JPS59188592A (en)

Similar Documents

Publication Publication Date Title
EP1085525B1 (en) Light water reactor core and fuel assembly
EP1647993A2 (en) Use of boron or enriched boron 10 in UO2
WO1995015564A1 (en) A bwr fuel assembly
JP2008215818A (en) Light water reactor, core of light water reactor and fuel assembly
JPS6191594A (en) Fast breeder reactor
US4693862A (en) Gas displacement spectral shift reactor and control method
JP5497426B2 (en) Light water reactor core and fuel assembly
US5386439A (en) Spectral shift nuclear reactor with improved efficiency
JP5524573B2 (en) Boiling water reactor core and fuel assembly for boiling water reactor
JPS645664B2 (en)
JPH0149917B2 (en)
EP1780729A2 (en) Fuel assembly with boron containing nuclear fuel
JPS60188880A (en) Fuel aggregate for nuclear reactor
JPS59188592A (en) Method and device for controlling burnup of reactor
JP2010145140A (en) Method for loading fast reactor with fuel
JP2765848B2 (en) Boiling water reactor and its fuel loading method
JP2006184174A (en) Fuel assembly of boiling water reactor
JP2610254B2 (en) Boiling water reactor
EP0329985B1 (en) Nuclear reactor operating method with extended life cycle
JPH0660948B2 (en) Fuel assembly
JPS60177293A (en) Nuclear reactor
JP2010032559A (en) Reactor core of light-water reactor, and fuel assembly
JPH07107555B2 (en) Control rod for boiling water reactor and method of operating boiling water reactor using the same
JP2010032558A (en) Reactor core of light-water reactor, and fuel assembly
JPH02147985A (en) Fuel assembly and nuclear reactor