JPS59188561A - Angular speed detector - Google Patents

Angular speed detector

Info

Publication number
JPS59188561A
JPS59188561A JP58062430A JP6243083A JPS59188561A JP S59188561 A JPS59188561 A JP S59188561A JP 58062430 A JP58062430 A JP 58062430A JP 6243083 A JP6243083 A JP 6243083A JP S59188561 A JPS59188561 A JP S59188561A
Authority
JP
Japan
Prior art keywords
tuning fork
accutron
angular velocity
signal
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58062430A
Other languages
Japanese (ja)
Inventor
Kenji Uenishi
上西 謙次
Hiroshi Ikushima
弘志 生島
Terumichi Fukumoto
福本 照道
Kenzo Yamamoto
山本 謙造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58062430A priority Critical patent/JPS59188561A/en
Publication of JPS59188561A publication Critical patent/JPS59188561A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces

Abstract

PURPOSE:To simplify constitution and improve mechanical strength and reliability by using at least one accutron tuning fork and 2n (n: natural number) sheets of rectangular piezoelectric bimorph as principal elements. CONSTITUTION:The driving part 10 consisting of the accutron tuning fork and a detection part 20 consisting of a piezoelectric element are fixed to vehicle respectively, and when the vehicles has a rotating angular speed, respective detecting elements generate composite electric signals. The detecting elements 20c and 20d are rectangular piezoelectric bimorph elements in the same shape, and the main surfaces of said bimorph elements are connected electrically to the mutually opposite main surfaces of said tuning fork in the lengthwise direction on the main surface. Consequently, the constitution is simplified, and the mechanical strength and reliability are improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は各種ビークルの角速度検出装置に関するもので
あり、特にビークルの基準位置からの相対的々向転角を
知る為の角速度検出装置に係るものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to an angular velocity detection device for various vehicles, and particularly to an angular velocity detection device for determining the relative turning angle of a vehicle from a reference position. be.

従来例の構成とその問題点 近年、自動車を代表例として各種ビークルへの新機能付
加の要望から、ビークル方位センサーの開発が盛んであ
る。方位センサ一方式には、一般に大別して以下の二通
りのものがある。即ち。
Conventional configurations and their problems In recent years, vehicle orientation sensors have been actively developed due to the desire to add new functions to various vehicles, including automobiles. Generally speaking, one-type orientation sensors can be broadly classified into the following two types. That is.

A;地球上に付属した座標を指定する量から、絶3ベー
パ 対方位を知る方式のもの。
A: A method that determines absolute vapor direction from quantities that specify coordinates attached to the earth.

B:上記人以外の量から、前記センサーの使用者が適当
に定めた基準位置からの相対方位を知る方式のもの。
B: A method in which the relative direction from a reference position appropriately determined by the user of the sensor is determined from the amount of the person other than the person mentioned above.

座標の明確な走行面を走行する限りにおいて、ビークル
用方位センサーとしては、ムは不要である。Bの代表例
としては、〔1〕 流体型(ガスレートジャイロ)、(
2)振動型(圧電効果を用いた角速度検出装置)などが
ある。
As long as the vehicle is traveling on a surface with clear coordinates, a vehicle is not required as a direction sensor. Typical examples of B include [1] Fluid type (gas rate gyro), (
2) There is a vibration type (angular velocity detection device using piezoelectric effect), etc.

上記流体型は、ビークル回転に伴なって発生するコリオ
リカによるガス流の偏移を温度変化に変え、前記変化量
を電気信号に変換する構成のものがある。前記電気信号
レベルからビークルの回転速度を知り、公知の電気回路
技術により前記回転速度を時間積分して、ビークルの回
転運動前の基準位置からの相対的回転角He知るのであ
る。
Some of the above-mentioned fluid type systems are configured to convert the deviation of the gas flow caused by Coriolika caused by the rotation of the vehicle into a temperature change, and convert the amount of change into an electric signal. The rotational speed of the vehicle is determined from the electrical signal level, and the rotational speed is time-integrated using known electrical circuit technology to determine the relative rotational angle He from the reference position of the vehicle before its rotational movement.

上記振動型については1図面を参照しながら説明する。The above vibration type will be explained with reference to one drawing.

第1図は従来の圧電効果を用いた角速度検出装置の斜視
図である。10!L、10bは圧電バイモルフからなる
駆動素子であり、20&+20bは圧電バイモルフから
なる検知素子である。
FIG. 1 is a perspective view of a conventional angular velocity detection device using a piezoelectric effect. 10! L and 10b are drive elements made of piezoelectric bimorphs, and 20&+20b are sensing elements made of piezoelectric bimorphs.

4Fi上記駆動素子を固定するベース基板であり。4Fi This is a base substrate on which the above drive element is fixed.

3a、3bは上記圧電バイモルフを結合する継手である
。6は上記駆動素子が前記駆動素子の厚み方向に円弧を
描いて振動する方向であり、6は回転系の回転軸である
。以上のように構成された角速度検出装置について動作
を説明すると、圧電バイモルフからなる検知素子と駆動
素子は、継手を介してほぼ90 の角度で接続され、前
記駆動素子がその主面において円弧状に振動し回転系の
回転軸上に角速度があると、前記主面に働らくコリオリ
カによって屈曲し角速度に比例した電気信号が圧電効果
により発生する。この電気信号を公知の電気回路技術に
より時間積分して、ビークルの回転運動前の基準位置か
らの相対的な回転角を知るのである。しかしながら前記
2種類の従来例には以下の問題点が存在する。
3a and 3b are joints that connect the piezoelectric bimorphs. Reference numeral 6 indicates a direction in which the drive element vibrates in an arc in the thickness direction of the drive element, and reference numeral 6 indicates a rotation axis of the rotation system. To explain the operation of the angular velocity detection device configured as above, the sensing element made of a piezoelectric bimorph and the driving element are connected through a joint at an angle of approximately 90 degrees, and the driving element is arranged in an arc shape on its main surface. When there is an angular velocity on the rotational axis of the vibrating and rotating system, the main surface is bent by Coriolis, and an electric signal proportional to the angular velocity is generated due to the piezoelectric effect. This electrical signal is time-integrated using known electrical circuit technology to determine the relative rotational angle from the reference position of the vehicle before its rotational movement. However, the above two types of conventional examples have the following problems.

(1)「流体型」角速度検出装置の場合1)ガス流を形
成する為の駆動装置がいる。即ち、ビークルの回転とい
う力学的変化量を変5べ一:: えてやる必要があり、その為余分の装置がいる。
(1) In the case of a "fluid type" angular velocity detection device 1) There is a driving device for forming a gas flow. That is, it is necessary to change the amount of mechanical change in the rotation of the vehicle, which requires extra equipment.

2)回転に対応したガス流の偏移金属ちに電気信号に変
えるのでなく温度変化という別の変化量に変換したもの
を電気量に変える為に、前記ガス流の偏移に感応する為
の1組のサーミスタが要る。
2) Deviation of the gas flow in response to the rotation of the metal In order to convert the amount of change, which is not converted into an electrical signal, into an electrical quantity, a change in the gas flow that responds to the deviation of the gas flow is used. One set of thermistor is required.

(II)  r振動型」角速度検出装置の場合1)市販
の装置では内径の小さいケースにて、検知素子を円弧状
に往復振動させている為に、前記検知素子と前記ケース
内壁及び2枚からなる検知素子間が接触する恐れがあシ
、その為に非常に高度な組立精度が要求される。
(II) In case of "r vibration type" angular velocity detection device 1) In commercially available devices, the detection element is vibrated back and forth in an arc shape in a case with a small inner diameter, so there is a There is a risk that the sensing elements may come into contact with each other, so a very high level of assembly precision is required.

2)駆動素子が2枚の圧電バイモルフから構成されてい
る為に、各バイモルフの共振周波数に差が生じて、前記
2枚全体を、前記二つの共振周波数の平均周波数で駆動
する際に、各バイモルフの振動変位が、各年−の前記共
振周波数のそれよシ減少して、一定角速度に対する検知
出力感度が低下する恐れがある。
2) Since the driving element is composed of two piezoelectric bimorphs, there is a difference in the resonant frequency of each bimorph, and when driving the two piezoelectric bimorphs at the average frequency of the two resonant frequencies, each The vibration displacement of the bimorph decreases from that of the resonant frequency each year, and there is a possibility that the sensitivity of the detection output to a constant angular velocity decreases.

3)主構成部品の圧電バイモルフと継手等の部品点数が
多い為に、電気的接続及び接着結合等の箇所が多く製造
工程が複雑になり易い。
3) Since there are a large number of parts such as the piezoelectric bimorph as the main component and joints, the manufacturing process tends to be complicated due to the large number of electrical connections and adhesive connections.

発明の目的 本発明の目的は、B方式における従来例の上記問題点を
全て解決したビークル用の角速度検出装置を提供するこ
とである。
OBJECTS OF THE INVENTION An object of the present invention is to provide an angular velocity detection device for a vehicle that solves all of the above-mentioned problems of the conventional B method.

発明の構成 本発明の角速度検出装置は、少なく共1個のアキュトロ
ン音叉と、2n(n:自然数)枚の矩形状圧電圧バイモ
ルフとを主構成要素とし、上記1個の音叉の各校の長さ
方向の互いに反対側の主面に上記バイモルフが少なく共
各1枚前記音叉の主面と、長さ方向を共有して電気的に
導通するように装着されており、前記両者の長さ方向が
回転体の回転軸方向とほぼ平行に前記回転体上に設置さ
れた素子部と、上記音叉の各校としての鋼板が前記回転
体の回転に伴ない互いに逆相のコリオリカを受けて屈曲
し、それに伴ない出力される上記各組のバイモルフから
の合成電気信号を通過せしめ7ti−コ゛ る帯域通過フィルタと、前記フィルタ通過後の信号を増
幅する交流増幅器と、前記増幅器通過後の電流信号の位
相全検波する位相検波回路と、上記アキュトロン音叉と
前記検波回路に与えるべき交流電圧を発生させるアキュ
トロン駆動回路と、前記検波回路により検波された検波
信号から上記アキュトロン音叉の主面に装着された上記
バイモルフが回転角速度に対応して厚み方向に屈曲する
ことにより発生する電気信号を取り出す低域通過フィル
タと、前記フィルタ通過後の信号を増幅する直流増幅器
とを具備し、上記回転系の角速度全検知できるように構
成したものであり、これにより構成が簡素化されたもの
となるのである。
Structure of the Invention The angular velocity detection device of the present invention has at least one Accutron tuning fork and 2n (n: natural number) rectangular piezoelectric bimorphs as main components, and has a main component of each of the tuning forks. One bimorph is attached to each of the main surfaces of the tuning fork on opposite sides in the longitudinal direction so as to share the longitudinal direction with the main surface of the tuning fork so as to be electrically conductive, and The element section installed on the rotary body substantially parallel to the rotational axis direction of the rotary body and the steel plates serving as each member of the tuning fork are bent by receiving Coriolis of opposite phase to each other as the rotary body rotates. , a 7ti-coupled band-pass filter that passes the combined electrical signals outputted from each set of bimorphs, an AC amplifier that amplifies the signal that has passed through the filter, and a current signal that has passed through the amplifier. a phase detection circuit that performs full phase detection; an Accutron drive circuit that generates an alternating current voltage to be applied to the Accutron tuning fork and the detection circuit; It is equipped with a low-pass filter that extracts an electrical signal generated when the bimorph bends in the thickness direction in response to the rotational angular velocity, and a DC amplifier that amplifies the signal after passing through the filter, and detects the entire angular velocity of the rotation system. This allows the configuration to be simplified.

実施例の説明 以下本発明に基づく角速度検出装置を図面に基づいて説
明する。第2図は本発明に基づく前記検出装置の一つの
具体例を示すブロックダイヤグラムで、矢印や数字及び
文字によって示される各構成要素と、その作用について
順次説明する。
DESCRIPTION OF EMBODIMENTS An angular velocity detection device according to the present invention will be described below with reference to the drawings. FIG. 2 is a block diagram showing one specific example of the detection device according to the present invention, and each component indicated by arrows, numbers, and letters and its operation will be explained in sequence.

アキュトロン音叉からなる駆動部1oと、圧電素子から
なる検知部2oは夫々ビークルに固定され、ビークルに
方向角の変位割合すなわち回転角速度が生じると、前記
検知部より前記角速度に対応した各検知素子からの合成
電気信号が発生する。
A driving section 1o consisting of an Accutron tuning fork and a detecting section 2o consisting of a piezoelectric element are each fixed to the vehicle, and when a displacement rate of the direction angle, that is, a rotational angular velocity occurs in the vehicle, the detecting section 1o detects a signal from each detecting element corresponding to the angular velocity. A composite electrical signal is generated.

30は前記合成電気信号を通過せしめる為の帯域通過フ
ィルタを示し、上記検知部2oからの信号に含まれる前
記信号以外の諸雑音金取り除く役割を果すものである。
Reference numeral 30 denotes a band pass filter for passing the composite electric signal, and serves to remove various noises other than the signal contained in the signal from the detection section 2o.

4oは前記帯域通過フィルタ後の信号を増幅せしめる交
流増幅器であり、50は電流信号の位相を検波する為の
位相検波回路を示す。60は上記駆動部1oと前記検波
回路6゜に与えるべき交流電圧を発生させるアキュトロ
ン駆動回路を示し、上記駆動部1oに対しては駆動電圧
を与える為の役割を、また前記位相検波回路50vC対
しては検波機能を発動せしめる為の基準信号としての役
割を夫々になうものである。7゜は前記位相検波回路6
oにより検波された検波信号から上記検知部2oの回転
角速度に対応した信号を取り出す低域通過フィルタを示
す。8oFi前記低域通過フィルタ通過後の信号を増幅
せしめる9ベーコ! 直流増幅器を示し、そこから出力信号Ωは、前記ビーク
ルの相対回転角速度に対応する。上記の説明から推定さ
れる様に、矢印付実線は電気信号の流れを表わしている
4o is an AC amplifier for amplifying the signal after the band-pass filter, and 50 is a phase detection circuit for detecting the phase of the current signal. Reference numeral 60 denotes an Accutron drive circuit that generates an AC voltage to be applied to the drive unit 1o and the detection circuit 6°, which plays the role of providing a drive voltage to the drive unit 1o, and also plays the role of supplying the drive voltage to the phase detection circuit 50vC. Each of these serves as a reference signal for activating the detection function. 7° is the phase detection circuit 6
A low-pass filter is shown for extracting a signal corresponding to the rotational angular velocity of the detection unit 2o from the detection signal detected by the detector 2o. 8oFi 9Baco which amplifies the signal after passing through the low pass filter! A DC amplifier is shown, from which the output signal Ω corresponds to the relative rotational angular velocity of the vehicle. As inferred from the above explanation, the solid line with arrows represents the flow of electrical signals.

第3図〜第5図は第2図に示された実施例における要素
10と20の具体的な構成と機能を説明するだめの断面
図である。
3 to 5 are cross-sectional views for explaining the specific structure and function of elements 10 and 20 in the embodiment shown in FIG. 2.

まず第3図は素子部の構成を示す断面図であり、第4図
は第3図のA−五線断面における拡大図である。1oC
はアキュトロン音叉の長さ方向の両枝先端7a、7bに
、磁石とコイルを巻き付けである鉄片が具備されており
、前記音叉の主軸をペース基板41Lに固定してなる駆
動素子である。
First, FIG. 3 is a sectional view showing the structure of the element section, and FIG. 4 is an enlarged view of the section taken along the line A-5 in FIG. 3. 1oC
The Accutron tuning fork is provided with an iron piece around which a magnet and a coil are wound at both ends 7a and 7b of its longitudinal branches, and is a driving element in which the main shaft of the tuning fork is fixed to the pace board 41L.

20CI 2odは同一形状の矩形状圧電バイモルフで
あり、前記バイモルフの主面上の長さ方向を上記音叉の
各校の主面上の長さ方向と平行に配置し、前記音叉の互
いに反対側の主面〔第4図においては81Lと8bまた
は80と8dを意味する〕に上記バイモルフの主面を電
気的に導通するように装着された検知素子である。尚上
記素子部は、10  ′ 前記駆動素子として機能する上記アキュトロン音叉の長
さ方向及び前記検知素子として機能する上記バイモルフ
の長さ方向が回転系の回転軸51Lとほぼ平行に、前記
回転系上に設置されているものである。
20CI 2od is a rectangular piezoelectric bimorph with the same shape, and the length direction on the main surface of the bimorph is arranged parallel to the length direction on the main surface of each of the tuning forks, and This is a sensing element mounted on the main surface (referring to 81L and 8b or 80 and 8d in FIG. 4) so as to electrically conduct the main surface of the bimorph. The element section is arranged such that the length direction of the Accutron tuning fork functioning as the drive element and the length direction of the bimorph functioning as the detection element are substantially parallel to the rotation axis 51L of the rotation system. It is installed in

第5図は素子部の機能を示す断面図であり、第6図は第
5図のB−B線断面における拡大図である。70,7d
、76.7fはアキュトロン音叉を駆動させる加振器に
給電させる為の電気的接続端子部である。アキュトロン
音叉からなる駆動素子10dは上記端子部より正弦波電
気信号で駆動させると、前記音叉の2枚の各校は幅方向
に互いに逆相の振動e51L’i行なう。前記振動に伴
ない検知素子としての機能を有する矩形状圧電バイモル
フ206 +  2 Ofも上記振動6aが起る。上記
駆動素子及び上記検知素子の長さ方向を軸とする回転が
起ると、上記音叉の各校には互いに逆相のコリオリカが
発生する。前記コリオリカは前記音叉の基定部より長さ
方向に長い程強くなるので、前記基定部より死線形状に
屈曲する。前記屈曲する1 1S−’; こと故に上記アキュトロン音叉の各校の主面に密着する
如く密着せしめた上記バイモルフからは。
FIG. 5 is a cross-sectional view showing the function of the element portion, and FIG. 6 is an enlarged view of the cross section taken along the line B--B in FIG. 70,7d
, 76.7f are electrical connection terminals for supplying power to the vibrator that drives the Accutron tuning fork. When the driving element 10d, which is an Accutron tuning fork, is driven by a sine wave electric signal from the terminal portion, each of the two tuning forks vibrates in opposite phases to each other in the width direction. The vibration 6a also occurs in the rectangular piezoelectric bimorph 206 + 2 Of that functions as a detection element due to the vibration. When the driving element and the sensing element rotate about the longitudinal direction, Coriolis of opposite phase is generated in each of the tuning forks. The Coriolis becomes stronger as it is longer in the length direction than the base part of the tuning fork, so it is bent into a dead line shape from the base part. The bent 11S-'; Therefore, from the bimorph that is brought into close contact with the main surface of each of the Accutron tuning forks.

正の圧電効果により、上記回転の角速度に比例した電気
信号が発生する。々お遠心力や加速度成分の外部振動に
よる誤差成分を取り除く為に、(以下第4図について説
明する)上記検知素子の役割をする上記矩形状圧電バイ
モルフ2枚相互の表裏面電極を等電位とするよう電気結
線9aと9b及び9Cと9dilし、前記外部振動の影
響を著減している。9aと9bの一端と、90と9dの
一端との両端子間より、角速度に比例した合成電気信号
90のみが結果として取り出される。尚、上記の説明で
は検知素子として2枚の矩形状圧電バイモルフを用いた
場合を上げたが、原理的には発明の構成で述べた如く、
偶数枚のバイモルフを用いてよいものである。尚、本発
明に基づく角速度検出装置の用途としてあげたビークル
としては、例えば車輌・船舶・航空機・ロボット等があ
げられ、それらの姿勢制御ならびに自動操縦に用いるこ
とがでさるものである。
The positive piezoelectric effect generates an electrical signal proportional to the angular velocity of said rotation. In order to remove error components caused by external vibrations of centrifugal force and acceleration components, the front and back electrodes of the two rectangular piezoelectric bimorphs, which serve as the sensing elements (described below with reference to FIG. 4), are made to have equal potential. The electrical connections 9a and 9b and 9C are connected at 9dil to significantly reduce the influence of the external vibration. As a result, only a composite electric signal 90 proportional to the angular velocity is taken out between one end of 9a and 9b and one end of 90 and 9d. Although the above explanation deals with the case where two rectangular piezoelectric bimorphs are used as the sensing elements, in principle, as described in the structure of the invention,
An even number of bimorphs may be used. The angular velocity detection device according to the present invention may be used in vehicles, ships, aircraft, robots, etc., and the device can be used for attitude control and automatic operation.

発明の効果 以上の説明から明らかなように、本発明に基づく角速度
検出装置は、構成が簡単であり、組立(製造)も容易で
ある。また、駆動部が良く知られたアキュトロン音叉で
ありかつ、検知素子としての圧電バイモルフも上記音叉
の鋼板に密着せしめられている為に、機械的強度も高く
信頼性の高いものであり、工業的価値が太さい。
Effects of the Invention As is clear from the above description, the angular velocity detection device based on the present invention has a simple configuration and is easy to assemble (manufacture). In addition, the driving part is the well-known Accutron tuning fork, and the piezoelectric bimorph as the detection element is also tightly attached to the steel plate of the tuning fork, so it has high mechanical strength and high reliability, making it suitable for industrial use. The value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の角速度検出装置の斜視図、第2図は本発
明の角速度検出装置の構成例を説明するためのブロック
ダイヤグラム、第3図及び第4図は一実施例における構
成全説明するための断面図、第5図及び第6図は一実施
例における機能を説明するだめの断面図である。 3a+  3b・・・・・・継手、4,4a・・・・・
・ベース基板、5.5&・・・・・・回転軸、6,6a
・・・・・・屈曲振動する方向、7a、7b・旧・・電
磁石、7C,7d、  7e。 7f・・・・・・電気的接続端子、8J  8b、sc
、sa・・・・・・アキュトロン音叉の主面、9!L、
9b、90゜13べ一=2゛ 9d・・・・・・矩形状圧電バイモルフの表裏面電極、
10゜1 C1,I Qb、100,106−−−・−
、駆動素子、201 20!L、20b、20Q、20
(1・・−・検知素子、30・・・・・・帯域通過フィ
ルタ、40・・・・・・交流増幅器、5o・・・・・・
検波回路、60・・・・・・アキュトロン駆動回路、7
0・・・・・・低域通過フィルタ、80・・・・・・直
流増幅器、9o・・・・・・合成電気信号。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第3図 第5図 第4図
FIG. 1 is a perspective view of a conventional angular velocity detection device, FIG. 2 is a block diagram for explaining a configuration example of the angular velocity detection device of the present invention, and FIGS. 3 and 4 explain the entire configuration of one embodiment. FIGS. 5 and 6 are cross-sectional views for explaining the functions of one embodiment. 3a+ 3b...Joint, 4,4a...
・Base board, 5.5 &... Rotating shaft, 6, 6a
...Direction of bending vibration, 7a, 7b, old...electromagnet, 7C, 7d, 7e. 7f... Electrical connection terminal, 8J 8b, sc
, sa...Main surface of Accutron tuning fork, 9! L,
9b, 90°13be=2゛9d... Front and back electrodes of rectangular piezoelectric bimorph,
10゜1 C1, I Qb, 100,106----
, drive element, 201 20! L, 20b, 20Q, 20
(1...detection element, 30...bandpass filter, 40...AC amplifier, 5o...
Detection circuit, 60... Accutron drive circuit, 7
0...Low pass filter, 80...DC amplifier, 9o...Synthesized electrical signal. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3 Figure 5 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 少なく共1個のアキュトロン音叉と、2n(n:自然数
)枚の矩形状圧電バイモルフとを主構成要素とし、上記
1個の音叉の各校の長さ方向の互いに反対側の主面に上
記バイモルフが少なく共各1枚前記音叉の主面と、長さ
方向を共有して電気的に導通するように装着されており
、前記両者の長さ方向が回転体の回転軸方向とほぼ平行
に前記回転体上に設置された素子部と、上記音叉の各校
としての鋼板が前記回転体の回転に伴ない互いに逆相の
コリオリカを受けて屈曲し、それに伴ない出力される上
記各組のバイモルフからの合成電気信号を通過せしめる
帯域通過フィルタと、前記フィルタ通過後の信号全増幅
する交流増・幅器と・前記増幅器通過後の電流信号の位
相全検波する位相検波回路と、上記アキュトロン音叉と
前記検波回路に与えるべき交流電圧を発生させるアキュ
トロン駆動回路と、前記検波回路により検波された検波
信号から上記アキュトロン音叉の主面に装着された上記
バイモルフが回転角速度に対応して厚み方向に屈曲する
ことにより発生する電気信号を取り出す低域通過フィル
タと、前記フィルタ通過後の信号全増幅する直流増幅器
とを具備し、上記回転系の角速度を検知できるように構
成された角速度検出装置。
The main components include at least one Accutron tuning fork and 2n (n: natural number) rectangular piezoelectric bimorphs, and the bimorphs are arranged on the main surfaces of each tuning fork on opposite sides in the longitudinal direction. One of each of the tuning forks is mounted so as to share the length direction with the main surface of the tuning fork and be electrically conductive with the main surface of the tuning fork, and the length direction of both of the tuning forks is substantially parallel to the rotational axis direction of the rotating body. As the rotating body rotates, the element section installed on the rotating body and the steel plate serving as each member of the tuning fork are bent by receiving Coriolis of opposite phase to each other as the rotating body rotates, and each set of bimorphs is output accordingly. a band-pass filter that allows a synthesized electrical signal to pass through; an AC amplifier/amplifier that fully amplifies the signal that has passed through the filter; a phase detection circuit that fully detects the phase of the current signal that has passed through the amplifier; and the Accutron tuning fork. An Accutron drive circuit generates an alternating current voltage to be applied to the detection circuit, and the bimorph attached to the main surface of the Accutron tuning fork bends in the thickness direction in accordance with the rotational angular velocity based on the detection signal detected by the detection circuit. An angular velocity detection device configured to be able to detect the angular velocity of the rotation system, comprising a low-pass filter for extracting an electrical signal generated by the above-mentioned rotation, and a DC amplifier for amplifying the entire signal after passing through the filter.
JP58062430A 1983-04-08 1983-04-08 Angular speed detector Pending JPS59188561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58062430A JPS59188561A (en) 1983-04-08 1983-04-08 Angular speed detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58062430A JPS59188561A (en) 1983-04-08 1983-04-08 Angular speed detector

Publications (1)

Publication Number Publication Date
JPS59188561A true JPS59188561A (en) 1984-10-25

Family

ID=13199945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58062430A Pending JPS59188561A (en) 1983-04-08 1983-04-08 Angular speed detector

Country Status (1)

Country Link
JP (1) JPS59188561A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5970793A (en) * 1996-07-08 1999-10-26 Citizen Watch Co., Ltd. Angular velocity sensor and angular velocity sensing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5970793A (en) * 1996-07-08 1999-10-26 Citizen Watch Co., Ltd. Angular velocity sensor and angular velocity sensing system
US6170330B1 (en) 1996-07-08 2001-01-09 Citizen Watch Co., Ltd. Angular velocity sensor and angular velocity sensing system

Similar Documents

Publication Publication Date Title
JP3122142B2 (en) Vibrating gyroscope and assembling method
WO1997027455A9 (en) Vibratory rate gyroscope and method of assembly
WO1993000589A1 (en) Coriolis rate sensor using tunnel-effect displacement sensor
JP3682664B2 (en) Piezoelectric vibration gyro
JPS59188561A (en) Angular speed detector
JPH0752105B2 (en) Angular velocity sensor
US4095477A (en) Two axis rate gyro
JPH02218914A (en) Vibrating gyroscope
JPS59202014A (en) Angular speed detector
JP2785429B2 (en) Angular velocity sensor
JPH06207946A (en) Angular velocity sensor device
JPS60216210A (en) Angular velocity sensor
JPH09159459A (en) Vibrating gyro
JP3360510B2 (en) Angular velocity sensor
JPH041852B2 (en)
JPS61180107A (en) Manufacture of angular velocity sensor element
JPH0464409B2 (en)
JP2699603B2 (en) Angular velocity sensor
JPS59217165A (en) Angular velocity detecting apparatus
JP2005055255A (en) Gyroscope output detection method and gyroscope output detection device
JPH0695098B2 (en) Vibrating gyro
JPS59217166A (en) Angular velocity detecting apparatus
JPS6342417A (en) Piezoelectric body angular velocity sensor
JPH02223819A (en) Differential circuit
JPH05280990A (en) Vibration gyro