JPS59188390A - Controller of thyristor converter - Google Patents
Controller of thyristor converterInfo
- Publication number
- JPS59188390A JPS59188390A JP58059274A JP5927483A JPS59188390A JP S59188390 A JPS59188390 A JP S59188390A JP 58059274 A JP58059274 A JP 58059274A JP 5927483 A JP5927483 A JP 5927483A JP S59188390 A JPS59188390 A JP S59188390A
- Authority
- JP
- Japan
- Prior art keywords
- current
- control
- angle
- main circuit
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims description 8
- 230000004044 response Effects 0.000 abstract description 6
- 230000006870 function Effects 0.000 abstract description 4
- 230000000295 complement effect Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 8
- 238000010304 firing Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000000747 cardiac effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 208000008918 voyeurism Diseases 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P7/00—Arrangements for regulating or controlling the speed or torque of electric DC motors
- H02P7/06—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current
- H02P7/18—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power
- H02P7/24—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
- H02P7/28—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
- H02P7/285—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
- H02P7/292—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using static converters, e.g. AC to DC
- H02P7/293—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using static converters, e.g. AC to DC using phase control
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S388/00—Electricity: motor control systems
- Y10S388/90—Specific system operational feature
- Y10S388/902—Compensation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S388/00—Electricity: motor control systems
- Y10S388/907—Specific control circuit element or device
- Y10S388/917—Thyristor or scr
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Direct Current Motors (AREA)
- Rectifiers (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の牙U用分野〕
本発明は点弧位相制御によシ逆起亀力を発生する負荷に
供給する電力を可変できるサイリスク変換器の制御装置
に係り、特に電流断続時の非線形性による応答特性を補
償するようにしたサイリスタ変換器の制御装置に関する
。[Detailed Description of the Invention] [Field of the Invention] The present invention relates to a control device for a cyrisk converter that can vary the power supplied to a load that generates a back motive force by ignition phase control, and in particular, The present invention relates to a control device for a thyristor converter that compensates for response characteristics due to nonlinearity when current is interrupted.
良く知られているように、サイリスタ変換器によ、!S
l直流電動機や交流電動機を駆動することが行われてい
る。As is well known, by the thyristor converter! S
l It is practiced to drive a DC motor or an AC motor.
ところで、サイリスク変換器でTE電動機駆動する場合
には負荷状態によってサイリスク変換器を流れる電流が
連続したり断続したシする。サイリスク変換器は電流断
続時にその変換特性が非線形となる。そのため、周知の
ようにサイリスタ変換器の制御装置の応答特性が劣化す
る。By the way, when a TE motor is driven by a Cyrisk converter, the current flowing through the Cyrisk converter may be continuous or intermittent depending on the load condition. The conversion characteristics of the Cyrisk converter become nonlinear when the current is interrupted. Therefore, as is well known, the response characteristics of the control device for the thyristor converter deteriorate.
このことを解決するために、次のような非線形補償方法
が提案されている。この非線形補償方法はサイリスタ変
換器の直流出力平均電圧が電流連続時と断続時とで同一
になる点弧制御角(制御遅れ角)の差(制御偏差角〕を
求め、電流断続時には位相制御信号から求まる位相設定
角に制御偏差角を加算して点弧制御角とすることによシ
非線形補償を行うものである。To solve this problem, the following nonlinear compensation method has been proposed. This nonlinear compensation method calculates the difference (control deviation angle) in the firing control angle (control delay angle) at which the DC output average voltage of the thyristor converter is the same when the current is continuous and when the current is intermittent, and when the current is intermittent, the phase control signal is Nonlinear compensation is performed by adding the control deviation angle to the phase setting angle found from the above to obtain the ignition control angle.
この非線形補償方法の実用に際しては制御偏差角を演算
により求めなければならない。制御偏差角は主として電
動機によって定まる主回路定数を考慮して演算する必要
がある。電動機は仕様通つに製作しても電動機定数に誤
差があシ、また、電動機定数は経年変化する。主回路定
数設定値と実際の主回路定数が一致しないと電流連続時
に補償したシ、電流断続領域になっても補償しなくなる
。When this nonlinear compensation method is put into practice, the control deviation angle must be calculated. The control deviation angle must be calculated mainly by considering the main circuit constant determined by the electric motor. Even if a motor is manufactured to specifications, there will be errors in the motor constants, and the motor constants will change over time. If the main circuit constant setting value and the actual main circuit constant do not match, compensation will not be made even if the current is in the intermittent current region, even if it is compensated when the current is continuous.
主回路定数設定値が実際の主回路定数よシも小さいと、
電流連続状態であっても電流断続していると判断し制御
偏差角を加算するので過補償となる。逆の場合には電流
断続状態であっても電流連続と判断する領域が存在する
ことになシ、かつ眠流断続状態と判断しても補償する制
御偏差角が少なく不足補償となる。If the main circuit constant setting value is smaller than the actual main circuit constant,
Even if the current is continuous, it is determined that the current is intermittent and the control deviation angle is added, resulting in overcompensation. In the opposite case, even if the current is in an intermittent state, there will be a region in which it is determined that the current is continuous, and even if it is determined that the sleep flow is in an intermittent state, the control deviation angle to be compensated will be small, resulting in insufficient compensation.
過補償になると位相制御信号に対してサイリスタ変換器
の直流出力電圧が小さくなる。直流電圧が低下すると負
荷電流が小きくなり、そのため補償する制御偏差角が犬
きくなるという正帰還状態となる。一方、不足補償の場
合には電流断続時にも非線形補償されない領域が存在し
、かつ補償する領域になっても制御偏差角が小さすぎる
ことになる。When overcompensation occurs, the DC output voltage of the thyristor converter becomes smaller with respect to the phase control signal. When the DC voltage decreases, the load current decreases, resulting in a positive feedback state in which the control deviation angle to be compensated increases. On the other hand, in the case of insufficient compensation, there will be a region in which nonlinear compensation is not performed even when the current is interrupted, and even if the region is compensated, the control deviation angle will be too small.
このように、過補償と不足補償のいずれの場合にも最適
な非線形補償を行い応答性を改善するということができ
なくなる。In this way, in both cases of over-compensation and under-compensation, it becomes impossible to perform optimal non-linear compensation and improve responsiveness.
本発明は上記点に対処して成されたもので、その目的と
するところは、実際の主回路定数に応じて最適な非線形
補償を行なえるサイリスタ変換器の制御装置を提供する
ことにある。The present invention has been made in view of the above-mentioned problems, and its object is to provide a control device for a thyristor converter that can perform optimal nonlinear compensation according to actual main circuit constants.
本発明の特徴とするところは負荷電流が断続状態から連
続状態になる負Vi電流(断連境界値)を検出し、主回
路定数を実際の主回路定数に合せるように自動設定して
最適な非線形補償を行なうようにしたことにある。The feature of the present invention is that it detects the negative Vi current (interruption boundary value) where the load current changes from an intermittent state to a continuous state, and automatically sets the main circuit constant to match the actual main circuit constant. The reason is that nonlinear compensation is performed.
まず、本発明を採用する代表的な一例でるるサイリスタ
をグレーツ結線したサイリスタ変換器によp直流電動機
を駆動する静止レオナードの制御装置を第1図により説
明する。First, a stationary Leonard control device that drives a p-direct current motor using a thyristor converter in which thyristors are connected in a Graetz connection will be described with reference to FIG. 1, which is a typical example of the present invention.
第1図において、1は電源変圧器、2は交流電流を検出
する変流器、3は商用周波数の交流を可変電圧の直流に
変換するサイリスタ変換器、4は直流電動機、5は速度
検出器、6は速度指令値SRと速度検出器5からの速度
帰還値SFとの偏差に応じた電流指令値IRを発生する
速度制御回路、7は変流器2の出力を直流に変換する電
流検出回路、8I′i電流指令値IRと電流検出回路7
からの電流帰還値工、との偏差に応じた制御角指令vR
を発生する電流制御回路、9は制御角指令vRに従った
点弧制御角αで点弧パルスを発生しサイリスタ変換器3
の点弧制御を行う位相制御回路である。In Figure 1, 1 is a power transformer, 2 is a current transformer that detects alternating current, 3 is a thyristor converter that converts commercial frequency alternating current to variable voltage direct current, 4 is a direct current motor, and 5 is a speed detector. , 6 is a speed control circuit that generates a current command value IR according to the deviation between the speed command value SR and the speed feedback value SF from the speed detector 5, and 7 is a current detection circuit that converts the output of the current transformer 2 into DC. Circuit, 8I'i current command value IR and current detection circuit 7
Control angle command vR according to the deviation from the current feedback value from
A current control circuit 9 generates a firing pulse at a firing control angle α according to a control angle command vR, and a thyristor converter 3
This is a phase control circuit that performs ignition control.
かかる構成の動作は良く知られており詳細説明を省略す
るが、要するに、電動機電流■1が電流指令値Inとな
るような制御角指令VRに応じた制御角αでサイリスタ
変換器3の点弧制御を行うことによシミ動機速度SFを
速度指令値SRとなるように制御するものである。The operation of this configuration is well known and detailed explanation will be omitted, but in short, the thyristor converter 3 is ignited at the control angle α according to the control angle command VR such that the motor current ■1 becomes the current command value In. By performing the control, the stain motive speed SF is controlled to become the speed command value SR.
第2図に本発明の一実施例を示す。FIG. 2 shows an embodiment of the present invention.
第2図において、第1図と同一記号のものは相当物を示
し、10は位相制御信号VRを逆余弦変換し設定制御角
αを出力する逆余弦変換器、11は設定制御角αにより
第3図に示す如き補正係数klを求める補正係数演$6
.12は断続開始点を定める掛算器で、電源電圧E2と
インダクタンスX(電源および電!vI機)により定ま
る主回路定数にと電動機電流工、を掛算する。13は補
正係数klと掛算器12の出力に■、を掛算する掛算器
、14は掛算器13の出力に応じて第4図に示す如き偏
差角θを出力する関数発生器、15は設定制御角αと偏
差角θを加算し、制御角α′を出力する加算器、20は
サイリスタ変換器3に点弧パルスを与えるゲート出力回
路、21はスイッチ、22は電流断続時にa側に閉路し
、連続時にb 1011に閉路する切換スイッチ、24
は主回路定数設定値に、と割算器25の出力を掛算する
掛算器、26は負荷電流が断連境界値を通過したときの
径算器13の出力(電流評価信号)を記憶するメモリー
回路、27は瞬時電流検出器、28は電流零検出器、2
9は負荷電流の連続と断続を検出する断連検出器、30
は負荷電流が断連境界1直を通過したことを検出する境
界値通過検出器、32d平均電流検出回路である。In FIG. 2, the same symbols as in FIG. Correction coefficient operation $6 to obtain the correction coefficient kl as shown in Figure 3
.. 12 is a multiplier that determines the intermittent start point, which multiplies the main circuit constant determined by the power supply voltage E2 and the inductance X (power supply and electric power unit) by the motor current. 13 is a multiplier that multiplies the correction coefficient kl and the output of the multiplier 12 by ■, 14 is a function generator that outputs the deviation angle θ as shown in FIG. 4 according to the output of the multiplier 13, and 15 is a setting control. An adder that adds the angle α and the deviation angle θ and outputs the control angle α', 20 is a gate output circuit that provides a firing pulse to the thyristor converter 3, 21 is a switch, and 22 is closed to the a side when the current is interrupted. , selector switch that closes to b 1011 when continuous, 24
is a multiplier that multiplies the main circuit constant setting value by the output of the divider 25, and 26 is a memory that stores the output of the diameter calculator 13 (current evaluation signal) when the load current passes the disconnection boundary value. circuit, 27 is an instantaneous current detector, 28 is a zero current detector, 2
9 is a discontinuity detector that detects continuity and discontinuity of load current; 30
is a boundary value passage detector, which detects that the load current has passed through the disconnection boundary 1, and a 32d average current detection circuit.
次(にその動作を説明する。The operation will be explained next.
捷ず、本発明の理解を容易にするため電流断続時に制御
偏差角を加算すると非線形補償が行えることについて説
明する。In order to facilitate understanding of the present invention, we will explain that nonlinear compensation can be performed by adding the control deviation angle when the current is interrupted.
電流連続時におけるサイリスタ変換器3に印加される交
流適圧(電源変圧器1の2次電圧)E2、直流出力電圧
hdおよび点弧匍]@l角αとの関係は次式のように近
似できる。The relationship between the AC appropriate voltage (secondary voltage of the power transformer 1) E2 applied to the thyristor converter 3 during continuous current, the DC output voltage hd, and the ignition angle α is approximated as follows: can.
、3v″T
Vd= −E2CIJS(t −−
−(1]また、位相制御回路9に入力される位相制御信
号vRと直流電圧vdの関係は1
.3Vf
Vd千□E 2 C03V R・・・・・・・・・(2
)となシ、非線形なものとなる。, 3v″T Vd= −E2CIJS(t −−
-(1) Also, the relationship between the phase control signal vR input to the phase control circuit 9 and the DC voltage vd is 1.3Vf Vd1,000□E 2 C03V R (2
), it becomes nonlinear.
これを線形化するため位相制御回路9の移相特性をα=
CO3” V it としている。つまり、(2)式
は、3V7
Vd千□E 2CO3(にO3″”VR)となる。In order to linearize this, the phase shift characteristic of the phase control circuit 9 is α=
CO3''V it.In other words, equation (2) becomes 3V7 Vd 1,000□E 2CO3 (to O3''''VR).
このように、位相制御信号VRと直流電圧Vdの関係を
線形化しても、サイリスク変換器3の変換特性は非線形
となる。In this way, even if the relationship between the phase control signal VR and the DC voltage Vd is linearized, the conversion characteristics of the Cyrisk converter 3 become nonlinear.
このことを3相のサイリスタ変換器について第5図、第
6図を用いて説明する。This will be explained with reference to FIGS. 5 and 6 for a three-phase thyristor converter.
いま、腑5図(a)に示すように、点弧制御角がα1で
電動機電流■、がθ1だけ通流し断続しているとする。Now, as shown in Figure 5 (a), it is assumed that the ignition control angle is α1 and the motor current {circle around (2)} is conducted intermittently by θ1.
この状態においてサイリスタ変換器の直流電圧(瞬時電
圧)Voは無′覗流期間(−一θ! )において直流電
動機4の誘起電圧VMとなる。そのため、平均電圧V
a 1 v′iハンチングした分だけ大きくなシ点線の
ようになる。In this state, the DC voltage (instantaneous voltage) Vo of the thyristor converter becomes the induced voltage VM of the DC motor 4 during the non-peeping period (-1 θ!). Therefore, the average voltage V
a 1 v′i It looks like a dotted line that is larger by the amount of hunting.
一方、電流連続時に電流断続時の平均電圧Vaと同一の
平均電圧を発生させるには第5図(b)に示す如く制御
角がα2となる。同図よシ明らかなように、制御角α2
は電流断続時の制御角αl よシ小さくなっている。こ
のことは(α1−α2 )を偏差角θとすると、電流断
続時には制御角が実際の制御角よシ小さい値で制御され
ていることを示している。On the other hand, in order to generate the same average voltage Va when the current is continuous as the average voltage Va when the current is interrupted, the control angle is α2 as shown in FIG. 5(b). As is clear from the figure, the control angle α2
is smaller than the control angle αl when the current is interrupted. This shows that when (α1-α2) is the deviation angle θ, the control angle is controlled to a value smaller than the actual control angle when the current is interrupted.
したがって、(3)式の線形の関係で制御しても、直流
電圧Vaと位相制御信号VBの関係は非線形になる。Therefore, even if the control is performed using the linear relationship of equation (3), the relationship between the DC voltage Va and the phase control signal VB becomes nonlinear.
一方、位相制御信号VRと直流電流(平均値)■1の関
係についてみると、直流電流Idは次式のように表わせ
る。On the other hand, looking at the relationship between the phase control signal VR and the DC current (average value) 1, the DC current Id can be expressed as shown in the following equation.
R:電動機の等価抵抗
この(4)式に(3)式を代入し信号VRと直流電流■
、の関係を求めると次式のようになる。R: Equivalent resistance of the motor Substituting equation (3) into equation (4), the signal VR and DC current ■
The relationship between , and is calculated as follows.
(5)式から明らかなように、電流連続時には信号VR
と電流の関係は線形になるか、電流断続時には上述した
ように無電流期間に平均電圧V、iが誘起電圧VMとな
るため、換呂すると、電源変圧器1と直流電動機4の間
がサイリスタ変換器3によシ切シ離された状態になるた
め直流電uk I aは小さくなる。したがって、電流
断続時には信号VRと電流■1の関係は非線形となる。As is clear from equation (5), when the current is continuous, the signal VR
The relationship between the current and the current is linear, or when the current is intermittent, the average voltage V, i becomes the induced voltage VM during the no-current period as described above. Since the converter 3 is in a disconnected state, the DC current uk Ia becomes small. Therefore, when the current is interrupted, the relationship between the signal VR and the current 1 becomes non-linear.
この関係を示したのが第6図であり、電流連続唄域は直
線とな9、断続領域では曲線となる特性Ca)、(b)
、 (C)となる。This relationship is shown in Fig. 6, where the continuous current range is a straight line9, and the intermittent current range is a curved line (Ca), (b).
, (C).
特性(a)、 (b)、 (C)のようになるのは誘起
電圧VMの大きさによって変化する。これは、第7図の
ように誘起電圧vMが大きいと平均電圧vd金大きくす
るため制御角αを小さくし、d起嵯圧VMが小さいとき
には制御角を大きくすることになる。この赤の瞬時電圧
vOは第7図のようになるが、同図(a)に示すように
制御角α3と小ざい場合の瞬時電圧v、)のリップルに
対し、同図(b)に示すように制御角α4 (C4〉C
3)と大きいときの瞬時蓋圧VQのリップルが大きくな
る。このだめ、誘起′醒圧VMが小さくなると工期間だ
け電流が流れ続けるための平均゛電流■、は大きくなる
ためである。The characteristics (a), (b), and (C) change depending on the magnitude of the induced voltage VM. This means that when the induced voltage vM is large as shown in FIG. 7, the control angle α is made small in order to increase the average voltage vd, and when the induced voltage VM is small, the control angle is made large. This red instantaneous voltage vO is as shown in Fig. 7, but the ripple of the instantaneous voltage v, ) when the control angle α3 is small as shown in Fig. 7 (a) is shown in Fig. 7 (b). The control angle α4 (C4〉C
3), the ripple of the instantaneous lid pressure VQ becomes large. This is because, as the induced wake-up pressure VM becomes smaller, the average current for the current to continue flowing during the construction period increases.
以上、第6図に示すように、ttfljt(l指令VR
がら′電流T、へのゲインが、′電流が断続すると急激
に小さくなる。As described above, as shown in FIG. 6, ttfljt(l command VR
The gain to the current T decreases rapidly when the current is intermittent.
ところで、第5図に示すように、電流断続時に直流平均
′電圧を発生する制御角α1と電流連続時に同一の直流
平均電圧V dzを発生するft1lJ呻角α2の間に
ばα2二α1−θとなる関係かをンる。By the way, as shown in FIG. 5, there is a difference between the control angle α1 that generates the DC average voltage when the current is interrupted and the ft1lJ angle α2 that generates the same DC average voltage Vdz when the current is continuous. Find out what the relationship is.
偏差角θは次式のようになる。The deviation angle θ is expressed by the following formula.
θ=ψ−−−δl 川・・・川(6)また
、(6)式のδは通流角で、次式にょシ足まる値である
9、ただし、θが正のときのみ有効であバθが負のとき
は零である。θ=ψ−−−δl River...River (6) Also, δ in equation (6) is the flow angle, which is the value equal to the following equation, 9.However, it is valid only when θ is positive. When θ is negative, it is zero.
(7)式において、E2+ 几、ω、Lは一足であり、
結局偏差角θは電流■1と制御角αにより異なり、第8
図に示す%性となる。In equation (7), E2+, ω, and L are one pair,
After all, the deviation angle θ differs depending on the current ■1 and the control angle α, and the 8th
The percentage is shown in the figure.
すなわち、直流平均電圧Vdは次式のようになる。That is, the DC average voltage Vd is expressed by the following equation.
、3Vj
V a 〒p、2 CO3((1−θ) −
−−−旧・−(81したがって、電流が断続している場
合には71i11呻角αに直流■1および制御角αに応
じた偏差角θを加算したものを実際の制御角α′とすれ
ば十均屯圧は
3v′T
Va = g2ωS(α′−θ〕V7
= −E2CO3(α+θ−θ)
V2
= −E 2 CO5α ・・・・
・・・・・(9)π
となシ、位相指令信号VRと平均′電圧vdの関係は(
2)式と同じになる。すなわち、電流断続時のゲイン特
性は連続時と同じにすることができる。, 3Vj V a 〒p, 2 CO3((1-θ) −
--- Old - (81 Therefore, when the current is intermittent, the actual control angle α' is the sum of the angle α of 71i11 and the deviation angle θ corresponding to the direct current ■1 and the control angle α. The uniform pressure is 3v'T Va = g2ωS (α'-θ) V7 = -E2CO3 (α+θ-θ) V2 = -E 2 CO5α ...
...(9) π and the relationship between the phase command signal VR and the average 'voltage vd is (
2) It becomes the same as Eq. That is, the gain characteristics when the current is intermittent can be made the same as when the current is continuous.
以上の説廟によシミ流断続時に制御偏差角θを加算する
ことによって非線形補償できることが明らかであろう。Based on the above theory, it is clear that nonlinear compensation can be achieved by adding the control deviation angle θ when the stain flow is interrupted.
はて、第2図に戻シその動作を説明する。Now, returning to FIG. 2, the operation will be explained.
境界値通過検出器30は子宮運転時にはスイッチ21を
オンする。この状態にあるとき、関数発生器14は次の
ようにして設定される。The boundary value passage detector 30 turns on the switch 21 during uterine operation. In this state, function generator 14 is set as follows.
第8図において各制御角αにおいて偏差角θが零となる
電流値kI、の値A、B、C,Dと任、故偏差角θ′に
おける電流値k1.の値A’ 、B’。In FIG. 8, the current value kI at which the deviation angle θ becomes zero at each control angle α is set to values A, B, C, and D, so that the current value k1 at the deviation angle θ′ is set. The values of A' and B'.
c/ 、D/の間にはD/A二D’り/A’ 、D/B
=D’ /B’ 、D/C=D’ /C’の関係がある
。Between c/ and D/ there is D/A two D'ri/A', D/B
=D'/B', and D/C=D'/C'.
しだがって、制御角が異なる場合は制御角αに応じた係
数、つまシD/A、D/B、D/Cの係数を電流値kI
、に掛けることによシα;90°の特性にあらゆる制御
角における%注を一致させることができる。すなわち、
制御角αに対する係数に1’fr:第3図のようVC第
8図VC示すC1=9−00CD%−性と同じで、横軸
を係数に1′f:掛けた電流値に、 k■、とした関数
により任意の制御角での偏差角θを求めることができる
。Therefore, when the control angles are different, the coefficients corresponding to the control angle α, the coefficients of the tweezers D/A, D/B, and D/C are used as the current value kI.
, it is possible to match the %note at any control angle to the characteristic of α; 90°. That is,
The coefficient for the control angle α is 1'fr: As shown in Figure 3, the current value is k■ The deviation angle θ at any control angle can be determined by the function .
さて、いまα=400以下で断カッ〔する電流値kI、
二〇、06で運転していたとき、α二300゜45°の
場合を巧°える。α=300のと@は&!3図に示すよ
うKkl=2となるので、klki、=0、06 X
2 = 0.12となシ偏差角θは苓となる。Now, the current value kI that is cut off below α=400,
When I was driving in 20, 06, I tried to solve the case of α2300°45°. α=300 and @ is &! As shown in Figure 3, Kkl = 2, so klki, = 0, 06
2 = 0.12, so the deviation angle θ is equal to 0.12.
一方、α=45°のときにはにに1.42であり、kl
J、=0.085となる。したがって、第4図に示すよ
うに、θ=0.6となバα′=45.6° となる。On the other hand, when α=45°, it is 1.42 and kl
J,=0.085. Therefore, as shown in FIG. 4, θ=0.6 and α'=45.6°.
また、制御角が300以下で断続する′屯光値k I
、 = 0.045で運転していたとすると、α=30
°のときはに1 =2で、klk l A= 0.0
4.5 X2 = 0.09となる。この場合にも、偏
差角θは、苓となる。α=45°のときはkl=1.4
2なのでklkl、=0.0639となりθ二3.3°
となる。したがって、加算器15から得られる補正後の
制御角α′はα=30°のときはα′=α二30°とな
シ、α二45°のときはθ二3.3°であシα′= 4
8.3°となる。In addition, the control angle is intermittent when the control angle is 300 or less.
, = 0.045, then α = 30
When 1 = 2, klk l A = 0.0
4.5 X2 = 0.09. In this case as well, the deviation angle θ is the same. When α=45°, kl=1.4
2, so klkl = 0.0639 and θ2 3.3°
becomes. Therefore, the corrected control angle α' obtained from the adder 15 is α'=α230° when α=30°, and θ23.3° when α245°. α′= 4
It becomes 8.3°.
このよう(て設定制御角αおよび電流に対する偏差角θ
を算出して補正後の制御角α′をα′=α十〇とするこ
とにより、断続時に発生する偏差角θを予め加算して第
2図(a)のハンチング部分の電圧の平均値分だけ′電
圧をさげようとするため断続時に発生する解圧上昇分と
打消されて設定制御角αに応じた平均血圧となる。丁な
わち、断続時においても同じ特性となるため、応答の劣
化をなくすことができる。In this way, the set control angle α and the deviation angle θ with respect to the current are
By calculating the corrected control angle α' as α'=α10, the deviation angle θ that occurs during intermittent operation is added in advance to calculate the average value of the voltage in the hunting part in Figure 2 (a). Since the voltage is attempted to be lowered by '', the increase in pressure that occurs during intermittent operation is canceled out, resulting in an average blood pressure that corresponds to the set control angle α. In other words, since the characteristics are the same even during intermittent operation, it is possible to eliminate response deterioration.
次に、試運転ある定期横置の際に王回路定数にの設定に
ついて第8図′fd:参照して説明する。Next, the setting of the royal circuit constant during periodic horizontal placement during trial operation will be explained with reference to FIG. 8'fd:.
設定の際には直流電動機を夾駆動し、かつスイッチ21
をオフにする。When setting, drive the DC motor and switch 21.
Turn off.
スイッチ21がオフするので偏差角θが設定制御角αに
加算されない。寸だ切換スイッチ22はa側にオンして
おシ、補正角演算器14の補正面が零となる時の第4図
に示す如きに、に、i、の値ノ(が出力されている。こ
の状態において、直流が連続状態となるまで、すなわち
、第9図(ロ)のように断続状態から連続状態になるま
で堀流全派す運転をする。このとき、電流の断続か連続
かを検出するため、第9図囚の点弧タイミング信号が発
生した点の第9図0に示す瞬時電流を瞬時直流検出器2
7によシ検出する。検出値は第9図(Qのようになる。Since the switch 21 is turned off, the deviation angle θ is not added to the set control angle α. When the angle selector switch 22 is turned on to side a, the values of i and i are output as shown in FIG. 4 when the correction surface of the correction angle calculator 14 becomes zero. In this state, the operation is performed with full current flowing until the direct current becomes continuous, that is, from the intermittent state to the continuous state as shown in Figure 9 (b).At this time, it is determined whether the current is intermittent or continuous. In order to detect the instantaneous current shown in Fig. 9 0 at the point where the ignition timing signal shown in Fig. 9 is generated, the instantaneous DC detector 2
7 is detected. The detected value is as shown in Figure 9 (Q).
この検出□信号よシ、′電流零検出器28で検出値がI
o (零に非常に近い値)以下を検出する。If this detection □ signal is detected, the current zero detector 28 detects a detected value of I.
Detects less than or equal to o (a value very close to zero).
電流零検出器28の検出信号は第9図(0のようになる
。この信号の立上シを断連検出器29により第9図■の
ように検出する。この信号が発生されると断理変化点通
過記憶回路30はセントされ、スイッチ21をオンし、
9J挨スイツチ22をb 9111に閉路させる。一方
、断連変化点においては、補正角演算器14の入力に1
に■、 は切換スイッチ22がa側にオンしているた
め割Naz5の出力はA+A=1となり、主回路定数k
が初期1直k。The detection signal of the current zero detector 28 is as shown in FIG. 9 (0). The rising edge of this signal is detected by the disconnection detector 29 as shown in FIG. The physical change point passage memory circuit 30 is turned on, and the switch 21 is turned on.
Close the 9J switch 22 to b 9111. On the other hand, at the disconnection change point, the input of the correction angle calculator 14 is 1.
In ■, the selector switch 22 is turned on to the a side, so the output of the split Naz5 is A+A=1, and the main circuit constant k
was the initial first shift.
と1を掛算器24で掛算するため、初期設定値に、とな
fi、k、/に、・Ia’ となっている。この値に
1’に、l:、’が断連検出器29の出力信号によシ紀
憶回路26に記憶される。それと共に、切換スイッチ2
2がb側にオンされるため、WO算器25の値Aは補正
角θが零となる値、すなわち、主回路定数kが実際主回
路定数に一致した呟に′と設定された時の値である。し
たがって、加算器24の一致した値に自動的に調整され
る。Since the multiplier 24 multiplies by 1 and 1, the initial setting values are fi, k, /, and .Ia'. This value 1', l:,' is stored in the memory circuit 26 by the output signal of the disconnection detector 29. At the same time, selector switch 2
2 is turned on to the b side, the value A of the WO calculator 25 is the value at which the correction angle θ becomes zero, that is, when the main circuit constant k is set to '' where the main circuit constant matches the actual main circuit constant. It is a value. Therefore, the matching value of adder 24 is automatically adjusted.
以上のように本発明によれば自動的に主回路だ数が最逸
値に設定されるため、従来の欠点であった過補償による
正帰趨領域も発生せず、電動機に応じた設定をその崩性
なう必要もなく、最適な非線形補償を行なうことができ
る。As described above, according to the present invention, the main circuit power number is automatically set to the optimum value, so the positive trend region due to overcompensation, which was a drawback of the conventional method, does not occur, and the settings are adjusted according to the motor. Optimal nonlinear compensation can be performed without any need for deformability.
第10図にディジタル回路で構成したブロック図を示す
。FIG. 10 shows a block diagram composed of digital circuits.
41は電流の平均値11、瞬時値!、電電源正圧全アナ
ログディジタル変換て検出する’lf流電圧電圧検出器
2は制御角指αに従って、位相のパルスを発生するゲー
トパルス発生器、43けPLGのパルス列信号よシ速度
を検出する速度検出器、44は速度制御演算、電流制御
演算、制御角補正演算等自動設定(オートチューニング
)演算等を行なうプロセッサ、45はプログラム、デー
タを記憶するメモリ、46は速度指令等を上位コントロ
ーラから入力、あるいは実際のrii流、速度を上位コ
ントローラにアンサ−バンクするインターフェース回路
である。41 is the average value of current 11, instantaneous value! The voltage detector 2 detects the positive voltage of the power source by converting all analog to digital; the voltage detector 2 detects the speed of the pulse train signal of the 43-digit PLG; the gate pulse generator generates phase pulses according to the control angle finger α; A speed detector, 44 a processor that performs automatic setting (auto-tuning) calculations such as speed control calculations, current control calculations, control angle correction calculations, etc., 45 a memory for storing programs and data, and 46 a speed command etc. from a host controller. This is an interface circuit that answers input or actual RII flow and speed to a higher-level controller.
第11図は、本発明の特徴であるオートチューニング付
非線形補fjf演算部分の制御フロー図である。まず電
流制御演算によシ、制#角指令α(n)全計算し、電流
の平均値1.(rl)及びv¥時+1ti i 、 (
n) k検出する。次に計算結氷α(n)より、非勝形
補正係1kt(n)を第3図のテーブルにより1藷:す
る。ここでチューニングモードか否かを判ボし、チュー
ニングモードの場合、第4図の横軸であるに、kl。FIG. 11 is a control flow diagram of the nonlinear complementary fjf calculation part with autotuning, which is a feature of the present invention. First, all the control angle commands α(n) are calculated by current control calculation, and the average value of the current is 1. (rl) and v¥hour+1ti i, (
n) Detect k. Next, from the calculated ice formation α(n), the non-winning type correction factor 1kt(n) is calculated using the table shown in FIG. Here, it is determined whether or not the tuning mode is selected. If the tuning mode is selected, the horizontal axis in FIG. 4 is kl.
をあらかじめ設定した主回路定数設定値に1を用イテに
1kIl二kl(n)・k、・■、(n)とする。ここ
で磁流瞬時値i 、 (n)があらかじめ設定した断続
電流値以下であるとすると係数にはに、とする。すなわ
ち設定清適pとする。また、出力の制御角αω)は電流
制御演算で計算して制御角α(n)とする。次に瞬時電
流i 、 (n)がi。を通過したとすると、係数にと
おく。ここで値Aは断続限界値であるため、kは実際の
主回路定数に一致した係数にすることができる。If 1 is used as the preset main circuit constant setting value, then 1kIl2kl(n)・k,・■,(n) are used. Here, if the magnetic current instantaneous value i, (n) is less than or equal to a preset intermittent current value, the coefficient is as follows. In other words, the setting is p. Further, the output control angle αω) is calculated by current control calculation and is set as the control angle α(n). Next, the instantaneous current i, (n) is i. If it passes, let it be the coefficient. Here, since the value A is the intermittent limit value, k can be a coefficient that matches the actual main circuit constant.
定数kが設定されると、次の処理ではチューニングモー
ドから運転モードにかわυ、kl(n)k・1.(1−
1)はチューニングモードで計算したkの値すなわぢ算
値よシ、補正角θ(n)を第8図のテーブルjニジ計算
し、電流制御演算で計算した制御角αω)に加具し、出
力する制御角α(n)はα(n)−α(n)+θ(n)
とする。このようにすることにより断続領域に入ると自
動的に補正がかがシ、最適な補償を行なうことができる
。Once the constant k is set, the next process is to switch from the tuning mode to the driving mode. (1-
1) Calculate the correction angle θ(n) using the value of k calculated in the tuning mode, i.e., the calculated value, using the table J in Figure 8, and add it to the control angle αω) calculated by the current control calculation. , the output control angle α(n) is α(n) − α(n) + θ(n)
shall be. By doing so, when the intermittent region is entered, the correction is automatically activated, and optimal compensation can be performed.
以上説明したように本発明Vこよ7tは王回路犀故を考
慮することなく取迩な1t=r“1jjl j杉イN!
fjllをイ寸うことかできる。As explained above, the present invention V 7t can be carried out without considering the royal circuit circuit 1t=r"1jjl jsugiiN!
I can almost say fjll.
第1図は静止レオナード装]録の一列構成図、第2図は
本発明の一実施例を示す構成図、第3図は補正係数演3
!、器の特性図、第4図は補正角演算器の特性図、第5
図は電流断続及び連続時の電圧直流波形図ぐ第6図は位
相制御信号と電動機磁流の特性図、第7図は心圧′心流
波形図、第8図は各節」1・・・電源変圧器、2・・・
交流変流器、3・・・サイリスタ変換器、4・・・直流
心、M観、5・・・速度検出器、9・・・自動パルス移
相器、8・・・電流制御回路、6・・・速度制御回路、
7・・・電流検出器、10・・・逆余弦変侯暮、11・
・・補正係数演算器、12.13・・・J+f )1器
、14・・・補正角演算器、15・・・加算器、21・
・・スイッチ、22・・・切換スイッチ、26・・・記
憶回路、27・・・瞬時電流検出器、28・・・電流零
検出器、29・・・断連変化点検出器、30・・・変化
点通過記・は468
讃 1 口
SR
第 3の
d)リイh−pβ1 Q(
41β・Iα
引 5 口
O□
¥ 唾
¥ −′7帛
(α)
(
宿 3 目
) 1
カ・Lo。
宅 10 口
第 11 口Fig. 1 is a block diagram of one row of static Leonard equipment, Fig. 2 is a block diagram showing an embodiment of the present invention, and Fig. 3 is a correction coefficient calculation diagram.
! , the characteristic diagram of the device, Figure 4 is the characteristic diagram of the correction angle calculator, and Figure 5 is the characteristic diagram of the correction angle calculator.
Figure 6 shows the voltage DC waveforms during intermittent and continuous current, Figure 6 shows the characteristics of the phase control signal and motor magnetic current, Figure 7 shows the cardiac pressure and cardiac current waveforms, and Figure 8 shows each node.・Power transformer, 2...
AC current transformer, 3... Thyristor converter, 4... DC core, M view, 5... Speed detector, 9... Automatic pulse phase shifter, 8... Current control circuit, 6 ...speed control circuit,
7... Current detector, 10... Inverse cosine variable Houhe, 11.
...Correction coefficient calculator, 12.13...J+f) 1 unit, 14...Correction angle calculator, 15...Adder, 21.
...Switch, 22...Selector switch, 26...Memory circuit, 27...Instantaneous current detector, 28...Zero current detector, 29...Disconnection change point detector, 30...・Change point passage record・ is 468 praise 1 mouth SR 3rd d) Lih-pβ1 Q (41β・Iα pull 5 mouth □ ¥ saliva¥ -'7 帛 (α) (Inn 3rd) 1 Ka・Lo .House 10th 11th
Claims (1)
リスタ変換器と、前記負荷電流の電流指令信号と電流検
出信号の偏差に応じた位相制御信号を出力する電流制御
手段と、該位相制御信号に基づき設定制御角を求める制
御角演算手段と、前記変換器が負荷電流の連続時と断続
時とで同一の直流平均電圧を発生するだめ?1iII御
偏差角を、前記設定制御角と負荷電流により求める偏差
角演算手段と、負荷電流と断連境界値を検出する電流断
連検出手段と、主回路定数の設定値を入力し、前記境界
値検出時点の制御偏差角の大きさに応じて前記主回路定
数の設定値を修正する定数調整手段とを具備し、前記偏
差角演算手段は修正された主回路定数に基づき制御偏差
角を求める際の負荷電流の大きさを補正するようにした
ことを特徴とするサイリスタ変換器の制御装置。1. A two-ristor converter that supplies power to a load whose back electromotive force changes in magnitude, a current control means that outputs a phase control signal according to a deviation between a current command signal and a current detection signal of the load current, and the phase control The control angle calculation means for determining the set control angle based on the signal and the converter must generate the same DC average voltage when the load current is continuous and when the load current is intermittent. 1iIII deviation angle calculating means for calculating the control deviation angle from the set control angle and the load current; current disconnection detection means for detecting the load current and disconnection boundary value; inputting the set value of the main circuit constant; and constant adjustment means for correcting the setting value of the main circuit constant according to the magnitude of the control deviation angle at the time of value detection, and the deviation angle calculation means calculates the control deviation angle based on the corrected main circuit constant. 1. A control device for a thyristor converter, characterized in that the magnitude of the load current is corrected when the load current is applied.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58059274A JPS59188390A (en) | 1983-04-06 | 1983-04-06 | Controller of thyristor converter |
DE3412671A DE3412671C2 (en) | 1983-04-06 | 1984-04-04 | Control device for a thyristor converter |
US06/597,029 US4571668A (en) | 1983-04-06 | 1984-04-05 | Apparatus and method for controlling a thyristor converter in response to change in mode of load current |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58059274A JPS59188390A (en) | 1983-04-06 | 1983-04-06 | Controller of thyristor converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59188390A true JPS59188390A (en) | 1984-10-25 |
JPH0337397B2 JPH0337397B2 (en) | 1991-06-05 |
Family
ID=13108632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58059274A Granted JPS59188390A (en) | 1983-04-06 | 1983-04-06 | Controller of thyristor converter |
Country Status (3)
Country | Link |
---|---|
US (1) | US4571668A (en) |
JP (1) | JPS59188390A (en) |
DE (1) | DE3412671C2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4879502A (en) * | 1985-01-28 | 1989-11-07 | Hitachi, Ltd. | Speed control apparatus and method for motors |
US4739234A (en) * | 1986-08-26 | 1988-04-19 | Magnetek, Inc. | DC motor adaptive controller apparatus |
DE3811046C2 (en) * | 1988-03-31 | 1994-05-26 | Heidelberger Druckmasch Ag | Method and device for determining the gear ratio on a printing press |
US5224201A (en) * | 1988-03-31 | 1993-06-29 | Heidelberger Druckmaschinen Ag | Method and device for measuring rotary speed |
US5003455A (en) * | 1990-08-14 | 1991-03-26 | Polyspede Electronics Corporation | Circuitry and method for controlling the firing of a thyristor |
US5289092A (en) * | 1991-08-05 | 1994-02-22 | Harnischfeger Corporation | Apparatus and method for d.c. motor control |
US5629571A (en) * | 1993-10-08 | 1997-05-13 | Grimes Aerospace Company | Thyristor load detector |
DE102004031396A1 (en) * | 2004-06-29 | 2006-02-02 | Infineon Technologies Ag | DC converter |
GB2421238A (en) * | 2004-12-16 | 2006-06-21 | Basf Ag | Solid polycrystalline potassium ion conductor having beta-alumina structure |
RU2726642C1 (en) * | 2019-06-06 | 2020-07-15 | Акционерное общество «ЕВРАЗ Нижнетагильский металлургический комбинат» (АО «ЕВРАЗ НТМК») | Method of dc motor armature rotation with independent excitation with armature rated voltage of more than 600v and power of more than 3mw for collector bore |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2338630C3 (en) * | 1973-07-30 | 1984-05-24 | Siemens AG, 1000 Berlin und 8000 München | Control device with leakage current-adapted control loop parameter change for current control of a converter arrangement |
SE380945B (en) * | 1974-04-05 | 1975-11-17 | Asea Ab | CONTROLLABLE CONVERTER |
JPS5844205B2 (en) * | 1977-10-12 | 1983-10-01 | 株式会社日立製作所 | Method for measuring hydrogen in liquid metal |
JPS6027270B2 (en) * | 1978-10-06 | 1985-06-28 | 株式会社日立製作所 | Control device for thyristor converter |
JPS58123373A (en) * | 1982-01-18 | 1983-07-22 | Hitachi Ltd | Thyristor power source |
US4507723A (en) * | 1983-01-14 | 1985-03-26 | General Electric Company | Method for adaptive control in a power converter operating in a discontinuous current mode |
US4490780A (en) * | 1983-02-02 | 1984-12-25 | Allen-Bradley Company | Digital power converter |
-
1983
- 1983-04-06 JP JP58059274A patent/JPS59188390A/en active Granted
-
1984
- 1984-04-04 DE DE3412671A patent/DE3412671C2/en not_active Expired
- 1984-04-05 US US06/597,029 patent/US4571668A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0337397B2 (en) | 1991-06-05 |
DE3412671A1 (en) | 1984-10-18 |
US4571668A (en) | 1986-02-18 |
DE3412671C2 (en) | 1986-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6229719B1 (en) | Method of inverter control and apparatus of the same | |
US7683568B2 (en) | Motor drive using flux adjustment to control power factor | |
US10910958B2 (en) | Control apparatus for power conversion system | |
JPS59188390A (en) | Controller of thyristor converter | |
US5121043A (en) | PWM control in the pulse dropping region | |
JP4069741B2 (en) | Pulse width modulation method and power converter | |
JPH1023756A (en) | Voltage inverter device and method for controlling it | |
JPS6013390B2 (en) | Control device for power converter | |
JP2017205017A (en) | Motor control device of air conditioner, and air conditioner | |
CN109088561B (en) | Load current prediction feedforward control method | |
EP0293844B1 (en) | A control apparatus for pwm-controlled, variable voltage/variable frequency inverters | |
JP2010268567A (en) | Controller for ac motor | |
KR20090058590A (en) | Power converter | |
JPH0947039A (en) | Dead time compensation method for inverter | |
JP4242569B2 (en) | Motor dead time compensator and dead time compensation method | |
JP3215480B2 (en) | Pulse width modulation inverter device | |
JPH06348353A (en) | Active filter | |
JPH11285299A (en) | Vector controller of induction motor, and its vector control method | |
JPH1023765A (en) | Voltage pwm inverter | |
JPH0662591A (en) | Controller of power conversion device | |
JP6900848B2 (en) | Inverter device adjustment method, inverter device adjustment device, and inverter device | |
JPH08251921A (en) | Controller for voltage type converter producing dc power from polyphase ac power | |
JPH06178577A (en) | Slip frequency type vector control method | |
JPS63228992A (en) | Inverter controller | |
JP2659365B2 (en) | Control method of pulse width modulation control inverter |