JPS59187784A - Production of hydrogen using clostridium butyricum miyairi - Google Patents
Production of hydrogen using clostridium butyricum miyairiInfo
- Publication number
- JPS59187784A JPS59187784A JP58061954A JP6195483A JPS59187784A JP S59187784 A JPS59187784 A JP S59187784A JP 58061954 A JP58061954 A JP 58061954A JP 6195483 A JP6195483 A JP 6195483A JP S59187784 A JPS59187784 A JP S59187784A
- Authority
- JP
- Japan
- Prior art keywords
- tank
- hydrogen
- tanks
- culture
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は、宮入菌による水素生産方法に関する。[Detailed description of the invention] The present invention relates to a method for producing hydrogen using Miyairi bacteria.
−1−、。-1-,.
水素は、化石燃料に代わる代替エネルギー源として注目
されている。また、化学原料としても、アンモニアの合
成1石油の水素化など、種々の用途に使われている。Hydrogen is attracting attention as an alternative energy source to replace fossil fuels. It is also used as a chemical raw material for various purposes such as ammonia synthesis and petroleum hydrogenation.
現在、水素生産菌として水素細菌、光合成細菌、 C1
ostridium属などが知られている。水素細菌は
、培養時に酸素、水素、炭酸ガスの混合気体を必要とし
、光合成細菌は、光を必要とする。そのために、培養操
作が非常に煩雑なものとなっている。Currently, hydrogen-producing bacteria include hydrogen bacteria, photosynthetic bacteria, and C1.
The genus ostridium is known. Hydrogen bacteria require a gas mixture of oxygen, hydrogen, and carbon dioxide during cultivation, and photosynthetic bacteria require light. Therefore, the culture operation is extremely complicated.
一方、C1ostridium属では、連続培養の前段
階における回分培養時に、培地々細菌を完全混合するた
めに攪拌を行い、かつ嫌気状態を維持するために炭酸ガ
スの供給を行う必要がある。しかし、そののちの培養段
階では、自己の生産する炭酸ガスにより、十分な嫌気状
態を維持するととができる。したがって、水素を捕集す
る際に、上記の供給ガスを除く必要もなく、培養装置を
簡単にするととができる。On the other hand, in the case of the genus C1ostridium, during batch culture before continuous culture, it is necessary to perform stirring to completely mix the culture medium and bacteria, and to supply carbon dioxide gas to maintain an anaerobic state. However, during the subsequent cultivation stage, sufficient anaerobic conditions can be maintained by the carbon dioxide produced by the plant itself. Therefore, when collecting hydrogen, there is no need to remove the above-mentioned supply gas, and the culture apparatus can be simplified.
本発明においては、 C1ostridium属のCl
ostridium’Il”l
”−butyricum M■YAIf(J (以下
、宮入菌という)を用いる。宮入菌は、栄養細胞時の代
謝産物として水素を生産するので、水素生産のためには
可能な限り栄養細胞のみを増殖させることが必要である
。しかし、宮入菌は芽胞形成菌であるので、栄養細胞の
状態に長時間止めておくことはできず、芽胞が形成され
てくる。しだがって、回分培養では、長時間水素生産を
行わせることが困難である。In the present invention, Cl of the genus C1ostridium
ostridium'Il"l
”-butyricum M■YAIf (J (hereinafter referred to as Miyairi bacteria) is used. Miyairi bacteria produce hydrogen as a metabolic product during vegetative cells, so in order to produce hydrogen, only vegetative cells should be grown as much as possible. However, since Miyairi bacteria are spore-forming bacteria, they cannot be kept in the state of vegetative cells for a long time, and spores are formed. It is difficult to make time hydrogen production take place.
本発明者らは、大量の水素を得るための方法について研
究した結果、栄養細胞を連続的に十分増殖させるために
は連続培養法を採用することが必要で、この方法による
と、大量の水素を得るのに適当であるという知見を得、
これをもとにして本発明に到達した。As a result of research on methods for obtaining large amounts of hydrogen, the present inventors found that it is necessary to adopt a continuous culture method in order to continuously and sufficiently proliferate vegetative cells. obtained knowledge that it is suitable for obtaining
Based on this, we have arrived at the present invention.
すなわち、本発明の要旨は、複数槽を用い、各種の希釈
率を調節して、槽内において可及的に栄養細胞のみを増
殖せしめるようにしたことを特徴とする宮入菌による水
素生産方法にある。That is, the gist of the present invention is to provide a hydrogen production method using Miyairi bacteria, which uses multiple tanks and adjusts various dilution rates so that only vegetative cells grow as much as possible in the tanks. be.
本発明の対象となる宮入菌は、下記のごときものである
。The Miyairi bacteria targeted by the present invention are as follows.
菌 名 : Clostridium buty
ricum m1yairi微生物寄託機関 二 日本
国、工業技術院微生物工業技術研究所
微生物受託番号 :第1467号
寸だ、本発明で用いる希釈率とは、槽内の液量(β)に
対する毎時間当りの供給量(4/hr)をいう。Bacterial name: Clostridium buty
ricum m1yairi Microorganism Depositary 2 Japan, Agency of Industrial Science and Technology, Institute of Microbial Technology, Microbial Accession Number: No. 1467. The dilution rate used in the present invention is the supply per hour relative to the amount of liquid (β) in the tank. It refers to the amount (4/hr).
例えば、液量2βの槽に毎時2にの液体を注入し、毎時
28の液体を流出させる場合、希釈率は1.0/hrで
ある。また液量2pの槽に毎時1Aの液体を注入し、毎
時】βの液体を流出させる場合、希釈率は0.5/hr
である。For example, when 2 parts of liquid is injected into a tank with a liquid volume of 2β every hour and 28 parts of liquid are discharged every hour, the dilution rate is 1.0/hr. Furthermore, if 1A of liquid is injected into a tank with a liquid volume of 2p per hour, and a liquid of [β] is discharged every hour, the dilution rate is 0.5/hr.
It is.
宮入菌は芽胞形成菌であり、その芽胞形成は栄養細胞→
内生細胞→成熟芽胞の順に行なわれ、栄養細胞時の代謝
産物として水素を生産する。Miyairi bacteria are spore-forming bacteria, and spore formation is caused by vegetative cells →
This occurs in the order of endophytic cells → mature spores, and hydrogen is produced as a metabolic product during vegetative cells.
回分培養では、時間の経過とともに胞子の形成が始まり
、水素を生産する栄養細胞の時期が短いので、水素を生
産する方法としては非常に効率が悪い。In batch culture, spore formation begins over time, and the period of vegetative cells that produce hydrogen is short, so it is extremely inefficient as a method of producing hydrogen.
これに対して、連続培養によると、第1槽および第2槽
の希釈率を調節してそれぞれの槽内で栄養細胞のま凍で
分裂を繰返させることにより、定常状態を保つことがで
き、それによって水素ガスの生産を多くすることができ
る。On the other hand, with continuous culture, a steady state can be maintained by adjusting the dilution rate of the first and second tanks and repeating division by freezing the vegetative cells in each tank. Thereby, hydrogen gas production can be increased.
また宮入菌は、回分培養では最大3〜4X108Cel
l/d の閑数値の菌体しか得ることができないが、連
続培養では第1槽の希釈率を適当に選定することにより
、定常状態で1. OX 1.09Cel I〜の菌体
を得ることができる。したがって連続培養によって水素
生産量を増大させることができる。In addition, Miyairi bacteria can be grown up to 3 to 4 x 108Cel in batch culture.
Although it is possible to obtain only the idle number of bacterial cells of 1/d, in continuous culture, by appropriately selecting the dilution rate of the first tank, 1. Cells of OX 1.09Cel I can be obtained. Therefore, continuous culture can increase hydrogen production.
本発明では宮入菌の水素生産量を増大させるために、連
続培養を行い、第1槽および第2槽の希釈率を適当に選
定することにより、栄養細胞の多い定常状態で宮入菌の
培養を行い、それにともなう代謝産物としての水素を連
続的に効率よく生産するようにした。In the present invention, in order to increase the hydrogen production amount of Miyairi bacteria, continuous culture is performed and the dilution ratio of the first tank and second tank is appropriately selected, thereby culturing Miyairi bacteria in a steady state with many vegetative cells. This led to continuous and efficient production of hydrogen as a metabolite.
水素生産用の連続培養装置は、例えば2つの発酵槽を有
する。第1槽では回分培養の対数増殖期中期に相当する
培養を、第2槽では対数増殖期後期に相当する培養を行
い、これらの槽での滞溜時間内に芽胞形成が開始しない
ように、それぞれの槽の希釈率を選定する。宮入菌は、
回分培養においては、発育開始後7〜8時間で芽胞を形
成しはじめるので、第1槽と第2槽の滞溜時間の和は、
7〜8時間以内でなければならない。A continuous culture device for hydrogen production has, for example, two fermenters. In the first tank, culture corresponding to the mid-logarithmic growth phase of the batch culture is carried out, and in the second tank, culture corresponding to the late logarithmic growth phase is carried out, and in order to prevent spore formation from starting within the residence time in these tanks, Select the dilution rate for each tank. Miyairi bacteria are
In batch culture, spores begin to form 7 to 8 hours after the start of growth, so the sum of the residence times in the first and second tanks is:
Must be within 7-8 hours.
本方法に用いる培地は、糖類、アミノ酸類。The medium used in this method contains sugars and amino acids.
無機塩類等を検討した結果、糖類源としてコーンスター
チ、バレイショデンプン、アミノ酸類として肉類の分解
物、ペグトン、カザミノ酸および脱脂大豆を加水分解し
たアミノ酸混合液、また無機塩としてはMn 804
、 、Fe 804およびCa Co3があり、特に上
記コーンスターチ、アミノ酸混合液、 CaCO3が栄
養細胞の増殖に好適である。As a result of examining inorganic salts, etc., we found cornstarch, potato starch as the sugar source, meat decomposition product, pegtone, casamino acid, and an amino acid mixture obtained by hydrolyzing defatted soybean as the amino acid, and Mn 804 as the inorganic salt.
, , Fe 804 and Ca CO 3 , and the above cornstarch, amino acid mixture, and Ca CO 3 are particularly suitable for the growth of vegetative cells.
上記培地を用いた場合、第1槽の希釈率を0、15/h
r 〜0.7/h r とするが、0.3〜0.6
/hrが好ましく、0.15/hr以下の希釈率では芽
胞形成を開始してし壕う。また0、7/hr以上では宮
入菌の洗い出1〜が起こる。さらに、第2槽の希釈率は
、第1槽の希釈率によって決定される。When using the above medium, the dilution rate of the first tank is 0, 15/h.
r ~0.7/hr, but 0.3~0.6
/hr is preferred, and a dilution rate of 0.15/hr or less may initiate spore formation. Moreover, at 0.7/hr or more, washing out of Miyairi bacteria occurs. Furthermore, the dilution rate of the second tank is determined by the dilution rate of the first tank.
図面に示すものは、本発明を実施するための装置で、こ
れを参照しながら本発明をさらに詳17<説明する。What is shown in the drawings is an apparatus for carrying out the present invention, and the present invention will be explained in more detail with reference to this.
捷ず、第1槽2および第2槽3での回分培養を両槽内を
攪拌しながら開始する。この回分培養中は嫌気を保つた
め釦、炭酸ガス供給ロアより炭酸ガスを第1槽および第
2槽3に供給する。Without stirring, batch culture in the first tank 2 and second tank 3 is started while stirring the insides of both tanks. During this batch culture, carbon dioxide gas is supplied to the first tank and the second tank 3 from the button and carbon dioxide gas supply lower to maintain anaerobic conditions.
次に第1槽2および第2槽3での培養が対数増殖期に達
した時点で、培地供給槽1よりポンプ8によって培地移
送管9を通じて第1槽2に培地を供給1〜、同時に第1
槽2よりポンプ10 、培養液移送管月を通じて第2槽
3に培養液を移送する。さらに第2槽3よりポンプ12
.培養液移送管13を通じて培養液を放出することによ
り、連続培養を開始する。Next, when the culture in the first tank 2 and the second tank 3 reaches the logarithmic growth phase, the medium is supplied from the medium supply tank 1 to the first tank 2 through the medium transfer pipe 9 by the pump 8. 1
The culture solution is transferred from the tank 2 to the second tank 3 through the pump 10 and the culture solution transfer tube. Furthermore, the pump 12 from the second tank 3
.. Continuous culture is started by discharging the culture solution through the culture solution transfer tube 13.
上記のように連続培養を開始した時点で炭酸ガスの供給
を停止する。そのとき、コック14ヲ発酵水素ガス採取
管15側に切り替え、発酵水素ガス中に含まれる炭酸ガ
スをs N −KOH溶液を満たした炭酸ガス吸収槽4
に通じ、炭酸ガスを吸収せしめる。炭酸ガスを除去した
水素ガスは水素−水置換槽5に導入する。核種5におい
て、水素ガス量を測定する。The supply of carbon dioxide gas is stopped when continuous culture is started as described above. At that time, the cock 14 is switched to the fermentation hydrogen gas collection pipe 15 side, and the carbon dioxide contained in the fermentation hydrogen gas is removed from the carbon dioxide absorption tank 4 filled with the sN-KOH solution.
It leads to the absorption of carbon dioxide gas. The hydrogen gas from which carbon dioxide gas has been removed is introduced into the hydrogen-water displacement tank 5. For nuclide 5, the amount of hydrogen gas is measured.
本方法において、宮入菌の培養を効率よく行うためには
、培地としてコーンスターチ1.0〜5.0% (培養
液100 ml ItIK含まれる?数、以下Wハ′チ
と略記する)、アミノ酸混合液1.0〜5.0容量チ、
炭酸カルシウム0.5〜1.5W/V%を含むものが好
ましい。In this method, in order to culture Miyairi bacteria efficiently, the culture medium must contain 1.0 to 5.0% cornstarch (100 ml of culture solution contains ItIK, hereinafter abbreviated as W H'chi), and a mixture of amino acids. Liquid 1.0 to 5.0 volume
Those containing 0.5 to 1.5 W/V% of calcium carbonate are preferred.
上記各成分を水に懸濁させ、公知の方法に従って加熱し
、滅菌して培地とする。Each of the above components is suspended in water, heated and sterilized according to a known method to prepare a culture medium.
培養液のpHは連続培養の定常状態において、中性付近
であり、各種の温度は30〜40℃、例えば37℃に保
たれる。The pH of the culture solution is near neutral in the steady state of continuous culture, and various temperatures are maintained at 30 to 40°C, for example 37°C.
第2槽から得られた培養液は、これを遠心分離機にかけ
て芽胞を収集する。芽胞を分離した培養液は、これをポ
ンプによって図示していない高温槽を通して第1槽に戻
して再使用することができる。The culture solution obtained from the second tank is centrifuged to collect spores. The culture solution from which the spores have been separated can be returned to the first tank by a pump through a high temperature tank (not shown) and can be reused.
7一
本発明の方法によって、宮入菌を効率よく培養して水素
を大量に得ることができる。71 By the method of the present invention, Miyairi bacteria can be efficiently cultured to obtain a large amount of hydrogen.
実施例
図面に示すごとき装置を用いて下記の培養条件によって
宮入菌の連続培養を行った。EXAMPLE Using the apparatus shown in the drawings, Miyairi bacteria were continuously cultured under the following culture conditions.
(1) 各種の希釈率
第1槽 0.57hr
第2槽 0.2 /hr
(2) 回分用、連続培養用培地
コーンスターチ 2 W、Alチ
アミノ酸混合液 2容量チ
炭酸カルシウム I W/Vチ
まず第1槽2と第2槽3に培地をそれぞれ1β、2.5
.6仕込み、121℃で10分間滅菌したのち宮入菌の
接種を行い、攪拌機6を用いて攪拌を始めると同時に炭
酸ガス供給ロアより炭酸ガスを供給し、回分培養を開始
する。第1槽2.第2槽3においては、宮入菌接種後約
8時間で、槽内の宮入菌の増殖が対数増殖8−
期に達する。そこで、すでに滅菌を完了した培地を培地
供給槽1から500吟苛の流量で第1槽2に供給し、同
時に第1槽2より第2槽3へ、第2槽3から槽外へ培養
液を500 ml/h rの流量で移送して連続培養を
開始した。次いで、炭酸ガスの供給を停止し、コック1
1を発酵ガス採取管側に切り替える。このとき、発酵ガ
スは炭酸ガス吸収槽4を通って炭酸ガスを吸収さ、れ、
水素−水置換槽5に蓄積される。(1) Various dilution rates 1st tank 0.57 hr 2nd tank 0.2 /hr (2) Batch and continuous culture medium Cornstarch 2 W, Al thiamino acid mixture 2 volumes Calcium carbonate I W/V ti First, add 1β and 2.5 medium to the first tank 2 and second tank 3, respectively.
.. 6 and sterilized at 121° C. for 10 minutes, Miyairi bacteria were inoculated, and at the same time stirring was started using the stirrer 6, carbon dioxide gas was supplied from the carbon dioxide gas supply lower to start batch culture. 1st tank 2. In the second tank 3, the growth of Miyairi bacteria in the tank reaches the 8-log phase of logarithmic growth about 8 hours after inoculation with Miyairi bacteria. Therefore, the medium that has already been sterilized is supplied from the medium supply tank 1 to the first tank 2 at a flow rate of 500 ml, and at the same time, the culture medium is transferred from the first tank 2 to the second tank 3 and from the second tank 3 to the outside of the tank. was transferred at a flow rate of 500 ml/hr to start continuous culture. Next, stop the supply of carbon dioxide gas and turn on cock 1.
Switch 1 to the fermentation gas sampling pipe side. At this time, the fermentation gas passes through the carbon dioxide absorption tank 4 and absorbs carbon dioxide,
It is accumulated in the hydrogen-water replacement tank 5.
ガスの蓄積量は水素−水置襲5の圧力を測定して標準状
態での体積に換算した。The amount of accumulated gas was determined by measuring the pressure of the hydrogen-water tank 5 and converting it into the volume under standard conditions.
上記のように補集した発酵ガス中の水素ガス濃度をガス
クロマトグラフィー(■島津製作所製(3C3BT )
を用いて測定した。その結果を表−1に示す。ただしガ
ス容量は標準状態に換算した値である。The hydrogen gas concentration in the fermentation gas collected as above was measured using gas chromatography (■ Shimadzu Corporation (3C3BT)).
Measured using The results are shown in Table-1. However, the gas capacity is a value converted to standard conditions.
図面は本発明を実施するだめの装置の概略図を示す。
1・・・・・・培地供給槽、 2・・・・・第1槽、
3・・・・・・第2槽、 4・・・・・・炭酸
ガス吸収槽、5・・・・水素−水置換槽、6・・・・・
・攪拌機、14・・・・・・コック。
手続補正書(自効
昭和58年5 月1911
1、事件の表示
昭和 58年 特許願 第 61954 号2、発
明の名称
宮入閑による水素生産方法
3、補正をする者
事件との関係 特許出願人
住所
4、代 理 人〒107
ばか 2 名
5、補正の対象 明細書の「発明の詳細な説明」の
欄。
6、補正の内容 別紙のとおり
補正の内容
(1)明細書第8頁第16行〜第20行の「第2槽から
得られた培養液は、・・・・・・・・・再使用すること
ができる。」を削除する。
443−The drawing shows a schematic diagram of an apparatus for carrying out the invention. 1... Culture medium supply tank, 2... First tank,
3...Second tank, 4...Carbon dioxide absorption tank, 5...Hydrogen-water replacement tank, 6...
- Stirrer, 14...Cook. Procedural amendment (self-effective May 1980, 1911 1, Indication of the case 1982 Patent Application No. 61954 2, Name of the invention Hydrogen production method by Kan Miyairi 3, Person making the amendment Relationship to the case Patent applicant address 4. Agent: 107 Idiots 2 people 5. Subject of amendment: "Detailed Description of the Invention" section of the specification. 6. Contents of amendment: Contents of amendment as shown in the attached sheet (1) Page 8, line 16 of the specification. ~Delete “The culture solution obtained from the second tank can be reused.” in line 20. 443-
Claims (2)
おいて、可及的に栄養細胞のみを増殖せしめるようにし
たことを特徴とする宮入菌による水素生産方法。(1) A method for producing hydrogen using Miyairi bacteria, which is characterized in that a plurality of tanks are used and the dilution rate of each tank is adjusted so that only vegetative cells grow as much as possible in the tanks.
第1槽と第2槽の滞溜時間の和が7〜8時間以内になる
ように第2槽の希釈率を決定することを特徴とする特許
請求の範囲第1項に記載の方法。(2) The dilution rate of the first tank is 0.3 to 0.6/hr,
The method according to claim 1, characterized in that the dilution rate of the second tank is determined so that the sum of the residence times of the first tank and the second tank is within 7 to 8 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58061954A JPS59187784A (en) | 1983-04-08 | 1983-04-08 | Production of hydrogen using clostridium butyricum miyairi |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58061954A JPS59187784A (en) | 1983-04-08 | 1983-04-08 | Production of hydrogen using clostridium butyricum miyairi |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59187784A true JPS59187784A (en) | 1984-10-24 |
JPH0438395B2 JPH0438395B2 (en) | 1992-06-24 |
Family
ID=13186090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58061954A Granted JPS59187784A (en) | 1983-04-08 | 1983-04-08 | Production of hydrogen using clostridium butyricum miyairi |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59187784A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4696747A (en) * | 1985-02-25 | 1987-09-29 | Ateliers De Constructions Electriques De Charleroi (Acec) Societe Anonyme | Process for the elimination of nitrates by means of a microbiological conversion in the presence of hydrogen gas |
WO2007114378A1 (en) | 2006-03-31 | 2007-10-11 | Nippon Paper Chemicals Co., Ltd. | Composition for beverage or food |
JP2010113831A (en) * | 2008-11-04 | 2010-05-20 | Ace Bio Product Kk | Biofuel cell |
-
1983
- 1983-04-08 JP JP58061954A patent/JPS59187784A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4696747A (en) * | 1985-02-25 | 1987-09-29 | Ateliers De Constructions Electriques De Charleroi (Acec) Societe Anonyme | Process for the elimination of nitrates by means of a microbiological conversion in the presence of hydrogen gas |
WO2007114378A1 (en) | 2006-03-31 | 2007-10-11 | Nippon Paper Chemicals Co., Ltd. | Composition for beverage or food |
JP2010113831A (en) * | 2008-11-04 | 2010-05-20 | Ace Bio Product Kk | Biofuel cell |
Also Published As
Publication number | Publication date |
---|---|
JPH0438395B2 (en) | 1992-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5464539A (en) | Process for the production of hydrogen by microorganisms | |
Kim et al. | Continuous hydrogen production from tofu processing waste using anaerobic mixed microflora under thermophilic conditions | |
CN104862348B (en) | A kind of method that production long-chain biatomic acid is coupled with UF membrane of fermenting | |
CN105087441B (en) | A kind of composite flora and its application in synthesis gas fermentation production alcohol | |
CN107384758A (en) | A kind of microorganism species step sizing device | |
WO2001057231A1 (en) | Process for producing vitamin b12 from hydrogen-metabolizing methane bacterium | |
CN101319242A (en) | Method for preparing bacteria cellulose with association of activity and inertia | |
KR20230147725A (en) | Methods and systems for growing microbial masses | |
CN207091409U (en) | A kind of microorganism species step sizing device | |
JP5059100B2 (en) | Hydrogen production method and apparatus, and microorganism immobilization support | |
JPS59187784A (en) | Production of hydrogen using clostridium butyricum miyairi | |
CN205662520U (en) | Novel H -H reaction is produced in succession in light / dark coupling device | |
JPS62278989A (en) | Production of acetone and butanol | |
CN1321174C (en) | Continuous flow culture method of industrial biological hydrogen preparing spawn and biological hydrogen preparing system reinforcing method | |
CN102115768B (en) | Method for producing hexadecanedioic acid by synchronously fermenting n-hexadecane with microbe | |
Morii et al. | Energetic analysis of the growth of Methanobrevibacter arboriphilus A2 in hydrogen‐limited continuous cultures | |
CN1026129C (en) | Process for producing long-chain alpha, omega-dicarboxylic acid from orthoalkanes by microbe fermentation | |
Suratago et al. | Production of 1, 3-propanediol by Clostridium butyricum DSM 5431 in an Anaerobic Moving-Bed Bioreactor | |
CN100556832C (en) | Combustion gas, breed, water quality purification integrated operation system | |
CN108892238B (en) | Hydrogen-producing and methane-producing reactor for treating sewage | |
Reungsang et al. | Biohydrogen production from cassava starch manufacturing wastewater | |
CN206219579U (en) | Membrane module, the bioreactor containing the membrane module and Zymolysis Equipment | |
Wang et al. | Immobilization of Anabaena azollae in hallow fibre photobioreactors for ammonia production | |
CN102321683A (en) | Process for preparing fumaric acid fermentation liquid by fermentation method and for separating and extracting pure fumaric acid from fumaric acid fermentation liquid | |
Afolabi et al. | Production of lactic acid from cassava starch hydrolysate using immobilized Lactobacillus Casei in a fibrous bed bioreactor |