JPS59187627A - Low-temperature stretch-breaking apparatus - Google Patents

Low-temperature stretch-breaking apparatus

Info

Publication number
JPS59187627A
JPS59187627A JP5848383A JP5848383A JPS59187627A JP S59187627 A JPS59187627 A JP S59187627A JP 5848383 A JP5848383 A JP 5848383A JP 5848383 A JP5848383 A JP 5848383A JP S59187627 A JPS59187627 A JP S59187627A
Authority
JP
Japan
Prior art keywords
fiber bundle
tank
temperature
tension
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5848383A
Other languages
Japanese (ja)
Other versions
JPS6212323B2 (en
Inventor
Hide Hashimoto
秀 橋本
Yasuo Tango
丹後 康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5848383A priority Critical patent/JPS59187627A/en
Publication of JPS59187627A publication Critical patent/JPS59187627A/en
Publication of JPS6212323B2 publication Critical patent/JPS6212323B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preliminary Treatment Of Fibers (AREA)

Abstract

PURPOSE:To provide the titled apparatus capable of carrying out the stretch- breaking of a yarn maintaining the fiber at a low temperature, and removing the heat generated by the stretch-breaking process, by connecting a cooling chamber at the former stage of a stretch-breaking machine, and placing a low-temperature stretch-breaking tank furnished with a cooling means between a clamping roller and a stretch-breaking roller. CONSTITUTION:The cooling tank A is attached to the former stage of the stretch-breaking machine 3, the inlet port and the delivery port of the fiber bundle are closed with a pair of feed rollers 4,4 and a pair of clamping rollers 1, 1, respectively, and a cold fluid is circulated. A low-temperature stretch- breaking tank B is placed between the clamping rollers 1,1 and the stretch- breaking rollers 2,2, the upper and the lower surfaces of the fiber bundle running between the rollers 1,1 and the rollers 2,2 are cooled with the cooling plates 8,8, and the tank B is sealed with the rollers 1,1 and the rollers 2,2.

Description

【発明の詳細な説明】 本発明装置は、連続繊維束から不連続繊維の束を製造す
る方法の1つである凍結軍功全実施する装置に関するも
のである。その目的は連続繊維束を連続して冷却し、繊
維温度を低温に維持したまま牽切するとともに、牽切時
に発生する牽切熱を奪い、繊維温度の上昇を抑え凍結牽
切のメリットを適確にもたらす低温牽切装置を提供する
にある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for carrying out freezing, which is one of the methods for producing a discontinuous fiber bundle from a continuous fiber bundle. The purpose of this is to continuously cool the continuous fiber bundle, maintain the fiber temperature at a low temperature during tension cutting, and remove the tension cutting heat generated during tension cutting to suppress the rise in fiber temperature and take advantage of the benefits of frozen tension cutting. The objective is to provide a low-temperature tension cutting device that provides reliable results.

凍結牽切法は特願昭56−157420.56−158
195の明細書に示したようにトウ紡績において、連続
繊維の束から不連続繊維の束を製造する際、繊維を低温
にて牽切する方法であり、紡出される不連続繊維の束中
の単繊維物性は牽切される前の連続繊維の束中の物性と
比べほとんど低下することなく維持している。第1図に
アクリル系合成繊維(商品名力7ミロン■)3d。
The freezing tension cutting method is patent application No. 56-157420.56-158.
As shown in the specification of No. 195, in tow spinning, when producing a bundle of discontinuous fibers from a bundle of continuous fibers, the fibers are cut by tension at a low temperature. The physical properties of the single fibers are maintained with almost no deterioration compared to the physical properties of the continuous fiber bundle before tension cutting. Figure 1 shows 3d acrylic synthetic fiber (trade name: Riki 7 Milon ■).

20本束の各温度における張力−伸度線図を示す。第1
図より明らかなように、低温下での牽切は塑性変形量が
きわめて少なく、弾性領域近傍において切断できるため
、切断後の単繊維の強伸度が維持され、しかも残留歪み
が少ないので、100(’C)ボイルによる単繊維収縮
率が極めて低い単繊維群を有した不連続繊維の束を得る
ことができる。そして、供給する連続繊維の束を構成す
る各単繊維が捲縮を有するものを用いれは、牽切後もこ
の捲縮が維持された不連続繊維の束を得ることができる
。このため、従来の紡績工程と比べると著しく工程短縮
ができ、品質の向上が可能となる。また、牽切時の繊維
f  3  ) 温度を下げるに従い、切断は延性破壊から脆性破壊へと
遷移し、単繊維の切断面は先細尖端となる。以上のよう
に、凍結牽切法は非常に有効的かつ特徴的な牽切法でお
る。
A tension-elongation diagram at each temperature for a bundle of 20 pieces is shown. 1st
As is clear from the figure, the amount of plastic deformation in tension cutting at low temperatures is extremely small, and cutting can be performed near the elastic region, so the strength and elongation of the single fiber after cutting is maintained, and the residual strain is small. ('C) It is possible to obtain a bundle of discontinuous fibers having a group of single fibers with extremely low single fiber shrinkage rate due to boiling. If each of the single fibers constituting the supplied continuous fiber bundle is crimped, it is possible to obtain a discontinuous fiber bundle in which the crimps are maintained even after stretch cutting. Therefore, compared to the conventional spinning process, the process can be significantly shortened and quality can be improved. Furthermore, as the fiber f 3 ) temperature during tension cutting is lowered, the cutting transitions from ductile fracture to brittle fracture, and the cut surface of the single fiber becomes a tapered tip. As mentioned above, the frozen tension cutting method is a very effective and characteristic tension cutting method.

ところが、一般に繊維は延伸して切断すると発熱する。However, fibers generally generate heat when they are stretched and cut.

これは繊維に仕事を加えると、弾性変形する場合はこの
仕事が位置エネルギーとして貯えられるのに対し、さら
に変形が進み塑性変形し始めると、この仕事が熱エネル
ギーに変換され放熱されるためである。第1図において
20℃における塑性変形領域にα、α′、b′・bの面
積であり、この仕事が発熱量を決める。この面積線切断
温度が低下すると、−q増加した後減少してゆき、−1
oo℃の時はほとんど弾性領域内で切断され、発熱量は
著しく減少する。第2図にこの塑性変形領域と切断温度
との関係を示す。ここでlに第1図に示した繊維束でお
久■は同じく商品名力7ミロン■の低伸度タイプの繊維
であるが、切断かめる温度以下で行なわれ、弾性領域内
、もしくはその近傍の領域であ(4) れは牽切による発熱はほとんどなくなる。逆に言えは、
牽切熱が繊維の温度を上けてさらに大きな牽切熱を発生
する原因となり繊維温度は急激に上昇する。そこで、凍
結牽切のもつ本来の長所を損なうことなく発現するため
には、牽切熱が発生したならば素早く奪い取る必要かめ
る。
This is because when work is applied to a fiber, when it deforms elastically, this work is stored as potential energy, but when it deforms further and begins to deform plastically, this work is converted into thermal energy and dissipated. . In FIG. 1, the area of plastic deformation at 20°C is α, α', b'·b, and this work determines the amount of heat generated. When this area line cutting temperature decreases, it increases by -q and then decreases, and -1
When the temperature is 00°C, the cutting occurs almost within the elastic region, and the amount of heat generated is significantly reduced. FIG. 2 shows the relationship between this plastic deformation region and cutting temperature. Here, the fiber bundle shown in Figure 1 is a low elongation type fiber with a trade name of 7 milon, but it is cut at a temperature below the clenching temperature, and is cut within or near the elastic region. In the region (4), the heat generated by tension cutting almost disappears. On the contrary,
The tension-cutting heat raises the temperature of the fiber, causing even greater tension-cutting heat to be generated, and the fiber temperature rises rapidly. Therefore, in order to bring out the original advantages of freezing tension cutting without losing its original advantages, it is necessary to quickly remove tension cutting heat when it occurs.

この発明は上記事情に鑑みなされたもので、その要旨は
把持ローラーと牽切ローラーとの間で繊維束を牽切する
牽切機の前段に、繊維束を冷却する冷却槽を連設し、か
つ把持ローラーと牽切ローラーとの間に冷却手段を備え
た低温牽切槽が設けてめることを特徴とする低温牽切装
置である。
This invention was made in view of the above circumstances, and its gist is that a cooling tank for cooling the fiber bundle is connected to the front stage of a tension cutting machine that cuts the fiber bundle between a gripping roller and a tension cutting roller, The low-temperature tension cutting device is characterized in that a low-temperature tension cutting tank equipped with a cooling means is provided between the gripping roller and the tension cutting roller.

この装置は牽切機の前段に冷却槽が設けであるので、連
f!繊維の束は冷却槽で予め光分に深冷され、連続して
牽切機に送p込み牽切される。
This device is equipped with a cooling tank in front of the tension cutter, so it can be used continuously. The fiber bundle is deep-cooled in advance in a cooling tank, and then continuously fed into a tension cutter and cut.

t&、牽切に伴ない牽切熱が発生する場合には低温牽切
槽において吸熱され繊維束の昇温は防止される。従って
、この装置によると凍結牽切のメリットが損なわれるこ
となく適確に発現できる。すなわち、牽切は塑性変形量
がきわめて少ない弾性領域近傍において行なわれるため
牽切前の単繊維の物性を殆んど損なわない。例えば、捲
縮も維持され単繊維収縮率も極めて低い水準に保たれる
。また脆性破壊により切断端を先細尖端とすることもで
きる。
t&, when tension cutting heat is generated due to tension cutting, the heat is absorbed in the low temperature tension cutting tank and the temperature of the fiber bundle is prevented from rising. Therefore, according to this device, the advantages of freezing and tension cutting can be properly realized without being impaired. That is, since stretch cutting is performed near the elastic region where the amount of plastic deformation is extremely small, the physical properties of the single fiber before stretch cutting are hardly impaired. For example, crimp is maintained and single fiber shrinkage is kept at an extremely low level. Further, the cut end can be made into a tapered point by brittle fracture.

以下、実施例の装置金回面金用い説明する。Hereinafter, an explanation will be given of the apparatus of the embodiment using a gold-plated metal.

第3図において、一対の把持ローツー1.1と一対の牽
切p−2−2,2との間で繊維束を牽切する牽切機3の
前段に、繊維束を冷却する冷却槽Aが連続して取付けて
るる。冷却槽Aは、繊維束の送込口が一対の送りローラ
ー4.4で閉基され、引出口が一対の把持ローラー1.
1で閉塵してあり、外周は断熱材5で覆われた直方体形
をなし、送込口および引出口との間にジグザグに折曲し
たトンネル状の繊維束通路6、およびその上部に送込口
および引出口近傍において、通路6に連通ずる低温流体
の循環路7が設けである。
In FIG. 3, a cooling tank A for cooling the fiber bundle is installed upstream of the tension cutter 3 that cuts the fiber bundle between a pair of gripping row tools 1.1 and a pair of tension cutters p-2-2, 2. are installed continuously. In the cooling tank A, an inlet for the fiber bundle is closed by a pair of feed rollers 4.4, and an outlet is closed by a pair of gripping rollers 1.4.
1, the outer periphery is in the shape of a rectangular parallelepiped covered with a heat insulating material 5, and there is a tunnel-shaped fiber bundle passage 6 bent in a zigzag manner between the inlet and the outlet, and the fiber bundle passage 6 in the upper part thereof is A low temperature fluid circulation path 7 communicating with the passage 6 is provided near the inlet and outlet.

また、この装置は把持ローラー1.1と牽切ローラー2
.2の間に低温牽切槽Bが設けである。このffBJ:
l:断熱材5で覆われ、直方体形をなし、送込口および
引出口それぞれ一対の把持ローラーおよび牽切ローラー
2,2により閉塞しである。繊維束はローラー1.1と
ローラー2.2の間で延伸力および/lたは剪断力全党
けて切断される。この冥施的においては、切断に際して
冷却tよ〕有効に行なうためにローラー1,1とローラ
ー2.2間を走行する繊維束の上下両面に接する面を有
する2枚の冷却板8゜8が配設しである。なお第3図で
Cは凍結牽切に必要とする冷熱を供給する冷凍機ユニッ
ト、Dはコイラーである。
This device also includes a gripping roller 1.1 and a tension cutting roller 2.
.. A low-temperature tension tank B is provided between the two. This ffBJ:
l: It is covered with a heat insulating material 5, has a rectangular parallelepiped shape, and the inlet and outlet are respectively closed by a pair of gripping rollers and tension cutting rollers 2, 2. The fiber bundle is cut between rollers 1.1 and 2.2 with all the drawing forces and/or shearing forces. In this ritual, in order to effectively cool the fiber bundle during cutting, two cooling plates 8. It is arranged. In FIG. 3, C is a refrigerator unit that supplies the cold energy required for freezing, and D is a coiler.

第4図は冷却槽の詳細図で、循環路7内には冷凍機に接
続しである冷却器9、冷却槽内箱とり用の加熱器lOお
よび送気7アン11がめり、冷却器9によ多冷却された
低温空気は循環路7から引出口側の通路6に入り、通路
6内を流動し、送込口側の通路6から循環路7に戻多循
積する。
FIG. 4 is a detailed view of the cooling tank. Inside the circulation path 7, there is a cooler 9 connected to the refrigerator, a heater 10 for boxing inside the cooling tank, and an air supply 7 amp 11. The highly cooled low-temperature air enters the passage 6 on the outlet side from the circulation path 7, flows through the passage 6, and returns to the circulation path 7 from the passage 6 on the inlet side for multiple circulation.

冷却槽A内部には、第5図(α) 、 (b)に示す、
凹部12がある下部トンネル形成枠AIと凸部13があ
る上部トンネル形成枠A2とを凹部12内に凸部13が
位置するように配置して、ジグザグに折曲したトンネル
状の繊維束の通路6が形成しである。
Inside the cooling tank A, as shown in Fig. 5 (α) and (b),
A lower tunnel forming frame AI with a recess 12 and an upper tunnel forming frame A2 with a protrusion 13 are arranged so that the protrusion 13 is located within the recess 12, thereby forming a tunnel-shaped fiber bundle passage bent in a zigzag manner. 6 is formed.

また第6図(α) 、 (6)に示す2個1組の7レー
ム14゜14が通路6の両側に対向して配設してあり、
V形に折面した通路6の上下折曲部位置に、っば15が
付いた回転ローラー16が両端をフレーム14゜14に
支持して取付けである。
Furthermore, a set of two 7-frame frames 14° 14 as shown in FIGS. 6(α) and (6) are arranged facing each other on both sides of the passage 6.
A rotating roller 16 with ribs 15 is mounted at the upper and lower bent portions of the V-shaped passage 6, with both ends supported by frames 14.

第7図は、7レーム14に支持され九回転ローラー16
の7ヤ7ト17の軸受部を示す。2個1組の7レーム1
4 、14と7ヤフト17は冷却槽Aの構造的7レーム
を構成している。繊維束の折曲した走行を案内する回転
ローラー16μベアリング・ボックス18内のグリース
凍結防止用ヒーター19がシャフト17の端部に取付け
てるる。冷却槽内温度がベアリングの使用限界温度−4
0(T)以下となったときに、ヒータ19i働かせるよ
う施しておく。−!た、回転ローラ16に7ツ累系樹脂
、あるいは超高分子量ポリエチレン樹脂のような耐低温
特性および自己潤滑性を有する材料を用いることによシ
、軽量化が図られ、極低温下においても使用に耐えるこ
とができる。
FIG. 7 shows nine rotating rollers 16 supported by seven frames 14.
7 shows the bearing part of 7 and 17. 7 rams 1 set of 2 pieces
4, 14 and 7 shafts 17 constitute the structural 7 frames of cooling tank A. A heater 19 is attached to the end of the shaft 17 to prevent grease from freezing inside a rotating roller 16μ bearing box 18 that guides the fiber bundle as it bends. The temperature inside the cooling tank is the bearing's operating limit temperature -4
The heater 19i is set to work when the temperature becomes 0 (T) or less. -! In addition, by using a material with low temperature resistance and self-lubricating properties, such as a 7-layer resin or an ultra-high molecular weight polyethylene resin, for the rotating roller 16, the weight can be reduced and it can be used even at extremely low temperatures. can withstand.

送込口に取付けた送力ローラー4.4は、第8図に示す
ようにバネ2oにょルローラ−4のシャフトに荷重をか
け、ローラー4,4間のM細束をニップし、下部ローラ
ー4のシャフトを駆動することによシ、繊維束を冷却槽
A内に送り込む。引出口に設けた把持ローラー1.lは
、槽外からの荷重および駆動により繊維束ヲニッグして
引出し、低温牽切槽Bに送り込む。このvA%循壌通路
9内で冷却された雰囲気を送気7アン11によシ通路6
内を引出口側から送込口側に流動せしめる。通路6内を
移送される繊維束は低温雰囲気と向流接触して、急速に
深冷される。
As shown in FIG. 8, the feeding force roller 4.4 attached to the feeding port applies a load to the shaft of the spring 2o roller roller 4, nips the M thin bundle between the rollers 4, 4, and lowers the lower roller 4. The fiber bundle is fed into the cooling tank A by driving the shaft. Gripping roller provided at the drawer port 1. The fiber bundle is pulled out by a load and drive from outside the tank, and sent into the low-temperature tension cutting tank B. The atmosphere cooled in this vA% circulation passage 9 is transferred to the air supply passage 6 11.
The inside flows from the outlet side to the inlet side. The fiber bundle transported through the passage 6 comes into countercurrent contact with the low temperature atmosphere and is rapidly deep cooled.

一般に、繊維は冷却される過程で他の物質と同様体積の
収縮現象が起シ、その繊維方向の収縮率は著しい。従っ
て繊維を初期張力が零に近い緊張状態で室温から冷却し
ていくと、この収縮現象により張力が発生し、その大き
さは温度の低下と共に増加していく。さらに極低温まで
冷却すると、破断伸度の著しい低下と相俟ってその連続
繊維の束中の幾本かが切断されるまでに至る。ま九、繊
維は保温材にも用いられているように、#l!維自体の
比熱は小さくなく熱伝導度も小さいため冷却しに<<、
その繊維が束状に集合体となって各単繊維が接触してい
ると冷却効率は著しく低下する。従って単繊維切断を生
じさせず繊維束を効率よく冷却するためには、常に緊張
を緩和した状態で冷却することが必要となる。
Generally, when fibers are cooled, the volume shrinks like other substances, and the shrinkage rate in the direction of the fibers is significant. Therefore, when the fiber is cooled from room temperature in a state where the initial tension is close to zero, tension is generated due to this contraction phenomenon, and the magnitude of the tension increases as the temperature decreases. When the fiber is further cooled to an extremely low temperature, the elongation at break decreases significantly and some of the continuous fibers in the bundle are cut. 9. Fiber is also used as a heat insulator, #l! The specific heat of the fiber itself is not small and its thermal conductivity is also small, so it is difficult to cool it down.
If the fibers are assembled into a bundle and each single fiber is in contact with each other, the cooling efficiency will be significantly reduced. Therefore, in order to efficiently cool the fiber bundle without causing single fiber breakage, it is necessary to always cool the fiber bundle in a state where the tension is relaxed.

との牽切装置の冷却槽では、送力ローラー4゜4の繊維
束の送り込みと、把持ローラー1.1の引出しの線速度
比が可変となっている。そこで送りローラーの線速度を
把持ローラー より大となし、繊維束全オーバーフィー
ドする。力為〈オーバーフィードすることにょ力、槽内
に送)込まれる繊維束は送多ローラーでニップされて含
有する常温の空気を圧搾除却され、送り口−ラ〜の荷重
から解放された繊維束はオー/(−・フィード作用によ
ル槽内で膨らみ槽内冷気が繊維束の内部に入り込み均一
に効率よく冷却できる。また、冷却@A内における冷却
による繊維束の収縮を吸収し、該ローラー間で捲縮が伸
び切るのを抑え、さらには該ローラー間で生ずる張力の
緩和を可能にする。単繊維が倦縮を有している場合は繊
維間に多くの空気を含有し、冷却しにくいが、オーバー
フィードによシ幼率よく冷却できる。
In the cooling tank of the tension cutting device, the linear speed ratio between the feeding of the fiber bundle by the feeding roller 4.4 and the pulling out of the gripping roller 1.1 is variable. Therefore, the linear speed of the feed roller is set higher than that of the gripping roller to overfeed the entire fiber bundle. The fiber bundle that is fed into the tank is nipped by a multi-feed roller, and the room-temperature air it contains is compressed and removed, and the fiber bundle is released from the load of the feed port. O/(-) expands in the tank due to the feed action, and the cold air in the tank enters the inside of the fiber bundle, allowing it to be cooled uniformly and efficiently.Furthermore, it absorbs the shrinkage of the fiber bundle due to cooling in the cooling @A, and This prevents the crimp from stretching out between the rollers, and also makes it possible to relieve the tension that occurs between the rollers.If the single fiber has crimp, it contains a lot of air between the fibers and cools. Although it is difficult to do so, overfeeding allows for good cooling.

冷却槽のこれら2対の送りローラーおよび把持ローラー
と、冷却槽壁面とはすり合わせ等により柔軟なり−ルを
行ない、冷却槽内冷気と外気との接触を防ぐ。また、冷
却器9によシ槽同温度が低下すると、槽内圧は外気圧に
対して負圧となるため、水分を含んだ外気が送込口や引
出口等から侵入しゃすくなり、露結が生じ各ローラ〜の
同転に支障を米たす。冷却槽Aの任意の位置に液体窒素
等の低温気化ガスの供給口21f:設け、極微量の低温
気化ガスを槽内に供給し、槽内圧力を外気圧に対して余
圧となるよう施し、外気の侵入を防ぐ。また、送込口に
は送りローラ4゜4に加え、繊維束が出入りできる小間
隙を有するスリットを多重に設ける等の他の手段を加え
、外気の槽内流人を抑制しても艮い。また1ま冷却NA
の冷却効率を一層高めるため、第9図(a) 。
These two pairs of feeding rollers and gripping rollers of the cooling tank are rubbed against the wall surface of the cooling tank to form a flexible roll to prevent the cold air inside the cooling tank from coming into contact with the outside air. Additionally, when the temperature of the tank decreases due to the cooler 9, the internal pressure of the tank becomes negative with respect to the outside pressure, making it easier for moisture-containing outside air to enter through the inlet, outlet, etc., resulting in dew condensation. This causes problems in the simultaneous rotation of each roller. A supply port 21f for low-temperature vaporized gas such as liquid nitrogen is provided at an arbitrary position in the cooling tank A, and a very small amount of low-temperature vaporized gas is supplied into the tank so that the pressure inside the tank becomes extra pressure with respect to the outside pressure. , prevent outside air from entering. Furthermore, in addition to the feed roller 4°4, other means such as multiple slits with small gaps through which fiber bundles can enter and exit may be added to the inlet to suppress outside air from flowing into the tank. . Also 1 hour cooling NA
In order to further increase the cooling efficiency of the

(6)のようにトンネル状の通路6の壁面に繊維束の移
送方向に平行な銅等の高熱伝等性物質から成るフィン状
の突条物22i多数並役しても良い。
As shown in (6), a large number of fin-shaped protrusions 22i made of a highly thermally conductive material such as copper may be arranged on the wall surface of the tunnel-like passage 6 parallel to the direction of transport of the fiber bundle.

このとき通路6内を移送される繊維束は突条物22に清
って移動し、内部繊維も頻度高く、低温となった突条物
22に接触し開繊されつつ、巾方向、厚み方向にも均等
にかつ効率よく冷却される。また、冷却槽A内に冷却器
9を設けず、冷凍機C内で充分に冷却されたプラインを
パイプ等により冷却槽内のトンネル状通路6の壁面と都
合よく熱交換できるよう接触させ循環させることによシ
、繊維束を深冷することもできる。
At this time, the fiber bundle transferred in the passage 6 cleanly moves to the protrusion 22, and the internal fibers also frequently come into contact with the protrusion 22, which has become low temperature, and are spread in the width direction and thickness direction. It is evenly and efficiently cooled. In addition, the cooler 9 is not provided in the cooling tank A, and the pline sufficiently cooled in the refrigerator C is brought into contact with the wall surface of the tunnel-shaped passage 6 in the cooling tank through a pipe or the like so as to be circulated for convenient heat exchange. In particular, the fiber bundle can also be deep cooled.

冷却槽内温度は、循環路7#7′3に冷却器9の背後や
供給口の内側等の任意の位置に白金抵抗体や熱電対等の
検出端を設置して検出し、冷凍機の運転を制御し冷却槽
内温度を自動@整する。
The temperature inside the cooling tank is detected by installing a detection end such as a platinum resistor or thermocouple in any position such as behind the cooler 9 or inside the supply port in the circulation path 7#7'3, and the temperature is detected when the refrigerator is operated. to automatically adjust the temperature inside the cooling tank.

第10図は低温章句槽Bの詳細図であ〕、槽内の冷却板
のF方に冷媒が内部を循環する冷却器囚と送気ファン冴
があり、槽内雰囲気を冷却しつつ循環させる。そして牽
切ローラー2,2の線速度を把持ローラー1.10線速
度より大きくし、油圧等により適当な荷重を加え繊維束
を2対のローラー間にて章切し不連続繊維束となし紡出
する。槽内温度は把持ローラー1.1および章句ローラ
ー2,2の近傍や、冷却器囚の背後等、任意の位置に設
けた白金抵抗体や熱電対等の温度検出端により検出し、
自動制御する。
Figure 10 is a detailed diagram of the low-temperature tank B. On the F side of the cooling plate in the tank, there is a cooler and an air supply fan that circulate the refrigerant inside the tank, cooling and circulating the atmosphere inside the tank. . Then, the linear speed of the tension cutting rollers 2, 2 is made higher than the linear speed of the gripping roller 1.10, and an appropriate load is applied using hydraulic pressure, etc., and the fiber bundle is chaptered between the two pairs of rollers to form a discontinuous fiber bundle and spun. put out The temperature inside the tank is detected by a temperature detection end such as a platinum resistor or thermocouple installed at an arbitrary position, such as near the gripping roller 1.1 and the passage rollers 2, 2, or behind the cooler prisoner.
Automatically control.

一般にトウt″章句するとフライが発生するが、章句領
域金密閉すると、この7ライμ堆積していき連続運転に
支障をさたしたり浮遊してスライバー 中に入り品質を
低下させるため、低温章句槽Bでは除去に都合の艮いよ
う、槽下部の循積通路内にフィルタ25を設け、フライ
を集積できるよう施しである。ま九、牽切ローラー偽2
り上下にセ単繊維のローラー巻き付きを防止するよう、
ブラフ26が設けである。低温となった容器内雰囲気と
外気との接触を防ぐため、2対のローラー側面とflI
P3壁間で鉱すり合わせによシ、また、ローラー面と借
間でに4ケ所にそれぞれローラー27ヲ僧に設けた円形
溝に設け、柔軟な7−ルを行なう。また、2対の上下ロ
ーラー間では適当な荷重を加えてニップしているため、
槽内雰囲気と外気との接触を防ぐ。ここで、把持ローラ
ー1.1および章句ローラー2.2は耐低温特性と機械
的特性に優れたゴムと、7ツ累系樹脂や超高分子量ポリ
エチレン樹脂を組み合わせたが、これらを被覆させたも
のでも良い。また、ローラーnも自己潤滑性に優れたこ
れらの樹@を用いている。
In general, frying occurs when tow t'', but if the metal area is sealed, this layer will accumulate and interfere with continuous operation, or it will float and enter the sliver, reducing the quality. In tank B, for convenience of removal, a filter 25 is installed in the circulation passageway at the bottom of the tank to collect flies.
To prevent the single fibers from wrapping around the rollers,
A bluff 26 is provided. In order to prevent the atmosphere inside the container, which has become low in temperature, from contacting the outside air, two pairs of rollers are installed on the side surfaces and flI.
The rollers 27 are placed in circular grooves in four places on the roller surface and the floor space to perform flexible rolling. In addition, since the nip is applied between the two pairs of upper and lower rollers with an appropriate load,
Prevent contact between the tank atmosphere and outside air. Here, the gripping roller 1.1 and the passage roller 2.2 are made of a combination of rubber with excellent low-temperature resistance and mechanical properties, and a 7-layer resin or an ultra-high molecular weight polyethylene resin, and are coated with these. But it's okay. Furthermore, the roller n also uses these trees with excellent self-lubricating properties.

牽切途中の繊維束の上下に設けた冷却板8゜8は、銅や
アルミニウム等の熱伝導の優れた金属板等を繊維束の進
行の妨げとならないよう。
Cooling plates 8°8 are provided above and below the fiber bundle during tension cutting, so that metal plates with excellent thermal conductivity such as copper or aluminum do not obstruct the progress of the fiber bundle.

両端に丸みを付けた表面円滑な仕上げを施した接触面を
もつ。冷却板8は槽の下部にバー等で固定し冷却板8は
穴を設はパーを通す等、上下方向にのみ動くよう牽切途
中の繊維束の上に載せておく。また、バネによル荷重を
加え繊維束の走行の妨げとならない程度に積極的に繊維
束に接触させるようにして4艮い。牽切による発熱は冷
却板8.8の任意の位置に設けた温度検出端によって検
出でき、この温度により槽内温度’t−a整しても良い
。牽切熱が発生した場合、昇温した冷却板8,8は槽内
の低温雰囲気によシ冷却され、熱伝達に優れた金属を接
触させることによシ昇温した牽切途中の繊維束から素早
く熱を奪い取ることができるものである。第11図に示
すよう冷却板8.8の表面に多数のフィン状物28ヲ付
けて熱交換を良くすることができる。また、冷却板8.
8の替シに冷却器23を繊維束の進行の妨けとならない
形状とし、繊維束に接触させたり、また冷凍機C内で充
分に冷却されたブライン金第12図に示すよう、パイプ
29によ勺冷却板8,8に都合よく熱交換できるよう接
触させ冷凍機C内と循環させ冷却するとともできる。
It has a contact surface with a smooth finish and rounded ends. The cooling plate 8 is fixed to the lower part of the tank with a bar or the like, and the cooling plate 8 is placed on the fiber bundle in the middle of tension cutting so that it can move only in the vertical direction, such as by providing holes through which the cooling plate 8 passes. Further, a spring load is applied to the spring so as to actively contact the fiber bundle to such an extent that it does not interfere with the running of the fiber bundle. The heat generated by tension cutting can be detected by a temperature detecting end provided at an arbitrary position on the cooling plate 8.8, and the tank internal temperature 't-a may be adjusted based on this temperature. When tension-cutting heat occurs, the heated cooling plates 8, 8 are cooled by the low-temperature atmosphere in the tank, and the fiber bundles that are in the middle of tension-cutting are heated by contacting a metal with excellent heat transfer. It can quickly remove heat from the body. As shown in FIG. 11, a number of fins 28 can be attached to the surface of the cooling plate 8.8 to improve heat exchange. Also, the cooling plate 8.
8, the cooler 23 is shaped so that it does not obstruct the progress of the fiber bundle, and is brought into contact with the fiber bundle, and the pipe 29 is cooled sufficiently in the refrigerator C, as shown in FIG. 12. It can also be cooled by being brought into contact with the cooling plates 8, 8 for convenient heat exchange and circulating within the refrigerator C.

この牽切装置により牽切できる繊維束としては、単繊維
デニール0.1〜1oO@]から構成されるトータルデ
ニール30し4〜200万闇に至るフィラメント、ラー
ジフィラメント、トウ等の繊維束等が用いられ、ポリア
クリル系、ポリエステル系等の化学繊維が主に用いられ
る。そして、冷却には液体窒素、空気等の低温ガスを用
いるのが良いが、さらにこの低温ガスで冷却槽内を満た
し、繊維束の進行方向と逆向きに通路内を流動させ循環
させることにより繊維束の冷却効率音高める。また、窒
素ガスや空気等の気体の繊維への熱伝導度は低いため、
銅や真ちゅう等の熱伝導度の優れた金属に繊維束を接触
させたり、また、  金属の突起物を常時接触させ開繊
しつつ内部にまで均一に効率よく冷却することができる
Fiber bundles that can be cut with this tension cutting device include fiber bundles such as filaments, large filaments, and tows with a total denier of 30 to 2 million yen, consisting of single fibers with a denier of 0.1 to 1oO@]. Chemical fibers such as polyacrylic and polyester are mainly used. It is best to use a low-temperature gas such as liquid nitrogen or air for cooling, but the cooling tank is further filled with this low-temperature gas, and the fibers are circulated by flowing through the passage in the opposite direction to the traveling direction of the fiber bundle. Increases the cooling efficiency of the bundle and the sound. In addition, since the thermal conductivity of gases such as nitrogen gas and air to fibers is low,
It is possible to bring the fiber bundle into contact with a metal with excellent thermal conductivity such as copper or brass, or to keep it in constant contact with metal protrusions to spread the fibers and cool them uniformly and efficiently to the inside.

この発明は以上の通りでFハこの装置は凍結牽切の本来
のメリツ11−発現し、製造工程の能率化および高品質
の不連続繊維束の製造を可(15) 能とする。
The present invention is as described above, and this device realizes the original merits of frozen stretch cutting, making it possible to streamline the production process and produce high-quality discontinuous fiber bundles.

さらに、実施例の装置は次の作用効果をもたらす。冷却
槽において。
Furthermore, the device of the embodiment provides the following effects. In the cooling tank.

■ 送りローラーと引き取勺ローラーによシ冷却槽内冷
気と外気との接触を防ぎ、かつ、被冷却繊維の束が捲縮
を有する場合は、各単繊維間に含有された外気および冷
気を圧搾し、冷却効率を高める。
■ The feed roller and take-off roller prevent the cold air inside the cooling tank from contacting the outside air, and if the bundle of fibers to be cooled has crimps, compress the outside air and cold air contained between each single fiber. and improve cooling efficiency.

■ 送りローラーと引き喉シローラーの線速度を異なら
し、オーバー・フィードすることによシ、冷却槽内の繊
維把持間にて単繊維切断や捲縮が伸び切るのを防止し冷
気との接触面積を上は冷却効率を上げる。
■ By differentiating the linear speed of the feed roller and the draw-throat roller and overfeeding, it is possible to prevent single fibers from being cut or crimped from stretching out between the fiber grips in the cooling tank, and to reduce the contact area with cold air. The top increases cooling efficiency.

■ 両端につばを有し、露結しない複数の回転バーによ
シ単繊維切断を抑え、単繊維の巻き付きを抑える。
■ Multiple rotating bars with flanges at both ends that prevent condensation prevent single fibers from breaking and prevent single fibers from wrapping around.

■ 冷却槽内冷気を循環させることにより、被冷却繊維
の束と接触する冷気を流動させ、均一にかつ、効率よく
冷却できる。
■ By circulating the cold air in the cooling tank, the cold air that comes into contact with the bundle of fibers to be cooled can be made to flow, allowing uniform and efficient cooling.

■ 被冷却繊維の束を冷却槽内で熱伝導度の優(16) れた金属と面接触させることにょシ、効率よく冷却でき
る。
■ The bundle of fibers to be cooled can be efficiently cooled by bringing them into surface contact with a metal with excellent thermal conductivity (16) in the cooling tank.

低温牽切槽Bにおいて、 ■ 連続繊維束を低温雰囲気中で、牽切でき、さらに牽
切熱によル昇温した繊維の温度を素早く下げることがで
きる。
In the low-temperature tension-cutting tank B, (1) continuous fiber bundles can be tension-cut in a low-temperature atmosphere, and the temperature of the fibers, which have been heated by tension-cutting heat, can be quickly lowered.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアクリル系合成繊維(商品名;力7ミロン■)
3d、20本束の各温度における張力−伸度線図、第2
図μ力りミロン■の2種タイプの引張切断に至る塑性変
形領域と切断温度との相関図、第3図は実施例の牽切装
置の全体概要図、第4図は冷却槽の縦断面図、第5図(
cL) 。 (6)は下部および上部トンネル形成枠の側面図、第6
図(α) 、 (6)は7レームの側面図および回転ロ
ーラーを取付けた7レームの正面図、第7図は回転ロー
ラーの軸受部の断面図、第8図は冷却槽の送込口の一部
断面で示す正面図、第9図(α)。 (b)はフィン状の突条物を取付けた通路の側面図およ
び平面図、第10図は低温牽切槽の縦断面図、第11.
12図(α)、(りはフィン状物およびプライン循環パ
イプを取付けた。冷却板の平面図および側面図である。 !・・・・・・把持ローラー 2・・・・・・牽切ロー
ラー3・・・・・・牽切機    4・・・・・・送り
ローラー5・・・・・・断熱材    6・・・・・・
通路7・・・・・・循環路    8・・・・・・冷却
板9・・・・・・冷却器    lO・・・・・・加熱
器11・・・・・・送気ファン  12・・・・・・凹
部13・・・・・・凸部14・・・・・・フレーム15
・・・・・・クハ16・・・・・・回転ローラー17・
・・・・・シャフト 18・・・・・・ベアリングボックス 19・・・・・
・ヒーター20・・・・・・バネ   21・・・・・
・低温気化ガス供給口22・・・・・・突条物    
器・・・・・・冷却器ス・・・・・・送気7アン  四
・・・・・・フィルター26・・・・・・プラン27・
・・・・・ローラー詔・・・・・・フィン状物  29
・・・・・・パイプA・・・・・・冷却槽    B・
・・・・・低温章句槽C・・・・・・冷凍機ユニット 
D・・・・・・コイラー人1+A2・・・・・・下部お
よび上部トンネル形成枠(6)q葛 第6図 第5図 (CI)        (b) 第7図 第8図 第9図 (a)      (b) (b) 2B
Figure 1 shows acrylic synthetic fiber (product name: force 7milon)
3d, tension-elongation diagram at each temperature for 20 bundles, 2nd
Figure 3 is a correlation diagram between the plastic deformation region and cutting temperature leading to two types of tensile cutting of μ strain millon ■, Figure 3 is an overall schematic diagram of the tension cutting device of the example, and Figure 4 is a longitudinal section of the cooling tank. Figure, Figure 5 (
cL). (6) is a side view of the lower and upper tunnel forming frames;
Figures (α) and (6) are a side view of the 7-frame and a front view of the 7-frame with the rotating roller attached, Figure 7 is a sectional view of the bearing of the rotating roller, and Figure 8 is a view of the inlet of the cooling tank. Front view partially shown in section, FIG. 9 (α). 11. (b) is a side view and a plan view of a passageway with fin-shaped protrusions attached, FIG.
Figure 12 (α) is a plan view and a side view of a cooling plate with a fin-like object and a pline circulation pipe attached. !... Gripping roller 2... Tension cutting roller 3...Tension cutter 4...Feed roller 5...Insulation material 6...
Passage 7... Circulation path 8... Cooling plate 9... Cooler lO... Heater 11... Air supply fan 12... ...Concave portion 13...Convex portion 14...Frame 15
...Kuha 16...Rotating roller 17.
...Shaft 18...Bearing box 19...
・Heater 20... Spring 21...
・Low temperature vaporized gas supply port 22... protrusion
Container: Cooler: Air supply: 7 amps: Filter: 26: Plan: 27
...Roller edict ...Fin-like object 29
...Pipe A...Cooling tank B.
・・・・・・Low temperature tank C・・・・Freezer unit
D...Coiler person 1+A2...Lower and upper tunnel forming frame (6) q. Figure 6 Figure 5 (CI) (b) Figure 7 Figure 8 Figure 9 (a) ) (b) (b) 2B

Claims (5)

【特許請求の範囲】[Claims] (1)  把持ローラーと牽切ローラーとの間で繊維束
を牽切する牽切機の前段に、繊維束全冷却する冷却槽を
連設し、かつ把持ローラーと牽切ローラーとの間に、冷
却手段金偏えた低温牽切槽が設けであることを特徴とす
る低温牽切装置。
(1) A cooling tank for completely cooling the fiber bundle is installed in front of the tension cutting machine that cuts the fiber bundle between the gripping roller and the tension cutting roller, and between the gripping roller and the tension cutting roller, A low-temperature tension cutting device characterized in that a cooling means is provided with a low-temperature tension cutting tank.
(2)  冷却槽は繊維束送込口および引出口がそれぞ
れ一対の送シローラーおよび把持ローラーにより閉基さ
れていることを特徴とする特許請求の範囲第1項記載の
低温牽切装置。
(2) The low-temperature tension cutting device according to claim 1, wherein the cooling tank has a fiber bundle inlet and a fiber bundle outlet each closed by a pair of feed rollers and a pair of gripping rollers.
(3)低温牽切槽は繊維束送込口および引出口がそれぞ
れ一対の把持ローラーおよび牽切ローラーによシ閉塞さ
れていることを特徴とする特許請求の範囲第1項記載の
低温牽切装置。
(3) The low-temperature tension-cutting tank according to claim 1, wherein the fiber bundle inlet and the fiber bundle outlet are respectively closed by a pair of gripping rollers and a tension-cutting roller. Device.
(4)  冷却槽は送込口と引出口との間にジグザグに
折曲したトンネル状の繊維束移送用通路を有し、冷却さ
れた槽内雰囲気が前記通路に沿い流動せしめる手段と、
送シローラーと把持ローラーとの線速度比を可変fる手
段 を備えていることを特徴とする特許請求の範囲第1
項記載の低温牽切装置。
(4) The cooling tank has a zigzag-shaped tunnel-shaped fiber bundle transfer path between the inlet and the outlet, and means for causing the cooled tank atmosphere to flow along the path;
Claim 1, characterized by comprising means for varying the linear velocity ratio of the feed roller and the gripping roller.
The low-temperature tension cutting device described in section.
(5) 低温牽切槽は、把持ローラーと牽切ローラーと
の間を走行する繊維束に接触し、繊維束を冷却する冷却
体を備えていることを特徴とする特許請求の範囲第1項
記載の低温牽切装置。
(5) The low-temperature stretch cutting tank is equipped with a cooling body that comes into contact with the fiber bundle running between the gripping roller and the tension cut roller and cools the fiber bundle. The low-temperature tension cutting device described.
JP5848383A 1983-04-02 1983-04-02 Low-temperature stretch-breaking apparatus Granted JPS59187627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5848383A JPS59187627A (en) 1983-04-02 1983-04-02 Low-temperature stretch-breaking apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5848383A JPS59187627A (en) 1983-04-02 1983-04-02 Low-temperature stretch-breaking apparatus

Publications (2)

Publication Number Publication Date
JPS59187627A true JPS59187627A (en) 1984-10-24
JPS6212323B2 JPS6212323B2 (en) 1987-03-18

Family

ID=13085673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5848383A Granted JPS59187627A (en) 1983-04-02 1983-04-02 Low-temperature stretch-breaking apparatus

Country Status (1)

Country Link
JP (1) JPS59187627A (en)

Also Published As

Publication number Publication date
JPS6212323B2 (en) 1987-03-18

Similar Documents

Publication Publication Date Title
US4004330A (en) Textile treatment apparatus
US4035879A (en) Apparatus for producing texturized yarns
EP0679743B1 (en) Apparatus and method for crimping fibers for nonwoven applications
KR20010066770A (en) Fifth generation draw line
JPS59187627A (en) Low-temperature stretch-breaking apparatus
EP0935016B1 (en) Calendering apparatus and method for heating traveling multifilament tow
US3374302A (en) Strand treatment process
US3226792A (en) Method and apparatus for crimping yarn
JP2004512436A (en) Oven for elevating the temperature and drawing the fiber
US3177931A (en) Apparatus for treating yarn
US3457613A (en) Strand treatment
JPS60167932A (en) Method and apparatus for low-temperature stretch- breaking
JPS59187626A (en) Cutter
CN110480893B (en) Flat membrane method polyester heat shrinkage label membrane soaking reinforced cooling treatment device
JPS59168146A (en) Cooling apparatus of fiber gathered body
US3600479A (en) Method for uniaxially after-stretching a tubular film
US4316358A (en) False-twisting system
US3500516A (en) Apparatus for strand treatment
US3528148A (en) Apparatus for strand treatment
JPS60167933A (en) Method and apparatus for dehumidification and stretch- breaking at low temperature
JPS6142938Y2 (en)
CN206104566U (en) Straight line wire drawing machine
CN112323155B (en) Preparation method of plastic fiber braided wire
EP0626548A1 (en) Process and apparatus for the high speed oxidation of organic fiber
CN1003293B (en) Method and apparatus for thermally treating tape