JPS59187258A - Automatic balancing circuit for eddy current test equipment - Google Patents

Automatic balancing circuit for eddy current test equipment

Info

Publication number
JPS59187258A
JPS59187258A JP6144283A JP6144283A JPS59187258A JP S59187258 A JPS59187258 A JP S59187258A JP 6144283 A JP6144283 A JP 6144283A JP 6144283 A JP6144283 A JP 6144283A JP S59187258 A JPS59187258 A JP S59187258A
Authority
JP
Japan
Prior art keywords
speed
adder
output
gain
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6144283A
Other languages
Japanese (ja)
Inventor
Nobuo Mukaesato
迎里 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6144283A priority Critical patent/JPS59187258A/en
Publication of JPS59187258A publication Critical patent/JPS59187258A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9046Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals
    • G01N27/906Compensating for velocity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To obtain an automatic balancing circuit which can remove unwanted singals effectively without being affected by the speed of inspection by a follow- up control of the feedback gain of the automatic balancing circuit in proportion to the speed of material to be detected. CONSTITUTION:Output of an adder 13 is applied to a gain controller 14 and increased or decreased by a gain controlled by a control signal applied to a controller 14 from a speed counter 16 and then, applied to an adder 3 to cancel the output. A pulse encoder 15 outputs one pulse at each unit moving distance of material to be detected. The output is counted with the counter 16 in terms of a specified gate time and converted into a digital value continuously proportional to the speed. This digital value so acts to increase the gain of the controller 14 as the speed of the material being detected grows larger. Therefore, the feedback gain of the automatic balancing circuit in a cancelling signal generation circuit 5 is proportional to the moving speed of the material being detected thereby enabling a higher reliability eliminating effect of noises.

Description

【発明の詳細な説明】 この発明は渦流探傷装置の自動バランス回路の改良に関
し、さらに詳しくは位相検波回路の出力を用いて渦流検
出器の出力を打ち消す方式の渦流探傷装置自動バランス
回路の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an automatic balance circuit for an eddy current flaw detector, and more particularly to an improvement in an automatic balance circuit for an eddy current flaw detector that uses the output of a phase detection circuit to cancel out the output of an eddy current detector. It is something.

オンラインでの疵検査装置として利用されている渦流探
傷装置に於ては、測定条件の定常的変化2例えば被検材
のロフトとしての材質変化、ゆっくりした温度変化、検
出コイルと被検材のギャップの緩慢な変化等によって検
出コイルのインピーダンスが変化し、検出コイルを一片
とする平衡器、または2ケの検出コイルの差動出力に不
平衡電圧が現れる。この信号は疵による検出コイルのイ
ンピーダンス変化によって生する不平衡電圧よシも大き
く、疵検比を困難なものとする。自動バランス回路はこ
のような不要な不平衡信号を極力おさえるために通常の
渦流探傷装置には備えられている。
In eddy current flaw detection equipment, which is used as an online flaw inspection device, constant changes in measurement conditions 2. For example, material changes such as the loft of the test material, slow temperature changes, and gaps between the detection coil and the test material. The impedance of the detection coil changes due to a slow change in the detection coil, and an unbalanced voltage appears in the balancer in which the detection coil is one piece, or in the differential output of the two detection coils. This signal is also larger than the unbalanced voltage generated by the change in impedance of the detection coil due to a flaw, making it difficult to detect flaws. An automatic balance circuit is provided in ordinary eddy current flaw detection equipment in order to suppress such unnecessary unbalanced signals as much as possible.

従来渦流探傷装置の自動バランス回路には第1図に示す
ような方式が用すられていた。図において(11は平衡
器内の検出コイルを励振する発振器、(2)は検出コイ
ルを平衡器の1片あるいは2片とした平衡器、(3)は
打消し信号発生回路(5)の出力によシ、平衡器(2)
の不平衡信号を打消すように作用する第1の加算器、(
4)はこの第1の加算器の出力を所要量増幅する増幅器
、(5)は増幅器(4)の出力によって平衡器(2)の
不平衡信号出力を打消す信号を発生する打消し信号発生
回路、(6)及び(11は互いに90度位相の異なる成
分を出力する位相検波器、(7)及びαυは積分回路、
(8)及びC2は変調器、03は上記2つの変調器(8
)、C2の出力をベクトル加算する第2の加算器、(9
)は90°位相器である。
Conventionally, the automatic balance circuit of eddy current flaw detection equipment has used a system as shown in Fig. 1. In the figure, (11 is an oscillator that excites the detection coil in the balancer, (2) is a balancer in which the detection coil is one or two pieces of the balancer, and (3) is the output of the cancellation signal generation circuit (5). Balancer (2)
a first adder, which acts to cancel the unbalanced signal of (
4) is an amplifier that amplifies the output of the first adder by the required amount, and (5) is a cancellation signal generator that generates a signal that cancels the unbalanced signal output of the balancer (2) using the output of the amplifier (4). circuits, (6) and (11 are phase detectors that output components with a phase difference of 90 degrees from each other, (7) and αυ are integration circuits,
(8) and C2 are modulators, 03 is the above two modulators (8
), a second adder that vectorially adds the outputs of C2, (9
) is a 90° phase shifter.

次に動作について説明する。発振器(1)の出力信号は
平衡器(2)の検出コイルに印加される。平衡器(2)
の不平衡信号出力は第1の加算器(3)に入力され第1
の加算器(3)の出力信号は増幅器(4)によって所要
量増幅される。増幅器(4)の出力信号の一部は図示さ
れていない出力回路へ出力され欠陥判別用として利用さ
れ、他の一部は位相検波器(6)及び顛に入力される。
Next, the operation will be explained. The output signal of the oscillator (1) is applied to the detection coil of the balancer (2). Balancer (2)
The unbalanced signal output of is input to the first adder (3) and
The output signal of the adder (3) is amplified by the required amount by the amplifier (4). A part of the output signal of the amplifier (4) is outputted to an output circuit (not shown) and used for defect determination, and the other part is inputted to the phase detector (6) and the like.

位相検波器(6)及びα〔はそれぞれ上記発振器(1)
よシの基準信号及び上記発振器(1)の出力を90度移
相器(9)で90度移相した基準信号によりそれぞれ位
相検波され互いに90度位相の異なる成分を出力する。
The phase detector (6) and α [are respectively the above oscillator (1)
The phase of the other reference signal and the reference signal obtained by shifting the output of the oscillator (1) by 90 degrees by a 90 degree phase shifter (9) are detected, and components having phases different by 90 degrees from each other are output.

位相検波器(6)及びα〔の出力信号は、それぞれ積分
器(7)及びαυに入力され積分された直流信号に変換
される。積分器(力及びC1υの出力信号はそれぞれ変
調器(8)及びαつに入力される。変調器(8)及びC
2の出力はそれぞれ積分器(7)及びαυより入力され
た直流信号により、上記発振器(1)及び上記90度移
相器(9)の出力信号忙変調を加え、積分器の直流信号
電圧に比例した振幅で、かつ積分器の直流信号の極性が
反転した場合は180度位相が反転する変調出力で、か
つ変調器(8)及びC12の出力は互いに直交したベク
トル成分の出力である。第2の加算器0騰は上記変調器
(8)及び(J2の出力をベクトル加算して、それを第
1の加算器(3)へ第1の加算器(3)の出力信号が打
ち消されるように加えられる。
The output signals of the phase detector (6) and α[ are input to the integrator (7) and αυ, respectively, and are converted into integrated DC signals. The output signals of the integrator (force and C1υ are input to modulators (8) and α, respectively. Modulators (8) and C
The output of No. 2 is modulated by the DC signals input from the integrator (7) and αυ, respectively, to the output signals of the oscillator (1) and the 90 degree phase shifter (9), and the DC signal voltage of the integrator is modulated. The modulated output has a proportional amplitude and the phase is reversed by 180 degrees when the polarity of the DC signal of the integrator is reversed, and the outputs of the modulator (8) and C12 are outputs of vector components orthogonal to each other. The second adder performs vector addition of the outputs of the modulators (8) and (J2) and sends it to the first adder (3), where the output signal of the first adder (3) is canceled. It is added as follows.

以上のような従来の自動バランス回路の平衡器(2)の
出力が加わる加算器(3)の入力から増幅器(4)の出
力までの伝達関数G(ω)は次のように求められる。第
1の加算器(3)の利得と増幅器(4)の利得の和をG
I、打消し信号発生回路(5)中の位相検波器(6)ま
たはalの検波利得、変調器(8)またはC2の変調利
得、第2の加算器−の利得の総和、すなわち帰還利得を
02.積分器の積分定数をCR。
The transfer function G(ω) from the input of the adder (3) to which the output of the balancer (2) of the conventional automatic balance circuit as described above is added to the output of the amplifier (4) is determined as follows. The sum of the gain of the first adder (3) and the gain of the amplifier (4) is G
I, the sum of the detection gain of the phase detector (6) or al in the cancellation signal generation circuit (5), the modulation gain of the modulator (8) or C2, and the gain of the second adder, that is, the feedback gain. 02. CR the integral constant of the integrator.

平衡器(2)から加算器(3)へ入力される信号の変化
する角速度をωとすると。
Let ω be the changing angular velocity of the signal input from the balancer (2) to the adder (3).

伝達関数G(ω)は G(ω)= Gt/T 1+(GI02 /ωCR))
    (11しゃ折角速度をωCとすると ωC= GIG2/ CR(2) となる。
The transfer function G(ω) is G(ω)=Gt/T 1+(GI02/ωCR))
(If the angular velocity of 11 is ωC, then ωC=GIG2/CR(2).

また応答時間すなわち時定数をτとすればτ=1/ωC
== CR/Gl〜      (3)で与えられる。
Also, if the response time or time constant is τ, then τ=1/ωC
== CR/Gl~ (3) Given.

第2図は上記第(1)式の周波数特性を示したもので、
g軸Gは利得、横軸ωは平衡器(2)から加算器(3)
へ入力される信号の変化する角速度、ωCは上記(2)
式で与えらnるしゃ断層波数、またG1は加算器(3)
の利得と増幅器(4)の利得の和である。第2図の周波
数特性からも充分理解できるように、自動バランス回路
は被検材のロットとしての材質の変化、ゆっくりした温
度変化、検出コイルと被検材のギャップの緩慢な変化等
によって発生する入力信号のように、信号の変化する角
速度ωがしゃ折角速度ωCより充分に低い角速度の場合
は、出力信号は充分減衰するが。
Figure 2 shows the frequency characteristics of equation (1) above.
The g-axis G is the gain, and the horizontal axis ω is the balancer (2) to adder (3).
The changing angular velocity of the signal input to ωC is the above (2)
The n Rush wave number given by the formula, and G1 is the adder (3)
is the sum of the gain of the amplifier (4) and the gain of the amplifier (4). As can be fully understood from the frequency characteristics shown in Figure 2, the automatic balance circuit is caused by changes in the material of the test material as a lot, slow temperature changes, slow changes in the gap between the detection coil and the test material, etc. If, like the input signal, the angular velocity ω at which the signal changes is sufficiently lower than the interruption angular velocity ωC, the output signal will be sufficiently attenuated.

欠陥信号のように変化する角速度ωが高い場合には、G
lの利得で増幅され出力に信号として現れる。
When the changing angular velocity ω is high like a defect signal, G
It is amplified with a gain of l and appears as a signal at the output.

ところで従来の自動バランス回路では積分器の積分定数
CRをスイッチにより選択し、一定の応答時間によって
検査が行なわれるため、以下に示すごとき問題点を有し
ていた。すなわち(1)  応答時間を小さく設定する
と被検材の速度に応じて、同一欠陥でも欠陥出力は検査
速度が速い場合は大きく、遅い場合は小さく出る(2)
シたがって広範囲の検査速度でのオンライン疵検査では
応答時間は大きく選択せざるを得ない。
By the way, in the conventional automatic balance circuit, the integration constant CR of the integrator is selected by a switch and the test is carried out using a fixed response time, which has the following problems. In other words, (1) If the response time is set to a small value, the defect output will be large if the inspection speed is fast, and small if the inspection speed is slow, even for the same defect, depending on the speed of the inspected material (2)
Therefore, in online defect inspection with a wide range of inspection speeds, the response time must be selected to be large.

(3)応答時間を大きく選択すると速い検査速度で検出
コイルと被検材のギャップの変化による信号変化も速く
なり、また材質等の変化による信号変化も速くなった時
、充分に除去できなくなる。
(3) If the response time is selected to be large, signal changes due to changes in the gap between the detection coil and the material being tested will become faster due to the faster inspection speed, and when signal changes due to changes in the material etc. also become faster, it will not be possible to remove them sufficiently.

この発明は、上述したごとき従来の自動バランス回路の
問題点を解決するためになされたもので、検査速度の影
響を受けない、効果的に不要信号を除去する自動バラン
ス回路を提供するものである。
This invention was made in order to solve the problems of the conventional automatic balance circuit as described above, and provides an automatic balance circuit that is not affected by inspection speed and effectively removes unnecessary signals. .

以下第3図に示すこの発明の一実施例について説明する
。第3図において第1の加算器(3)。
An embodiment of the present invention shown in FIG. 3 will be described below. In FIG. 3, the first adder (3).

増幅器(4)9位相検波器(6)及びH,積分器(7)
及びαυ、変調器(8)及びαの、第2の加算器03は
第1図に示したものと同様である。α4はたとえばディ
ジタルアッテネータ等を使用した利得制御器。
Amplifier (4) 9-phase detector (6) and H, integrator (7)
and αυ, the modulator (8) and the second adder 03 of α are similar to those shown in FIG. α4 is a gain controller using, for example, a digital attenuator.

α9は被検材にローラ等によって接触し、被検材が単位
距離移動するごとにパルスを発生するパルスエンコータ
、 翰ハハルンエンコータノ出力を一定時間ごとにカウ
ントするカウンタである次にこの発明の詳細な説明する
α9 is a pulse encoder that contacts the material to be inspected with a roller or the like and generates a pulse every time the material to be inspected moves a unit distance, and a counter that counts the encoder output at regular intervals.Next, this invention Detailed explanation of.

第3図において第1の加算器(3)、増幅器(4)。In FIG. 3, a first adder (3) and an amplifier (4).

位相検波器(6)及びa〔、積分器(7)及びaυ、変
調器(8)及びα邊、第2の加算器時は第1図に示した
ものと同様である。第2の加算器(131の出力は利得
制御器α4に加えられ速度カウンタaQより利得制御器
α4へ加えられる制御信号により制御された利得だけ増
幅あるいは減衰し、第1の加算器(3)へ、第1の加算
器(3)の出力信号が打ち消されるように加えられる。
The phase detector (6) and a[, the integrator (7) and aυ, the modulator (8) and α side, and the second adder are the same as those shown in FIG. The output of the second adder (131) is applied to the gain controller α4, where it is amplified or attenuated by the gain controlled by the control signal applied from the speed counter aQ to the gain controller α4, and then sent to the first adder (3). , are added so that the output signals of the first adder (3) are canceled.

パルスエンコーダa!9rrz被検材にローラ等を介し
て接触し、被検材の単位移動距離ごとに1つのパルスを
出力する。この出力は速度カウンタQ51で所定のゲー
ト時間で計数し、刻々速度に比例したディジタル値に変
換される。このディジタル値はたとえばディジタル制御
サブテネータ等に加えられ結果として被検材の速度が速
くなると利得制御器04の利得が大きくなるように作用
する、。
Pulse encoder a! 9rrz Contacts the test material via a roller or the like, and outputs one pulse for each unit movement distance of the test material. This output is counted by a speed counter Q51 at a predetermined gate time, and is converted into a digital value proportional to the speed every moment. This digital value is applied to, for example, a digitally controlled subtenator, and as a result, as the speed of the specimen increases, the gain of the gain controller 04 increases.

したがって、打消信号発生回路f5)中の位相検波:5
(6)または特の検波利得、変調器18)またはa2の
変調利得、第2の加算器(Lりの利得、利得制御器Iの
利得の総和、すなわち自動バランス回路の帰還利得G2
は被検材の移動速度Vに対する比例係数をKとすれば G、 =KV              (41で与
えられる。
Therefore, the phase detection in the cancellation signal generation circuit f5): 5
(6) or special detection gain, modulator 18) or modulation gain of a2, second adder (gain of L, sum of gains of gain controller I, i.e. feedback gain G2 of the automatic balance circuit
is given by G, =KV (41), where K is the proportional coefficient to the moving speed V of the test material.

加算器(3)の利得、増幅器(4)の利得の和をGI、
積分器(7)及びαDの時定数をCRとすれば、この自
動バランス回路の伝達関数G(ω)は上記第(1)式で
表わされ、したがって上記第(1)式に第(4)式を代
入すると ()(ω)= Gl / (1+ (Gl /?ucR
)KV)    (51となる。
The sum of the gain of the adder (3) and the gain of the amplifier (4) is GI,
If the time constant of the integrator (7) and αD is CR, the transfer function G(ω) of this automatic balance circuit is expressed by the above equation (1), and therefore, the above equation (1) is added to the above equation (4). ), we get ()(ω)=Gl/(1+(Gl/?ucR)
)KV) (It becomes 51.

したがってしゃ折角速度をωCとすればωc = (G
l /CR) Kv         (61となる。
Therefore, if the breaking angular velocity is ωC, ωc = (G
l /CR) Kv (becomes 61.

才た応答時間τば r = l /ωC=CR/GI KV       
(7)となる。
Long response time τbar = l /ωC = CR/GI KV
(7) becomes.

上記第15)式の周波数特性は第2図に示した特性と同
様であるが第(6)式で示されるように被検材の速度V
が速くなればそれに比例してしゃ折角速度ωCは高くな
シまた被検材の移動速度Vが遅くなれば比例して低くな
るように作用する。
The frequency characteristic of Equation 15) above is similar to the characteristic shown in Fig. 2, but as shown in Equation (6), the velocity V
If the velocity V becomes faster, the breaking angular velocity ωC increases in proportion to that, and if the moving velocity V of the specimen becomes slower, it decreases in proportion.

疵信号の周波数成分は、疵の大きさと被検材の速度によ
って概略定まり、その周波数成分は被検材の移動速度に
比例する。したがって、しゃ折角速度ωCを、目標疵信
号の角速度ωSと同じかあるいはωSよりやや低い角速
度となるように比例係数Kを設定しておくことにより。
The frequency component of the flaw signal is approximately determined by the size of the flaw and the speed of the material to be inspected, and the frequency component is proportional to the moving speed of the material to be inspected. Therefore, by setting the proportionality coefficient K so that the breakage angular velocity ωC is equal to or slightly lower than the angular velocity ωS of the target flaw signal.

疵信号周波数は検査速度の如何忙拘らず、常にしゃ折角
速度ωCの点あるいはやや高めの角速度となる。
The flaw signal frequency is always at the breaking angular velocity ωC or a slightly higher angular velocity, regardless of the inspection speed.

以上のようにこの発明によ、f′Lば、自動バランス回
路の帰還利得を被検材の速度に比例して追従制御するこ
とにより自動バランス回路の応答時間τ、言い変えれば
しゃ折角速度ωCを被検材の移動速度に応じて追従させ
るため、同−疵でも被検材の移動速度が速い場合は大き
く低い場合は小さく出力させるという従来の問題点も解
消出来、壕だ被検材の移動速度が速い場合に検出コイル
と被検材のギャップの変化速度が速くなって自動バラン
ス回路が応答できず不要信号が出力されるというような
従来の問題点も解消し雑音の少ない信憑性の高い渦流探
傷装置を提供することができる。
As described above, according to the present invention, f'L is controlled to follow the feedback gain of the automatic balance circuit in proportion to the speed of the test material, thereby increasing the response time τ of the automatic balance circuit, or in other words, the breaking angular velocity ωC. Since the output follows the moving speed of the inspected material, it is possible to solve the conventional problem of outputting a large amount when the moving speed of the inspected material is fast and small when the moving speed of the inspected material is low, even if there is a defect. This eliminates the conventional problem that when the moving speed is high, the gap between the detection coil and the material to be inspected changes quickly, causing the automatic balance circuit to fail to respond and output unnecessary signals. We can provide high quality eddy current flaw detection equipment.

なお第3図の実施例において利得制御器を第2の加算器
0漕の出力側に備えたが増幅器(4)の出力から加算器
(3)の入力までの帰還回路内であればどこへ入れても
良く位相検波器(6)及び(II、積分器(7)及びa
υ、変調器(8)及びH,第2の加算器a騰に同様の機
能を併備してもよい。また被検材の速度検知器としてパ
ルスエンコーダを使用したがその他の検知器でもよく利
得制御器04の制御信号として速度カウンタaI19を
用いだがディジタル計算器により制御してもよく、この
発明の要旨を逸脱しない範囲において種々の変形がある
In the embodiment shown in Fig. 3, the gain controller is provided on the output side of the second adder 0, but it can be placed anywhere within the feedback circuit from the output of the amplifier (4) to the input of the adder (3). Phase detector (6) and (II), integrator (7) and a
A similar function may be provided in the modulator (8) and the second adder (H). Also, although a pulse encoder is used as a speed detector for the material to be inspected, other detectors may also be used.Although the speed counter aI19 is used as a control signal for the gain controller 04, it may also be controlled by a digital calculator. Various modifications may be made without departing from the above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の渦流探傷装置の自動バランス回路を示す
図、第2図は第1図の周波数特性を示す図、第3図はこ
の発明の一実施例を示す図である。図中(1)は発振器
、(2)は平衡器、(3)は第1の加算器、(4)は増
幅器、(5)は打消し信号発生回路、(6)及びa〔は
位相検波器、(力及びaυは積分器、(8)及びaのは
変調器、(9)は90度位相器、α騰は第2の加算器、
 (I4)は利得制御器、α9はパルスエンコーダ、α
eは速度カウンタである。 なお図中、同一あるいは相当部分には同一符号を付して
示しである。 代理人 大岩増雄 =35′;
FIG. 1 is a diagram showing an automatic balance circuit of a conventional eddy current flaw detection device, FIG. 2 is a diagram showing the frequency characteristics of FIG. 1, and FIG. 3 is a diagram showing an embodiment of the present invention. In the figure, (1) is an oscillator, (2) is a balancer, (3) is a first adder, (4) is an amplifier, (5) is a cancellation signal generation circuit, (6) and a [are phase detection (force and aυ are integrators, (8) and a are modulators, (9) is a 90 degree phaser, α rise is a second adder,
(I4) is a gain controller, α9 is a pulse encoder, α
e is a speed counter. In the drawings, the same or corresponding parts are designated by the same reference numerals. Agent Masuo Oiwa = 35';

Claims (1)

【特許請求の範囲】[Claims] 不平衡信号を入力の1つとする第1の加算器と、この第
1の加算器の出力を所要量増幅する増幅器と、この増幅
器の出力を90  度異なる基準信号で位相検ン反し、
互いに直交したベクトル成分を出力する2つの位相検波
器と、上Rトの各位相検波器の出力を、それぞれ積分す
る2つの積分器と、上記各積分器の出力によって互いに
直交したベクトル成分の交番信号を発生する2つの変調
器と、上記の各変調器の出力をベクトル加算し、それを
上記第1の加算器に与える第2の加算器とを備え、上記
第2の加算器の出力により不平衡信号を打消すようにし
た渦流探傷装置の自動7272回路において、上記位相
検波器、積分器、変調器及び第2の加算器よシ成る自動
バランス回路の帰還回路に設けられた帰還利得可変手段
と、被検材の移動速度を検知する速度検知手段とを備え
、上記速度検知手段により検知した速度に応じて上記帰
還利得可変手段の利得を可変し自動バランス回路の応答
時間を被検材の速度に反比例して追従させたことを特徴
とする渦流探傷装置の自動バランス回路。
a first adder that receives an unbalanced signal as one of its inputs, an amplifier that amplifies the output of the first adder by a required amount, and phase-detects the output of the amplifier using a reference signal that differs by 90 degrees;
Two phase detectors that output mutually orthogonal vector components, two integrators that integrate the outputs of the respective phase detectors, and an alternation of mutually orthogonal vector components by the outputs of the above-mentioned integrators. It is equipped with two modulators that generate signals, and a second adder that performs vector addition of the outputs of the respective modulators and provides the vector addition to the first adder, and according to the output of the second adder. In an automatic 7272 circuit for an eddy current flaw detector designed to cancel unbalanced signals, a variable feedback gain is provided in the feedback circuit of the automatic balance circuit consisting of the phase detector, integrator, modulator, and second adder. and a speed detection means for detecting the moving speed of the material to be inspected, the gain of the variable feedback gain means being varied in accordance with the speed detected by the speed detection means to adjust the response time of the automatic balance circuit to the material to be inspected. An automatic balance circuit for an eddy current flaw detection device, characterized in that the circuit follows the speed in inverse proportion to the speed of the eddy current flaw detection device.
JP6144283A 1983-04-07 1983-04-07 Automatic balancing circuit for eddy current test equipment Pending JPS59187258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6144283A JPS59187258A (en) 1983-04-07 1983-04-07 Automatic balancing circuit for eddy current test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6144283A JPS59187258A (en) 1983-04-07 1983-04-07 Automatic balancing circuit for eddy current test equipment

Publications (1)

Publication Number Publication Date
JPS59187258A true JPS59187258A (en) 1984-10-24

Family

ID=13171181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6144283A Pending JPS59187258A (en) 1983-04-07 1983-04-07 Automatic balancing circuit for eddy current test equipment

Country Status (1)

Country Link
JP (1) JPS59187258A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7917172B2 (en) 2006-03-10 2011-03-29 Sony Ericsson Mobile Communications Ab Accessory for a portable electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7917172B2 (en) 2006-03-10 2011-03-29 Sony Ericsson Mobile Communications Ab Accessory for a portable electronic device

Similar Documents

Publication Publication Date Title
Cook An application of half-cycle Posicast
JPS59187258A (en) Automatic balancing circuit for eddy current test equipment
US4387438A (en) Continuous transducer drift compensator
JP2001324520A (en) Impedance detection circuit, impedance detection device, and impedance detection method
US3047962A (en) Acceleration compensated pendulum
JPS6331003Y2 (en)
SU859903A1 (en) Elow detector for checking metal articles
JPS6056938B2 (en) automatic vibration damping device
US4499610A (en) Feedback system with automatic gain control action
JP3205574B2 (en) Leakage magnetic flaw detector
SU1245909A1 (en) Device for programmed testing of articles in selfsustained vibration mode
SU894651A2 (en) Metal detector
JPS6314904B2 (en)
RU2734277C1 (en) Angular speed sensor based on dynamically tuned gyroscope
JPS625652Y2 (en)
JPS59187257A (en) Eddy current test equipment
SU682815A1 (en) Apparatus for edcy-current inspection of stell ropes
SU1117559A1 (en) Eddy-current metal detector
SU1019303A1 (en) Electromagnetic flaw detector
JPH0792274A (en) Automatic balance-adjusting circuit of metal detector
SU1394302A1 (en) Device for controlling heating system modes of a factory-assembled switchgear
SU938053A1 (en) Device for forming spectrum of wide-band random vibrations
JPS59210360A (en) Eddy current flaw detector
SU138675A1 (en) Measurement device for aeroelectromagnetic
JPS59183363A (en) Automatic balance circuit of eddy current flaw detection apparatus