JPS59187137A - Towing cable - Google Patents

Towing cable

Info

Publication number
JPS59187137A
JPS59187137A JP6000883A JP6000883A JPS59187137A JP S59187137 A JPS59187137 A JP S59187137A JP 6000883 A JP6000883 A JP 6000883A JP 6000883 A JP6000883 A JP 6000883A JP S59187137 A JPS59187137 A JP S59187137A
Authority
JP
Japan
Prior art keywords
cable
underwater sensor
specific gravity
area
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6000883A
Other languages
Japanese (ja)
Inventor
Akiji Nagayama
長山 暁司
Norimichi Murakami
村上 訓通
Hiroshi Kamata
鎌田 弘志
Susumu Matsuzaki
進 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Oki Electric Industry Co Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Oki Electric Industry Co Ltd
Priority to JP6000883A priority Critical patent/JPS59187137A/en
Publication of JPS59187137A publication Critical patent/JPS59187137A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B5/00Making ropes or cables from special materials or of particular form
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2021Strands characterised by their longitudinal shape
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2061Ship moorings

Abstract

PURPOSE:To facilitate to maintain the depth of an underwater sensor by changing the distribution of specific gravity of outer casing along the length of a cable in such a manner that the specific gravity of the cable end is smaller than that of the cable base so that the entering angle of the cable relative to the water surface may be large and the angle between the cable and the underwater sensor may be small. CONSTITUTION:The number of layers of the outer casing is made smaller in the direction of length toward the end so that the specific gravity of the cable end may be smaller than that of the cable base. Accordingly, the base area (a) of the cable 4 is the heaviest, and so the entering angle theta1 of the cable 4 relative to the water surface is large. On the other hand, the end area (c) is the lightest, and so, the angle formed by the cable 4 and an underwater sensor 3 becomes small. As the intermediate area (b) is lighter than the area (a) but heavier than the area (c), the cable takes a form of a mild curve. By this, even when the towing speed changes a little, the depth of the underwater sensor 3 will not change greatly.

Description

【発明の詳細な説明】 (技術分野) 本発明は水中センサを曳航するケーブルの改良に関する
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to improvements in cables for towing underwater sensors.

(従来技術) 水中センサを曳航するケーブル(以下ケーブルという)
は信号線や電力線の外周に鋼線もしくはアラミツド繊維
を外装として1〜2層設け、さらにその外周をポリエチ
レンなどの外部シースで保護したものであるが、従来の
ものはケーブルのいずれの部分も全く同じ断面構造とな
っておシ、ケーブルの長さ方向に沿った比重分布は一様
であった。
(Prior technology) Cable for towing underwater sensor (hereinafter referred to as cable)
The cable has one or two layers of steel wire or aramid fiber as an exterior sheath around the signal line or power line, and the outer circumference is further protected with an external sheath such as polyethylene, but conventional cables have no part of the cable at all. The cross-sectional structure was the same, and the specific gravity distribution along the length of the cable was uniform.

このような従来のケーブルを使用して水中センサを曳航
した場合、ケーブルの状態は第1図に示すようになる。
When an underwater sensor is towed using such a conventional cable, the state of the cable becomes as shown in FIG.

すなわち曳航船1からケーブル2・を繰出し、このケー
ブル2の先端に°水中センサ3を取付け、曳航船lを一
定速度で航行させたとき、ケーブル2は水面への入射角
θlでほぼ直線状に伸び、深度りのところで水中センサ
3がほぼ水平になびいている。なおケーブル2と水中セ
ンサ3の長手方向は角度θ2を成している。
That is, when the cable 2 is let out from the towing boat 1, the underwater sensor 3 is attached to the tip of the cable 2, and the towing boat 1 is sailing at a constant speed, the cable 2 becomes almost straight at the angle of incidence θl on the water surface. The underwater sensor 3 is waving almost horizontally at the depth. Note that the longitudinal direction of the cable 2 and the underwater sensor 3 form an angle θ2.

さて、このような状態で曳航速度を増すと、ケーブル2
および水中センサ3に働く揚力も増し、水中センサ3が
浮上してくる。逆に曳航速度を減じると水中センサ3が
沈降する。したがって水中センサ3を深度りに保つため
には曳航速度に合わせてケーブル2の繰り出し量をその
都度加減しなければならず、しかもその加減量が大きい
という欠点があった。
Now, if you increase the towing speed in this condition, cable 2
The lifting force acting on the underwater sensor 3 also increases, and the underwater sensor 3 floats up. Conversely, if the towing speed is reduced, the underwater sensor 3 will sink. Therefore, in order to maintain the underwater sensor 3 at a deep depth, the amount of cable 2 to be fed out must be adjusted each time in accordance with the towing speed, and there is a drawback that the amount of adjustment is large.

この欠点に対する一つの解決法としてケープル2を重く
し、ケーブル2が水面へ入射する入射角θ1を大きくす
ることが考えられるが、このようにするとケーブル2と
水中センサ3とが成す角度θ2が大きくなり、このため
ケーブル2が水を切る際発生ずる微小な振動が水中セン
サ3に直接伝わることになシ、水中センサ3の測定精度
が悪下する欠点があった。
One possible solution to this drawback is to make the cable 2 heavier and increase the angle of incidence θ1 at which the cable 2 enters the water surface, but in this way the angle θ2 between the cable 2 and the underwater sensor 3 becomes larger. Therefore, the minute vibrations generated when the cable 2 cuts through the water are not directly transmitted to the underwater sensor 3, resulting in a disadvantage that the measurement accuracy of the underwater sensor 3 deteriorates.

(発明の目的) 本発明の目的は水面に対するケーブルの入射角を太きく
し、かつケーブルと水中センサとの成す角度を小さくす
ることである。
(Objective of the Invention) An object of the present invention is to increase the angle of incidence of the cable with respect to the water surface and to reduce the angle formed between the cable and the underwater sensor.

(発明の構成) 前記目的を達するため、本発明は外装の比重分布をケー
ブルの長さ方向に沿って変化することにより、ケーブル
先端部の比重がケーブル基端部の比重より軽くなる構造
としだケーブルを提供するものである。
(Structure of the Invention) In order to achieve the above object, the present invention has a structure in which the specific gravity of the cable tip is lighter than the specific gravity of the cable proximal end by changing the specific gravity distribution of the outer sheath along the length direction of the cable. It provides cables.

(実施例) 第2図は本発明の一実施例を示す状態図であり、4はそ
の長さ方向に沿って外装線の層数を少なくしたケーブル
である。このケーブル4は基端のa部が最も重く、この
ため水面に対するケーブル4のの入射角θlは太きい。
(Embodiment) FIG. 2 is a state diagram showing an embodiment of the present invention, and 4 is a cable in which the number of layers of armored wire is reduced along its length. This cable 4 has the heaviest portion a at the base end, and therefore the incident angle θl of the cable 4 with respect to the water surface is large.

また先端の0部は最も軽く、このためケーブル4と水中
センサ3とにより形成される角度は小さくなる。中間の
b部はa部よシ軽く、b部より重いので、ケーブル4が
ゆるやかに湾曲した形状となる。
Further, the 0 portion at the tip is the lightest, and therefore the angle formed by the cable 4 and the underwater sensor 3 is small. Since the middle part b is lighter than part a and heavier than part b, the cable 4 has a gently curved shape.

第3図(aJ 、 (b) 、 (c)は前記第2図に
示す実施例の各部断面を示す断面図であシ、第3図(a
)はa部の断面図、第3図(b)はb部の断面図、第3
図(e)は0部の断面図を示している。この第3図(a
) + (b) 、(c)において、41は中心導体、
42は絶縁体、43は外部導体、44は内部シース、4
5はアラミツド繊維により形成された外装第1層、46
は鋼線によシ形成された外装第2層、47は外装第2層
を被覆する外装第3層、48はポリエチレンのように比
重の小さい外部シースである。なお見易くするためハツ
チングを施さないが、空隙部はない。
FIGS. 3(a), (b), and (c) are cross-sectional views showing each part of the embodiment shown in FIG.
) is a sectional view of part a, FIG. 3(b) is a sectional view of part b,
Figure (e) shows a sectional view of part 0. This figure 3 (a
) + In (b) and (c), 41 is the center conductor,
42 is an insulator, 43 is an outer conductor, 44 is an inner sheath, 4
5 is a first exterior layer formed of aramid fiber; 46
Reference numeral 47 indicates a second exterior layer formed of steel wire, 47 indicates a third exterior layer covering the second exterior layer, and 48 indicates an outer sheath having a low specific gravity such as polyethylene. Note that hatching is not applied to make it easier to see, but there are no voids.

このような構造であるので、ケーブル4はa部では重く
、入射角θ1が大となシ、b部ではゆるい傾斜となり、
0部では水平に近くなる。
Because of this structure, the cable 4 is heavy at part a and has a large incident angle θ1, and has a gentle slope at part b.
At part 0, it is nearly horizontal.

第4図およびgi:> 5図は前記実施例の効果を示す
ため従来例と比較した説明図であって、第4図はケーブ
ル長と一定とした場合の曳航速度と水中センサの深度と
の関係を示す特性図、第5図は曳航速度を一定とした場
合のケーブル長と水中センサの深度との関係を示す特性
図である。また第4図および第5図において実線は従来
側番示し、破線は本実施例を示している。また深度0は
水面を意味する。
Figures 4 and gi: > 5 are explanatory diagrams comparing the effect of the above embodiment with the conventional example, and Figure 4 shows the relationship between the towing speed and the depth of the underwater sensor when the cable length is constant. FIG. 5 is a characteristic diagram showing the relationship between the cable length and the depth of the underwater sensor when the towing speed is constant. Further, in FIGS. 4 and 5, the solid line indicates the conventional side number, and the broken line indicates the present embodiment. Further, depth 0 means the water surface.

この第4図では従来のものが曳航速度の変動に対して水
中センサの深度が大きく変化するのに対して、本実施例
は曳航速度が多少変動しても水中センサの深度が余り変
化し々いことを示している。
In Fig. 4, the depth of the underwater sensor changes greatly in response to changes in towing speed in the conventional system, whereas the depth of the underwater sensor in this embodiment does not change much even if the towing speed changes slightly. It shows that

また第5図では水中センサの深度を変える場合如従来は
大量のケーブルを巻取シ、繰シ出す必要があったが、本
実施例ではこのケーブルの巻取シ量おるいは繰出し量が
少ないことを示している。
In addition, Fig. 5 shows that when changing the depth of the underwater sensor, conventionally it was necessary to wind up and unwind a large amount of cable, but in this embodiment, the amount of winding or unwinding of this cable is small. It is shown that.

以上説明したように本実施例では曳航船1側から水中セ
ンサ3に向けてケーブル4の内部構造のうち最も比重の
大きい外装線の層数が漸減しており、曳航船1側で比重
が大きく、水中センサ3側で比重が小さくなっている。
As explained above, in this embodiment, the number of layers of the outer wire, which has the highest specific gravity in the internal structure of the cable 4, gradually decreases from the towing boat 1 side toward the underwater sensor 3, and the specific gravity is large on the towing boat 1 side. , the specific gravity is smaller on the underwater sensor 3 side.

とのため曳航船l側でのケーブル4の海面入射角θ3は
大きく、かつ水中センサ3とケーブル4とによって形成
される角度は小さくなる。これにょ)曳航速度の変動に
対して水中センサ3の深度が維持し易くなり、また水中
センサ3の深度を変更する場合にもケーブル4の巻取υ
量、繰出し量が減少するし、さらにケーブル4が水を切
ることによって発生する振動が小さくなり、水中センサ
3に伝わる振動量が減少する。
Therefore, the sea surface incidence angle θ3 of the cable 4 on the towing boat l side is large, and the angle formed by the underwater sensor 3 and the cable 4 is small. This makes it easier to maintain the depth of the underwater sensor 3 against fluctuations in towing speed, and also when changing the depth of the underwater sensor 3, the cable 4 is wound υ
In addition, the amount of vibration generated when the cable 4 drains from water is reduced, and the amount of vibration transmitted to the underwater sensor 3 is reduced.

なお、ケーブル4に加わる張力は曳航船1側から水中セ
ンサ3に向かって次第に小さくなるので、外装の層数を
漸減しても強度上の問題は生じない。
Note that since the tension applied to the cable 4 gradually decreases from the towing boat 1 side toward the underwater sensor 3, no strength problem will occur even if the number of layers of the exterior is gradually reduced.

また本発明は上記実施例に限らず、例えば外装線の本数
をケーブルの長さ方向に沿って徐々に減らしたシ、ある
いは外装線の太さを減らしても同様の効果が得られる。
Further, the present invention is not limited to the above-described embodiments, and the same effect can be obtained by, for example, gradually reducing the number of sheathing wires along the length of the cable, or reducing the thickness of the sheathing wires.

さらに本発明を実施する際には水中センサ3の近傍では
ケーブルの比重を水中センサと同程度にすることが望し
い。これにより水中センサとケーブルとがほぼ直線状に
接続することができ、水中センサの振動が減少する。具
体的には水中センサは海水と同じ比重とすることが多い
ので、ケー、プル4の先端も海水と同じ比重に近づける
方が良い。
Furthermore, when carrying out the present invention, it is desirable that the specific gravity of the cable near the underwater sensor 3 be approximately the same as that of the underwater sensor. This allows the underwater sensor and the cable to be connected in a substantially straight line, reducing vibrations of the underwater sensor. Specifically, since underwater sensors often have the same specific gravity as seawater, it is better to have the tip of the cable pull 4 close to the same specific gravity as seawater.

さらに捷た、ケーブルの比重変化は第2図に示した実施
例のように3段階に変化したものの他、例えば一定距離
ごとに外装第3層を1〜数本ずつ間引き、外装第3層が
なくなったら外装第2層を1〜数本ずつ間引くようにし
て多段階にわたって漸減するようにしても良い。
Furthermore, the specific gravity of the cables changed in three stages as shown in the example shown in Fig. 2, but also by thinning out the third layer of the exterior by one to several cables at each fixed distance. When the number is used up, the second exterior layer may be thinned out one to several pieces at a time to gradually reduce the number of pieces in multiple stages.

(発明の効果) 本発明によれば、ケーブルが水中に入る入射角は大きく
、水中センサとの接続部ではケープ)vと水中センサと
が水平面に近い傾斜角で直線状となるので、水中センサ
の深度を維持し易く、まだ深度変更時にもケーブルの巻
取り量および繰出し量が減少し、さらに水中センサに伝
わる振動が減少する効果がある。
(Effects of the Invention) According to the present invention, the angle of incidence at which the cable enters the water is large, and at the connection part with the underwater sensor, the cape) and the underwater sensor form a straight line with an inclination angle close to the horizontal plane, so the underwater sensor The depth can be easily maintained, and even when the depth is changed, the amount of winding and unwinding of the cable is reduced, and the vibration transmitted to the underwater sensor is also reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の曳航ケーブルを用いた場合の曳航状態を
示す模式図、第2図は本発明に係る一実施例を用いた場
合の曳航状態を示す模式図、第3図(a)、Φ)および
(c)はそれぞれ第2図に示す実施例の各部所面構造を
示す断面図、第4図および第5図は本実施例と従来例と
を比較した特性図であって、第4図はケーブル長を一定
とした場合の曳航速度と水中センサ深度との関係を示す
特性図、第5図は曳航速度を一定とした場合のケーブル
長と水中センサ深度との関係を示す特性図である。 1・・・曳航船、3・・・水中センサ、4・・・ケーブ
ル、41・・・中心導体、42・・・絶縁体、43・・
・外部導体、44・・・内部シース、45・・・外装第
1層、46・・・外装第2層、47・・・外装第3層、
48・・・外部シース。 特許出願人 防衛庁技術研究本部長 大   森   幸   衛 沖電気工業株式会社
Fig. 1 is a schematic diagram showing a towing state when a conventional towing cable is used, Fig. 2 is a schematic diagram showing a towing state when an embodiment of the present invention is used, Fig. 3(a), Φ) and (c) are sectional views showing the surface structure of each part of the embodiment shown in FIG. 2, and FIGS. 4 and 5 are characteristic diagrams comparing this embodiment and the conventional example. Figure 4 is a characteristic diagram showing the relationship between towing speed and underwater sensor depth when the cable length is constant, and Figure 5 is a characteristic diagram showing the relationship between cable length and underwater sensor depth when towing speed is constant. It is. DESCRIPTION OF SYMBOLS 1... Towing boat, 3... Underwater sensor, 4... Cable, 41... Center conductor, 42... Insulator, 43...
- External conductor, 44... Inner sheath, 45... Exterior first layer, 46... Exterior second layer, 47... Exterior third layer,
48...External sheath. Patent Applicant Yuki Omori Director of Technology Research Headquarters, Defense Agency Eioki Electric Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 水中センサを曳航する曳航ケーブルにおいて、比重の大
きい外装線の層数、本数もしくは太さのうち少なくとも
一種を水中センサが接続される方に向かって漸減したこ
とを特徴とする曳航ケーブル 0
A towing cable for towing an underwater sensor, characterized in that at least one of the number of layers, the number, or the thickness of the outer wire having a large specific gravity gradually decreases toward the direction where the underwater sensor is connected.
JP6000883A 1983-04-07 1983-04-07 Towing cable Pending JPS59187137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6000883A JPS59187137A (en) 1983-04-07 1983-04-07 Towing cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6000883A JPS59187137A (en) 1983-04-07 1983-04-07 Towing cable

Publications (1)

Publication Number Publication Date
JPS59187137A true JPS59187137A (en) 1984-10-24

Family

ID=13129617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6000883A Pending JPS59187137A (en) 1983-04-07 1983-04-07 Towing cable

Country Status (1)

Country Link
JP (1) JPS59187137A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735581A (en) * 1993-07-22 1995-02-07 Tech Res & Dev Inst Of Japan Def Agency Towing cable of measuring sensor for underwater search
WO2006117249A2 (en) * 2005-05-05 2006-11-09 Acergy France Sa Towing and subsea installation of long articles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132925U (en) * 1974-09-03 1976-03-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132925U (en) * 1974-09-03 1976-03-11

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735581A (en) * 1993-07-22 1995-02-07 Tech Res & Dev Inst Of Japan Def Agency Towing cable of measuring sensor for underwater search
WO2006117249A2 (en) * 2005-05-05 2006-11-09 Acergy France Sa Towing and subsea installation of long articles
WO2006117249A3 (en) * 2005-05-05 2007-03-01 Acergy France Sa Towing and subsea installation of long articles
GB2439241A (en) * 2005-05-05 2007-12-19 Acergy France Sa Towing and subsea installation of long articles
GB2439241B (en) * 2005-05-05 2010-07-14 Acergy France Sa Towing and subsea installation of long articles
US7993077B2 (en) 2005-05-05 2011-08-09 Acergy France S.A. Towing and subsea installation of long articles

Similar Documents

Publication Publication Date Title
US4371234A (en) Submarine optical cable
US4250351A (en) Cable construction
US4084065A (en) Antistrumming cable
US4490009A (en) Optical fiber submarine cable
US8344253B2 (en) Integrated coaxial transducer
GB2074753A (en) Electro-optic cable
US3418624A (en) Coaxially mounted line hydrophone
US3472196A (en) Fairings for underwater cables,towlines and structural members
JPS59187137A (en) Towing cable
JP4346306B2 (en) Underwater cable with a single outer shell structure
EP0016233B1 (en) Underwater high tensile cable
JPH0511611Y2 (en)
JP4190648B2 (en) Double armored submarine cable and its installation method
US4116153A (en) Elastic electrically-conductive strain cable
FI63838B (en) SJAELVFLYTANDE KABEL
JPS6248801B2 (en)
JPS585413B2 (en) Undersea repeater body
JPS58150906A (en) Tapelike optical fiber core unit
JPS58100104A (en) Submarine optical fiber cable transmission line
JPH11160594A (en) Optical fiber cable protective tube for winding type optical composite aerial wire
JPH0634238Y2 (en) Ocean observation device
JPS5828705A (en) Optical cable
JP4096485B2 (en) Armored cable with wear detection function
CN213025490U (en) PVC power cable for high strength
JP2511832B2 (en) Towing cable