JPS59186700A - Water and sewage treating system - Google Patents

Water and sewage treating system

Info

Publication number
JPS59186700A
JPS59186700A JP58062528A JP6252883A JPS59186700A JP S59186700 A JPS59186700 A JP S59186700A JP 58062528 A JP58062528 A JP 58062528A JP 6252883 A JP6252883 A JP 6252883A JP S59186700 A JPS59186700 A JP S59186700A
Authority
JP
Japan
Prior art keywords
sludge
amount
generated
activated sludge
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58062528A
Other languages
Japanese (ja)
Inventor
Mitsuo Maeda
満雄 前田
Junji Hirotsuji
淳二 廣辻
Toshiichi Honda
本多 敏一
Hisao Tanaka
久雄 田中
Ichiro Nakahori
一郎 中堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58062528A priority Critical patent/JPS59186700A/en
Publication of JPS59186700A publication Critical patent/JPS59186700A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To stabilize the electric energy to be generated and to stabilize the utilization of electric power and waste heat on account of such stabilization by controlling the amt. of the activated sludge existing in an activated sludge process in such a way that the electric energy to be generated by gas attains a preset value. CONSTITUTION:A treating system for water and sewage is constituted of an aerating tank 10, an air diffuser 11, a final settling basin 12, a mechanical thickener 13 for excess sludge, an information processing unit 14 for the water treating process, a control device 15 relating to the total amt. of activated sludge, a calculator 16 for information on driving powder, a setter 17 for power generating quantity, a manual setter 18 relating to the total amt. of sludge and a blower 19. The stabilization of the electric energy to be generated by digester gas is accomplished by adjusting the set value for the method of controlling the amt. of the sludge in the activated sludge process according to the difference between the predetermined electric energy to be generated and the present electric energy to be generated.

Description

【発明の詳細な説明】 本発明は、下水処理場等における水処理および汚泥消化
処理−ガス発電システムの運用方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for operating a water treatment and sludge digestion treatment-gas power generation system in a sewage treatment plant or the like.

従来この種の運用方法として、第1図に示すものがあっ
た。図において、(1)は汚泥濃縮槽、(2)は?7”
+化種、(3)はこの消化槽内汚泥を加温する熱交換器
、(4)は消化ガス発電機、(5)は廃熱ボイラー、(
6)は制御装置、(7a) 、 (7b)はポンプ、(
8a)はバルブ、(9a) 、 (9b)は計測装置で
ある。
A conventional operating method of this type is shown in FIG. In the diagram, (1) is a sludge thickening tank, and (2) is ? 7"
+ species, (3) is a heat exchanger that heats the sludge in the digestion tank, (4) is a digester gas generator, (5) is a waste heat boiler, (
6) is a control device, (7a) and (7b) are pumps, (
8a) is a valve, and (9a) and (9b) are measuring devices.

また、図中、点線矢印は電気信号、一点鎖線矢印はガス
、実線矢印は汚泥または水(温水)の流0を各々示す。
Further, in the figure, dotted line arrows indicate electric signals, dashed-dotted line arrows indicate gas, and solid line arrows indicate 0 flow of sludge or water (hot water).

次に動作について説明する。下水処理場で発生する初沈
汚泥や余剰汚泥は、通常、濃縮槽(1)で濃縮し7j後
、消化槽(2)に送られ、ここで加温され嫌気発酵が行
なわれる。発酵により生成した消化ガスはガス発電機(
4)に送られ燃焼する。燃焼廃ガスは高温となっており
、これを廃熱ボイラー(5)に送り、ここで得た温水は
熱交換器(3)を介して消化槽内汚泥の加温に利用する
。消化槽への投入汚泥量を計測器(9a)により計測し
、一方、発電機出力は出力計(9b)により、計測し、
必要に応じて制御装置(6)によりバルブ(8a)を操
作して、投入汚泥量を制御する。
Next, the operation will be explained. Initial settling sludge and surplus sludge generated in a sewage treatment plant are usually concentrated in a thickening tank (1) and then sent to a digestion tank (2), where they are heated and anaerobically fermented. Digestion gas generated by fermentation is generated by a gas generator (
4) and is burned. The combustion waste gas has a high temperature and is sent to the waste heat boiler (5), and the hot water obtained here is used to heat the sludge in the digester via the heat exchanger (3). The amount of sludge input into the digestion tank is measured by a measuring device (9a), while the generator output is measured by an output meter (9b),
The control device (6) operates the valve (8a) as needed to control the amount of sludge introduced.

従来の汚泥消化カス発電システムは、以上のように運用
されていたので、汚泥発生量そのもの一管理は行なわれ
ておらず、このため、汚泥発生量および発生汚泥温度の
変動によっては、消化ガス発電々力に変動を生じ、その
電力利用や、廃熱による消化槽の加温熱量収支を不安定
にするなどの欠点があった。
Conventional sludge digested gas power generation systems were operated as described above, and the amount of sludge generated itself was not managed. Therefore, depending on the amount of sludge generated and fluctuations in the temperature of the generated sludge, the digested gas power generation system This had the disadvantage of causing fluctuations in power consumption, making the use of electricity and the heat balance for heating the digester tank unstable due to waste heat.

本発明は、上記のような従来のものX欠点を除去するた
めになされたもので、汚泥発生量に係る水処理プロセス
の中心である活性汚泥プロセスおJ:び汚泥消化プロセ
スとを、総合的に管理し、汚泥発生量を適正に維持する
と同時に、主消費動力であるばつ気槽送気動力等をも考
慮することによって、発電々力量の安定化、それによる
電力利用や廃熱利用効果の安定化をはかり、省エネ効果
の向」二をはかる運用システムを提供することを目的と
している。
The present invention was made in order to eliminate the disadvantages of the conventional methods as described above, and is a comprehensive method that combines the activated sludge process and the sludge digestion process, which are the core of the water treatment process related to the amount of sludge generated. By managing the amount of sludge and maintaining the appropriate amount of sludge generation, and at the same time considering the main consumption power such as air supply power for the aeration tank, it is possible to stabilize the amount of power generation and thereby improve the effectiveness of electricity use and waste heat utilization. The purpose is to provide an operational system that stabilizes the system and improves energy-saving effects.

以下、本発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第2図において、Q(+はばつ気槽、0υは核種に備え
る散気装置、(2)は最終沈殿池、03は余剰汚泥機械
濃縮装置、(14)は水処理プロセス情報処理装置、0
9は活性汚泥総量に関する制御装置、頭は動力情報演算
器、Q71は発電量設定器、α〜は汚泥総量に関する手
動設定器、四はブlコワーである。。
In Figure 2, Q(+ aeration tank, 0υ is a diffuser for nuclides, (2) is a final settling tank, 03 is an excess sludge mechanical thickening device, (14) is a water treatment process information processing device, 0
9 is a control device related to the total amount of activated sludge, the head is a power information calculator, Q71 is a power generation amount setting device, α~ is a manual setting device related to the total amount of sludge, and 4 is a blower. .

第3図は、下水処理量30万t/日の規模で、本発明を
実施した場合の効果の試算評価例を示すもので、グラフ
(a)は余剰汚泥発生乾量Sw、グラフ(b)はばつ気
槽の送気電力1)B1グラフ(C)はガス発電々力から
送気電力を差引いた余剰電力Pを各々、活性汚泥総量S
Tに対して示すものである。
Figure 3 shows an example of trial calculation evaluation of the effect when implementing the present invention on a scale of sewage treatment amount of 300,000 tons/day, graph (a) shows excess sludge generated dry amount Sw, graph (b) Air supply power of the aeration tank 1) B1 graph (C) shows the surplus power P obtained by subtracting the air supply power from the gas power generation power, and the total amount of activated sludge S.
This is shown for T.

つぎに、本発明の動作について、実施例にもとすいて説
明する。
Next, the operation of the present invention will be explained based on examples.

第8図に示すように余剰汚泥量Swは活性汚泥プロセス
の汚泥総量が増加すると、−次的に減少する特性を有し
ている。従って活性汚泥プロセスの汚泥量を制御するこ
とで余剰汚泥量ひいては、ガス発生量の安定化がはかれ
る。
As shown in FIG. 8, the amount of excess sludge Sw has a characteristic that it decreases as the total amount of sludge in the activated sludge process increases. Therefore, by controlling the amount of sludge in the activated sludge process, the amount of excess sludge and, in turn, the amount of gas generated can be stabilized.

本発明において、消化ガス発’W[力量の安定化は、予
め定められた発電電力量と、現在の発電電力tnとの差
に応じて、活性汚泥プロセスの汚泥量管理法の設定値を
調節することにより達成される。
In the present invention, the stabilization of the power generated by the digestion gas is achieved by adjusting the set value of the sludge amount management method of the activated sludge process according to the difference between the predetermined amount of generated power and the current generated power tn. This is achieved by

ここでは、活性汚泥プロセスの汚泥量管理法として、汚
泥日令制御、SR′r(Sludge Retenti
on Time)制御、汚泥日令制御の3制御法につい
て示す。
Here, sludge age control, SR'r (Sludge Retenti
Three control methods are shown: on-time control and sludge daily control.

汚泥日令制御法の場合、汚泥総量の設定値詩8は次のよ
うにして調節する。
In the case of the sludge daily control method, the set value 8 for the total amount of sludge is adjusted as follows.

S T* ”  s To ”  K4  (1ノーP
*)               ・=・   (1
)ここで、Pは発電電力計測値、■)*は予め定められ
?発電電、IL・Sl・は汚泥総量の基準値(発電量* 力量としてPを得ることが得られる平均的な汚泥総量値
)、K1はゲインである。
S T* “s To” K4 (1 no P
*) ・=・ (1
) Here, P is the measured value of generated power, ■) * is predetermined? The generated power, IL.Sl., is the reference value of the total amount of sludge (amount of power generation * average sludge total amount value that can obtain P as the power), and K1 is the gain.

ST oは活性汚泥総量に関する手動設定器側で設* 定され側の出力、Pは計測装置(9b)の出力Pは、発
電量設定器aηの出力として得らnる。
ST o is the output set by the manual setting device regarding the total amount of activated sludge, and P is the output P of the measuring device (9b), which is obtained as the output of the power generation amount setting device aη.

* (1)式の演算は、演算器QGで行なわれ、ST  は
この出力として得られ、活性汚泥総量に関する制御装置
OQの設定値入力となる。
* The calculation of equation (1) is performed by a calculator QG, and ST is obtained as the output, which serves as a set value input to the control device OQ regarding the total amount of activated sludge.

活性汚泥総量に関する制御装置USでは、次式の演算が
行なわれバルブ(8b)を操作し、余剰汚泥量を調節す
る。
The control device US regarding the total amount of activated sludge calculates the following equation, operates the valve (8b), and adjusts the amount of excess sludge.

* SW = Sl +に2(ST  ST )     
 ・・・・・・(2)ここでSwは余剰汚泥量目標値、
SIは流入汚泥量計測値、ST汚泥総量計測値、K2は
ゲインである。
* SW = Sl + 2 (ST ST )
・・・・・・(2) Here, Sw is the target value of surplus sludge amount,
SI is the measured value of the amount of inflow sludge, the measured value of the total amount of ST sludge, and K2 is the gain.

Sl・STは、水処理プロセス情報処理装置α弔に入力
される各プロセス計測値より次式にもとすいて演算され
情報処理装置a4)の出力として得られる。
Sl·ST is calculated based on the following equation from each process measurement value inputted to the water treatment process information processing device α, and is obtained as the output of the information processing device a4).

ここてCcjは活性汚泥濃度、■はばつ気槽有効容積、
γは活性汚泥総量に対するばつ気槽自活性汚泥量の配分
比率、nは旧劇回数である。
Here, Ccj is the activated sludge concentration, ■ the effective volume of the aeration tank,
γ is the distribution ratio of the amount of self-activated sludge in the aeration tank to the total amount of activated sludge, and n is the number of old plays.

ここでC+jは流入SS濃度、Qijは流入水量である
Here, C+j is the inflow SS concentration, and Qij is the inflow water amount.

* つぎに、SRT制御の場合、SRTの設定値SRTは、
次のようにして調節する。
*Next, in the case of SRT control, the SRT setting value SRT is
Adjust as follows.

SRT  −” 5RTo 十に3(P  P  ) 
     ・・・−・(5)ここで、5RToは、SR
Tの基準値(発電量力量とし* で、Pを得ることができる平均的なSRT値)、H3は
ゲインである。5RToは・、ン占性汚泥総量に関する
手動設定器Ql’pで設定され、手動設定器0片の出力
として得られる。(5)式の演算は演算器OQで行なわ
れ、SRT* はこの出力として得られ活性汚泥総量に
関する制御装置αQの設定値入力となる。
SRT-” 5RTo 3 to 10 (P P )
...-(5) Here, 5RTo is SR
The standard value of T (the average SRT value at which P can be obtained with * as the power generation capacity), and H3 is the gain. 5RTo is set by the manual setting device Ql'p regarding the total amount of occupied sludge, and is obtained as the output of the manual setting device 0 piece. The calculation of equation (5) is performed by the calculator OQ, and SRT* is obtained as the output and serves as a set value input to the control device αQ regarding the total amount of activated sludge.

活性汚泥総量に関する制御装置o9では、次式の演算が
行なわれ、バルブ(8b)を操作し、余剰汚泥量を調節
する。
The control device o9 regarding the total amount of activated sludge calculates the following equation, operates the valve (8b), and adjusts the amount of excess sludge.

Sw=S〕/SRT*・・・・(6) STは、汚泥総量制御を実施する場合同様(3)式を用
いて、水処理プロセス情報処理装置q4に入力さfiる
各プロセス計測値より演算され、′清報処理装置α4)
の出力として得られる。
Sw=S]/SRT*...(6) ST is calculated from each process measurement value input to the water treatment process information processing device q4 using equation (3) as in the case of controlling the total amount of sludge. Calculated, 'clear information processing device α4)
is obtained as the output of

汚泥日令制御の賜金、汚泥日令の設定値sA*は、次の
ようにして調節する。
The setting value sA* of the sludge daily age control is adjusted as follows.

* SA    =  S Ao  十 Kt  CP −
P   )                 ・・=
   (6)ここでSA。は汚泥日令の基準値(発電電
力量とし* てPを得ることができる平均的な汚泥日令値)、H4は
ゲインである。SAoは、活性汚泥総量に関する手動設
定器α〜で設定され、aaの出力として得ら* れる。(6)式の演算は、演器0Qで行なわれ、δ八 
はこの出力として得られ、活性汚泥総量に関する制御装
置09の設定値入力となる。
* SA = S Ao 10 Kt CP −
P)...=
(6) SA here. is the reference value of the daily sludge age (the average daily sludge value from which P can be obtained as the amount of generated power), and H4 is the gain. SAo is set by the manual setting device α~ regarding the total amount of activated sludge, and is obtained as the output of aa*. The calculation of equation (6) is performed on the performance device 0Q, and δ8
is obtained as this output, and serves as a set value input to the control device 09 regarding the total amount of activated sludge.

活性汚泥総量に関する制御装置09では、次式の演算が
行なわれ、バルブ(8b)を操作し、余剰汚泥量をル・
ん節する。
The control device 09 regarding the total amount of activated sludge calculates the following formula, operates the valve (8b), and controls the amount of excess sludge.
I'm going to have a good time.

bw −sr    (s+*Sx*)       
   川り  (7)Sw〈0のとき 5w−0 (7)式においてSlは汚泥総量制御を実施する場合同
様、(4)式を用いて、水処理プロセス情報処理装置0
4)に入力される各プロセス訓測値より演算され、情報
処理装置04)の出力として得られる。
bw −sr (s+*Sx*)
River (7) When Sw<0 5w-0 In equation (7), Sl is the water treatment process information processing device 0 using equation (4) as in the case of controlling the total amount of sludge.
4) is calculated from each process estimated value inputted to 4), and is obtained as an output of the information processing device 04).

第3区は、Q+二aO万m3/′口、C+ = 100
mり/l 。
The third ward is Q+2aO million m3/' mouth, C+=100
mri/l.

死人BOD i度100mg/i、初沈汚泥、余剰汚泥
からの各消化ガス発生量を600 Nm’/Icg−有
機物、ガス発電効率3096とした時のPRおよび(P
l)B)の81依存性を示すものである。なおブロワ−
動力は、ばつ気楡内の活性汚泥微生物の吸吸嵐に支配さ
れる結果、STに対して直線的に増加することを不発朋
者等は実証している。
PR and (P
l) This shows the 81 dependence of B). Furthermore, the blower
My friends have demonstrated that the power increases linearly with respect to ST as a result of being dominated by the absorption and absorption storm of activated sludge microorganisms in the air tank.

つきに、特許請求範囲第2項に記載したガス発fkMの
設定値の決定方法については、たとえば、つぎのような
関係式を用いて容易に定めることができる。
In addition, the method for determining the set value of the gas emission fkM described in claim 2 can be easily determined using, for example, the following relational expression.

まず活性汚泥プロセスのブロワ−動力は、活性汚泥微生
物の呼吸速度、汚泥総量、−気槽内水質、および酸素溶
解効率より計算できる。
First, the blower power in the activated sludge process can be calculated from the respiration rate of activated sludge microorganisms, the total amount of sludge, the water quality in the tank, and the oxygen dissolution efficiency.

Pa=(a’XJ(1+b′)・S[/η8−  −=
・(8)ここでPa+  ブロワ−動力(r< w H
/B )’d ;  曝気槽内処理水質(m9/1)S
l;  活性プロセスの汚泥量(ton)η□;?8h
で効率(−) また曝気槽内処理水質l・dは、曝気槽の’Ht入BO
D、流入下水量より算出されるBOD−8s負荷の関数
として示される。
Pa=(a'XJ(1+b')・S[/η8− −=
・(8) Here, Pa + blower power (r< w H
/B)'d; Treated water quality in aeration tank (m9/1)S
l; Amount of sludge in the active process (tons) η□;? 8 hours
The efficiency (-) In addition, the treated water quality l・d in the aeration tank is
D, shown as a function of BOD-8s load calculated from inflow sewage volume.

ld= (Flo、180 ) 0840      
・・曲(9)F二Q1・I−i・10−6/St   
   ・・・・・・aUココTF;  BOD−5S負
荷(1/EEI)QI;  流入下水量(m8/日) Ll;  流入BOD(my/l) 一方、ガス発電システムの発電量は、次式で求まる。
ld=(Flo, 180) 0840
...Song (9) F2Q1・I-i・10-6/St
・・・・・・aU here TF; BOD-5S load (1/EEI) QI; Inflow sewage amount (m8/day) Ll; Inflow BOD (my/l) On the other hand, the power generation amount of the gas power generation system is calculated by the following formula: It can be found by

p5=ε−HS−Fd/ 860       −− 
01)ここでε、 発電効率(−) H8:  消化カス発熱ffi (kca17Nm”)
Fd;  消化ガス蚤(Nm7日) ガス発電量は、初沈汚泥有機物量および余剰汚泥有機物
量より次式で求まる。
p5=ε-HS-Fd/860 --
01) Here, ε, Power generation efficiency (-) H8: Digested residue heat generation ffi (kca17Nm”)
Fd; Digestion gas flea (Nm 7 days) The gas power generation amount is determined by the following formula from the amount of initial settled sludge organic matter and the amount of excess sludge organic matter.

Fd ” Yr ’ So 十Ya ”(11’ Sa
        ”’−’J2ココテyr;  初沈汚
泥からのガス発生量(NmV t )Ya−余剰汚泥 
       (Nms//l)α0; 初沈汚泥有機
物割合(−) αω; 余剰汚泥     (−) So;  初沈汚泥量(1/日) Salt  余剰 〃(17日) また初沈汚泥量および余剰汚泥量については、So ”
 Qi ’ Co−”m” to ’       リ
・・Q3Sω”−(Ci−Qi・10 ’+Y(J−L
d)・Ql・10’−b−3j)° ωn      
          ・・ ・ σ荀ここでCO+  
初沈流入SS Cmy/l )C1;  曝気槽流入S
 S (m y/’l )Y ; 収率(−) b ; 自己分解係数(1/日) ωm; 電力濃縮による固形分回収率(−)ωn; 機
械〃(−) 以上(8ン〜Q4)式を用いてpa=ps  となる様
にStを定め(8)式を用いてその時のP5を演算すれ
ば、発生ガス発電爪で、活性汚泥プロセスのブロワ−動
力を賄える発生ガス発’R1ftの設定値が求められる
Fd "Yr' So 1 Ya"(11' Sa
``'-'J2 Cocoteyr; Gas generation amount from initial settling sludge (NmV t)Ya-Excess sludge
(Nms//l) α0; Initial settling sludge organic matter ratio (-) αω; Surplus sludge (-) So; Initial settling sludge amount (1/day) Salt Surplus 〃 (17 days) Also, initial settling sludge amount and surplus sludge amount About So”
Qi 'Co-"m" to 'Li...Q3Sω"-(Ci-Qi・10'+Y(J-L
d)・Ql・10'-b-3j)° ωn
・・ σXun here CO+
Initial sedimentation inflow SS Cmy/l) C1; Aeration tank inflow S
S (my/'l)Y; yield (-) b; self-decomposition coefficient (1/day) ωm; solid content recovery rate by electric concentration (-) ωn; machine〃(-) or more (8 to Q4 ) Using the formula, set St so that pa=ps, and calculate the P5 at that time using the formula (8).The generated gas power generation claw can cover the blower power of the activated sludge process. The setting value of is calculated.

また、(8)〜αa式中の各パラメータ値は、実験室規
模の実験等を行なえば、求めらnる。
Further, each parameter value in equations (8) to αa can be obtained by conducting laboratory-scale experiments or the like.

本発明のシステム構成例として、初沈汚泥のための濃縮
槽、余剰汚泥のためには機械濃縮装置を設けたが、この
方式にこだわるものではなく、余剰汚泥も直接濃縮槽に
入れてもよい。
As an example of the system configuration of the present invention, a thickening tank is provided for initial settling sludge, and a mechanical thickening device is provided for surplus sludge, but this method is not restrictive, and surplus sludge may also be directly put into the thickening tank. .

以上のように、本発明によれば、余剰汚泥発生量を管理
−するようにしたので、消化槽への投入汚泥量を安定に
確保でき、これにより、消化ガス発電の安定化をはかる
と同時に、下水処理場の全消費電力の約30%を占めか
つ連続的に電力を消費しているばつ気槽のブロワ−動力
をも常に自給し役得る様に運転することができるので、
水処理と汚泥処理との総合的な省エネ化を図ることがで
きる。
As described above, according to the present invention, since the amount of surplus sludge generated is managed, it is possible to stably secure the amount of sludge input to the digestion tank, thereby stabilizing the digestion gas power generation and at the same time The blower power of the aeration tank, which accounts for about 30% of the total electricity consumption of a sewage treatment plant and continuously consumes electricity, can be operated on its own at all times.
Comprehensive energy savings can be achieved in water treatment and sludge treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の汚泥消化ガスQ!システムを示す構成
図、第2図は本発明の一実施例を示す構成図、第3図は
本発明の一実施例による効果を示すグラフである。 (1)・・・汚泥濃縮槽、(2)・・・消化槽、(3)
・・・熱交換器、(4)・消化ガス発電様、(5)・・
廃熱ボイラー、(6)・・・制御装置、00・・ばつ気
槽、(6)・・・最終沈殿池、03・・・余剰汚泥機械
濃縮装置、a<・・・水処理プロセス情報処理装置、C
9・・・活性汚泥総量に関する制御装置、OQ・・・動
力情報演算器、助・・・発電量設定器、all・・活性
汚泥総量に関する手動設定器である。 なお、図中同一符号は同−又は相当部分を示す。 代理人 大岩増雄 手続補正書(自発) 20発明の名称 水・汚泥処理システム 3、補正をする者 名 称  (601)三菱電機株式会社代表者片由仁八
部 4、代理人 5、補正の対象 明細書の特許請求の範囲の欄。 6 補正の内容 (1)明細書の特許請求の範囲を別紙のとおり訂正する
。 7 添付書類のi:I録 (1)補正後の特許請求の範囲を記載した書面1通以 
 上 特許請求の範囲 (1)ばつ気槽および最終沈殿池とで構成される活性汚
泥プロセス、該プロセスでの水処理により生成する余剰
汚泥を濃縮した後、初沈汚泥と共に嫌気発酵させる消化
槽、該消化槽から発生でる消化ガスを燃料とするガス発
電機関を主構成とオる水・汚泥処理システムにおい°C
、ガス発74 flが予め定めた設定値となるように、
上記活性汚泥プロセス内に存在する活性汚泥量を制御す
ることを特徴とする水・汚泥処理システム。 (2)ばつ気槽のブロワ−動力を上記カス発電々力で自
給し得るようにガス発電子の設定値を定めることを特徴
とする特許請求の;広囲第1項記載の水・汚泥処理シス
テム。
Figure 1 shows the conventional sludge digestion gas Q! FIG. 2 is a block diagram showing the system, FIG. 2 is a block diagram showing an embodiment of the present invention, and FIG. 3 is a graph showing the effects of the embodiment of the present invention. (1)...Sludge thickening tank, (2)...Digestion tank, (3)
・・・Heat exchanger, (4)・Digestion gas power generation, (5)・・
Waste heat boiler, (6)...Control device, 00...Aeration tank, (6)...Final settling tank, 03...Excess sludge mechanical thickener, a<...Water treatment process information processing device, C.
9: Control device regarding the total amount of activated sludge, OQ: Power information calculator, Auxiliary: Power generation amount setting device, all: Manual setting device regarding the total amount of activated sludge. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Masuo Oiwa Procedural amendment (voluntary) 20 Name of invention Water/sludge treatment system 3 Name of person making the amendment (601) Mitsubishi Electric Corporation Representative Katayuni 8th Department 4 Agent 5 Details subject to amendment claims section of the document. 6. Contents of the amendment (1) The scope of claims in the description will be corrected as shown in the attached sheet. 7 Attachment i: Record I (1) At least one document stating the amended scope of claims
Claims (1) An activated sludge process comprising an aeration tank and a final settling tank, a digestion tank in which excess sludge produced by water treatment in the process is concentrated and then subjected to anaerobic fermentation together with the initial settling sludge; The water/sludge treatment system is mainly composed of a gas power generation engine that uses the digestion gas generated from the digestion tank as fuel.
, so that the gas output of 74 fl becomes a predetermined setting value.
A water/sludge treatment system characterized by controlling the amount of activated sludge present in the activated sludge process. (2) Water and sludge treatment according to broad item 1 of the patent claim, characterized in that the setting value of the gas generator is determined so that the blower power of the aeration tank can be self-sufficient by the power generated from the gas generator. system.

Claims (2)

【特許請求の範囲】[Claims] (1)ばつ気槽および最終沈殿池とで構成される活性汚
泥プロセス、該プロセスでの水処理により生成する余剰
汚泥を濃縮した後嫌気発酵させる消化槽、該消化槽から
発生する消化ガスを燃料とするガス発電機関を主構成と
する水・汚泥処理システムにおいて、ガス発電量が予め
定、めた設定値となるように、上記活性汚泥プロセス内
に存在する活性汚泥量を制御することを特徴とする水・
汚泥処理システム。
(1) Activated sludge process consisting of an aeration tank and a final settling tank, a digestion tank in which excess sludge produced by water treatment in the process is concentrated and then subjected to anaerobic fermentation, and the digestion gas generated from the digestion tank is used as fuel In a water/sludge treatment system mainly composed of a gas power generation engine, the amount of activated sludge present in the activated sludge process is controlled so that the amount of gas power generation becomes a predetermined set value. water and
Sludge treatment system.
(2)ばつ気槽のブロワ−動力を上記ガス発電々力で自
給し得るようにガス発電量の設定値を定めることを特徴
とする特許請求の範囲第1項記載の水・汚泥処理システ
ム。
(2) The water/sludge treatment system according to claim 1, wherein the set value of the gas power generation amount is determined so that the blower power of the aeration tank can be self-sufficient from the gas power generation power.
JP58062528A 1983-04-08 1983-04-08 Water and sewage treating system Pending JPS59186700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58062528A JPS59186700A (en) 1983-04-08 1983-04-08 Water and sewage treating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58062528A JPS59186700A (en) 1983-04-08 1983-04-08 Water and sewage treating system

Publications (1)

Publication Number Publication Date
JPS59186700A true JPS59186700A (en) 1984-10-23

Family

ID=13202775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58062528A Pending JPS59186700A (en) 1983-04-08 1983-04-08 Water and sewage treating system

Country Status (1)

Country Link
JP (1) JPS59186700A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013059868A1 (en) * 2011-10-24 2013-05-02 Minebay Pty Ltd Portable sewage collection system
JP2017154115A (en) * 2016-03-04 2017-09-07 株式会社ヴァイオス Methane fermentation processing method, and processor
KR20190005008A (en) 2017-07-05 2019-01-15 가부시키가이샤 바이오스 Method and apparatus for methane fermentation treatment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013059868A1 (en) * 2011-10-24 2013-05-02 Minebay Pty Ltd Portable sewage collection system
JP2017154115A (en) * 2016-03-04 2017-09-07 株式会社ヴァイオス Methane fermentation processing method, and processor
KR20190005008A (en) 2017-07-05 2019-01-15 가부시키가이샤 바이오스 Method and apparatus for methane fermentation treatment

Similar Documents

Publication Publication Date Title
CN110577275B (en) Intelligent aeration control system and method for sewage treatment
CN111847634A (en) Aeration and carbon source adding optimization control system and method for sludge-membrane composite sewage treatment process
CN103922540B (en) Application A pthe method of O/ bio-contact oxidation short distance nitration coupling Anammox autotrophic denitrification three device of sludge
CN110550738B (en) Sewage short-cut nitrification method and device based on side flow membrane bioreactor
CN108046427A (en) Low C/S is than the anaerobic bio-treated method of sulfate-containing organic wastewater under room temperature
CN101239771A (en) Water source heat pump and sludge anaerobic assimilation integration method and system
CN102503068B (en) Biological water reducing method for low-organic-content sludge
CN213569713U (en) Can realize that nitrogen gas is automatic to be thrown denitrification nitrogen removal system of throwing control
CN110304718A (en) A kind of anerobic sowage reaction system carrying out waste heat recycling using heat pipe
CN201186892Y (en) Water source heat pump and sludge anaerobic digestion integrated system
JPS59186700A (en) Water and sewage treating system
CN114132980A (en) Short-range intelligent accurate aeration control method, equipment and system for sewage treatment
CN102344221A (en) Process for treating high-salinity high-ammonia-nitrogen organic waste water
JP2934949B2 (en) Methane fermentation treatment method for chicken dung
CN108129005A (en) The system that sludge drying is carried out using the heat release of hydro-thermal process high concentrated organic wastewater
CN110054296A (en) It is a kind of for handling A/O/A SBR technique of the low C/N than municipal wastewater
CN214174904U (en) Intelligent aeration quantity calculation control system for sewage treatment
CN115367876A (en) Coking wastewater treatment device and method based on efficient utilization of internal carbon source
CN113354069A (en) MBR process accurate aeration control system and method
CN113998782A (en) Device and method for realizing autotrophic denitrification enhanced nitrogen removal through gas collection and circulation
CN208413974U (en) A kind of organic waste-water treating apparatus that can recycle biogas
CN106746407A (en) A kind of technique for improving excess sludge dewatering
Flores-Alsina et al. Benchmarking strategies to control GHG production and emissions
JP2006228619A (en) Fuel cell system
CN114560561B (en) Intelligent control system and method for denitrification and dephosphorization dosing coupling membrane pollution of MBR process