JPS59186378A - Collecting-type solar power generating device - Google Patents

Collecting-type solar power generating device

Info

Publication number
JPS59186378A
JPS59186378A JP58061291A JP6129183A JPS59186378A JP S59186378 A JPS59186378 A JP S59186378A JP 58061291 A JP58061291 A JP 58061291A JP 6129183 A JP6129183 A JP 6129183A JP S59186378 A JPS59186378 A JP S59186378A
Authority
JP
Japan
Prior art keywords
lens
fresnel lens
linear fresnel
solar cell
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58061291A
Other languages
Japanese (ja)
Other versions
JPH0320074B2 (en
Inventor
Mitsuhiro Yamada
光洋 山田
Akio Kitamura
北村 章夫
Hiroshi Kuniyasu
国安 廣
Shinichirou Shimizuzawa
清水沢 新一郎
Koichi Kiyota
清田 孝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
NEC Corp
Original Assignee
Kansai Electric Power Co Inc
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, NEC Corp, Nippon Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP58061291A priority Critical patent/JPS59186378A/en
Publication of JPS59186378A publication Critical patent/JPS59186378A/en
Publication of JPH0320074B2 publication Critical patent/JPH0320074B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

PURPOSE:To increase the output of a solar cell device and to simplify the structure of the driving system by a method wherein the tilt angle of a linear Fresnel lens to the horizontal plane, the incident angle of the solar ray, which passes through the central part of the lens, to the vertical line, and the like are set at the prescribed values according to the installed places of the lens. CONSTITUTION:A linear Fresnel lens 2 provided with a solar generating device is inclinedly fixed, facing to the south, and is trnsferred by a position controlling device with the transfer of the sun in the daytime in such a way that a solar cell element 1 keeps on coinciding with the focus part of the lens 2. The inclined fixing angle theta of this lens 2 to the horizontal plane is set at the value of phi-24 deg.<theta<phi+24 deg. to the latitude phi at the installed plate of the device and the element 1 is arranged so as to be able to transfer on the circumference of a radius equivalent to the focal distance of the lens 2, centering the center line 8 of the lens 2. Moreover, the relation between the incident angle alpha of the sunlight, which passes through the central part of the lens 2 in the southing time, to the vertical line and the angle beta, which is made by the straight line, which reaches to the element 1 from the center line 8 of the lens 2, with the solar ray, is set at alpha=beta=0, and the relation other than the one in the southing time is set as 0.9alpha<beta<13alpha for increasing the output of the device.

Description

【発明の詳細な説明】 本発明は集光型太陽光発電装置の構造に関する。[Detailed description of the invention] The present invention relates to the structure of a concentrating solar power generation device.

集光型太陽光発電装置は一般に、地上に照射される太陽
光をレンズまたは反射鏡によって集光し・その焦点(ま
たは焦線)部に例えは太陽電池素子を配置して太陽光発
電を行なわせしめるもので、太陽電池素子の単位面積あ
た)の発電量を大幅に増大させることが可能で非集光型
太陽光発電装置と比較した場合同一の発電電力を得るの
に、少ない太陽電池素子で済むという利点がある。これ
ら集光型太陽光発電装置は集光系を安価に得るために今
日では、透明なプラスチック部材を利用したフレネルレ
ンズを用いることが一般的で、とくに10倍から50倍
程度の低集光度の発電装置に対してはリニア(線形)フ
レネルレンズが用いられている。他方、集光型太陽光発
電装置は、地上に照射される太陽光のうち直達成分のみ
を利用することから、時時刻刻、位置を変える太陽を追
尾しなければならない。太陽の位置は地球の自転に対応
した時刻的な移動と、さらに地球の公転に対応した季節
的な移動とによって変化する。したがって該集光型太陽
光発電装置を常に太陽光に正対させるためには時刻およ
び赤緯に伴って太陽を追尾可能な例えば2軸による追尾
機構を準備する必要がある。しかし該2軸追尾機構は構
造が複雑で追尾制御方法がはん雑であるため、追尾に高
い精度が要求される高集光度(例えば100倍から10
00倍程度0集光度)の集光型太陽光発電装置には不可
欠であるが、これよυ低い集光度の太陽光発電装置に対
しては経済的でなかった。そこで、従来は追尾機構を簡
略化した第1図に示すような東西−軸のみを追尾する方
法が一般的であった。第1図において、1は太陽電池素
子、2はリニアフレネルレンズ、3は前記太陽電池素子
およびリニアフレネルレンズを固定するだめの可動フレ
ーム、5および6は該可動フレームを傾斜設置するため
の軸受部を含む支柱を示し、また4は前記可動フレーム
の回転中心を示す。同図において、可動フレームは支柱
により方向Sで示した真南に面して設置され、可動フレ
ームは回転中心として角度制御され、例えは運用時間中
の午前はaの方向に、午後はpの方向に回転し、太陽光
を追尾することができる。
Concentrating solar power generation devices generally generate solar power by concentrating sunlight irradiated onto the ground using a lens or reflecting mirror, and placing, for example, a solar cell element at its focal point (or focal line). It is possible to significantly increase the power generation amount (per unit area of the solar cell element), and when compared with a non-concentrating solar power generation device, it requires fewer solar cell elements to obtain the same generated power. The advantage is that it can be done with In order to obtain a light concentrating system at a low cost, these concentrating solar power generation devices generally use Fresnel lenses made of transparent plastic materials, especially those with a low concentrating power of about 10 to 50 times. A linear Fresnel lens is used for the power generator. On the other hand, since concentrating solar power generation devices utilize only the direct sunlight that is irradiated onto the ground, they must track the sun as it changes time and position. The position of the sun changes due to temporal movement corresponding to the Earth's rotation and seasonal movement corresponding to the Earth's revolution. Therefore, in order to keep the concentrating solar power generation device directly facing the sunlight, it is necessary to prepare a tracking mechanism, for example, with two axes, which can track the sun according to the time and declination. However, the two-axis tracking mechanism has a complicated structure and a complicated tracking control method, so it has a high light concentration (for example, 100 times to 10 times more) that requires high tracking accuracy.
Although it is essential for a concentrating solar power generation device with a light concentration of about 0 times 0), it is not economical for a solar power generation device with a lower light concentration of υ. Therefore, conventionally, a method of tracking only the east-west axis, as shown in FIG. 1, in which the tracking mechanism is simplified, has been common. In FIG. 1, 1 is a solar cell element, 2 is a linear Fresnel lens, 3 is a movable frame for fixing the solar cell element and the linear Fresnel lens, and 5 and 6 are bearing parts for installing the movable frame at an angle. and 4 indicates the center of rotation of the movable frame. In the same figure, the movable frame is installed by a support to face due south as shown in the direction S, and the movable frame is angularly controlled using the rotation center. It can rotate in any direction and track sunlight.

他方リニア7レネルレンズおよび太陽電池素子を一体で
保持するための可動7レームは風圧を考慮して、強固に
設計されていなければならす、したがって使用する材料
の重量が増すため、該可動フレームを支持するための軸
受部を含む支柱も勢い大型化することになシ、しかも、
長期間安定して太陽追尾を行なせしめるためには、かん
強な部材を用いることが避けられ々い条件であった。そ
の最大の原因は風圧を最も受けやすい平板型のリニアフ
レネルレンズを可動機構部にとう載したことにある。
On the other hand, the movable 7 frame for holding the linear 7 Renel lens and the solar cell element together must be designed to be strong considering the wind pressure, which increases the weight of the material used to support the movable frame. The pillars, including the bearings, will also become larger.
In order to stably track the sun over a long period of time, it is necessary to use strong members. The biggest reason for this is that the flat linear Fresnel lens, which is most susceptible to wind pressure, was mounted on the movable mechanism.

即ち、従来の方法によれは、リニアフレネルレンズ“お
よび太陽電池素子を一体として可動フレ一ムにとり載し
ていたために、該可動フレームおよび該可動フレームを
支持するための軸受部を含む支柱にがん強な構造材を用
いなければならず、さらにこれに伴って軸受部の構造お
よび駆動系の構造も大型化したため、材料費の増加が避
けられず、さらに可動フレームの構成単位の寸法にも制
限が生ずるという大きな欠点があった。
That is, in the conventional method, since the linear Fresnel lens and the solar cell element were mounted integrally on a movable frame, the movable frame and the pillars including the bearings for supporting the movable frame were damaged. Strong structural materials had to be used, and as a result, the structure of the bearing part and the structure of the drive system became larger, resulting in an unavoidable increase in material costs.Furthermore, the dimensions of the movable frame's constituent units also increased. The major drawback was that it was limited.

本発明はかかる従来の欠点を除き、構造が簡単な集光型
太陽光発電装置を提供できるものである。
The present invention can eliminate such conventional drawbacks and provide a concentrating solar power generation device with a simple structure.

即ち、本発明によれば南向きに傾斜固定した・リニア(
線形)7レネルレンズと日中、太陽の移動に伴って時時
刻刻移動する該1シニアフレネルレンズの焦細部に一致
するよう位置制御機構を供えた太陽電池素子とからなる
集光型太陽光発電装置において、前記リニアフレネルレ
ンズの水平面となす傾斜固定角度θを当該、集光型太陽
光発電装置の設置場所の緯度ψに対しψ−24°くθ〈
ψ+24°なる値とし、かつ前記太陽電池素子の位置を
、前記リニア7レネルレンズの中心mfr:中心とし、
前記リニアフレネルレンズの焦線距離に相当する半径の
円周上で移動させかつ南中時、該リニアフレネルレンズ
中心部を通過する垂線に対する太陽光の入射角度αと、
前記リニアフレネルレンズ中心線から前記太1#電池素
子に至る直巌のなす角度βが、南中時はα=β=0とし
、南中時以外は、09α〈β〈1,3αとなるよう制御
することを特徴とする集光型太陽光発電装置が得られる
That is, according to the present invention, the linear (
A concentrating solar power generation device consisting of a linear) 7-Resnel lens and a solar cell element equipped with a position control mechanism so as to match the focal point of the 1-senior Fresnel lens that moves time-by-time with the movement of the sun during the day. , the fixed inclination angle θ between the linear Fresnel lens and the horizontal plane is ψ−24° with respect to the latitude ψ of the installation location of the concentrating solar power generation device.
ψ + 24°, and the position of the solar cell element is the center mfr: center of the linear 7-Resnel lens,
An incident angle α of sunlight with respect to a perpendicular line passing through the center of the linear Fresnel lens when the lens is moved on a circumference with a radius corresponding to the focal length of the linear Fresnel lens, and when the linear Fresnel lens is centered;
The angle β formed by the straight line from the center line of the linear Fresnel lens to the thick 1# battery element is α = β = 0 when the center line is in the south, and 09α〈β〈1,3α when it is outside the center line. A concentrating solar power generation device characterized by control can be obtained.

第2図に本発明の一実施例の斜視図を示す。FIG. 2 shows a perspective view of an embodiment of the present invention.

第2図において、1は太陽電池素子、2はリニアフレネ
ルレンズ、3は該リニアフレネルレンズを傾斜固定する
ための固定フレーム、7おまひ7′は、リニアフレネル
レンズの中心線80両端部C2C′を中心として前記太
陽電池素子を円周運動せしめるだめのアームである。
In FIG. 2, 1 is a solar cell element, 2 is a linear Fresnel lens, 3 is a fixing frame for tilting and fixing the linear Fresnel lens, 7 is a paralysis 7' is a center line 80 of the linear Fresnel lens, both ends C2C' This is an arm that allows the solar cell element to move circumferentially around the center.

同図において、リニアフレネルレンズid固定フレーム
によって水平面りに対する傾斜角度θをと9、Sで示し
た真向に而して固定される。一方太陽電池素子1はアー
ム7.7′にょシリニア7レネルレンズの中心点c+C
’を中心として午前はa方向に、午後はp方向に円周上
を移動するよう制御される。リニアフレネルレンズに対
して斜めに入射した光はおおむね該リニアフレネルレン
ズの中心8を通過した光軸上付近に焦線全納ひ、時刻に
伴って変化する太陽の位置に応じて焦線部の位置も変化
する。その様子を第3図に示す。
In the figure, the linear Fresnel lens is fixed by an ID fixing frame at an angle of inclination θ with respect to the horizontal plane, as indicated by 9 and S. On the other hand, the solar cell element 1 is located at the center point c+C of the linear 7-lens lens at arm 7.7'.
It is controlled so that it moves around the circumference in the a direction in the morning and in the p direction in the afternoon, centering on '. The focal line of the light incident obliquely on the linear Fresnel lens is generally fully concentrated near the optical axis passing through the center 8 of the linear Fresnel lens, and the focal line position changes depending on the position of the sun, which changes with time. also changes. The situation is shown in Figure 3.

第3図においては1は太陽電池素子、]′は放熱板、2
はリニアフレネルレンズを示しLは入射する太陽光を示
す。第3図(a)はリニアフレネルレンズに対し、太陽
光が直角に入射(即ち南中時の入射)を示し、第3図f
b)は太陽光の傾斜入射時の例を示す。
In Figure 3, 1 is a solar cell element, ]' is a heat sink, and 2
indicates a linear Fresnel lens, and L indicates incident sunlight. Figure 3(a) shows sunlight incident on the linear Fresnel lens at right angles (i.e., incidence at the center of the sun), and Figure 3(f)
b) shows an example when sunlight is incident at an oblique angle.

同図において、南中時刻には焦線は正確にリニア7レネ
ルレンズの中心の垂線上に位置するが、太陽光が傾斜し
て入射する場合には焦線はかならずしもリニア7レネル
レンズ中心を通過した光軸上に結ぶとは限らず、即ちリ
ニアフレネルレンズの垂線と、入射太陽光とのなす角α
と該リニアフレネルレンズ中心から太陽電池素子に至る
直線と゛がなす角βとは常に等しいとは限らない。その
理由は、太陽光が斜め入射になることで焦線幅が変化し
、かつ集光された光の強度分布に片寄シが生ずるためで
、その片寄9方は太陽光の入射角度αに依存し、一定値
とはならない。しかるに角度βの最適値は入射角αに対
し0.9α〈β〈1.3αの範囲で選ぶことによシ太陽
電池素子を集光された光の強度分布のピーク値の位置に
置くことができ良好な太陽電池出力を得ることが可能と
なる。他方フレームの設置角度θは赤緯に合わせて、当
該集光型太陽光発電装置の設置場所の緯度ψに対しψ−
24°〈θ〈ψ+24°なる値をとることによシさらに
良好な太陽電池出力を得ることが可能となることは説明
を要さないであろう。
In the same figure, the focal line is exactly located on the perpendicular line to the center of the linear 7 Renel lens at midday, but when sunlight is incident at an angle, the focal line is not necessarily the same as the light that has passed through the center of the linear 7 Renel lens. In other words, the angle α between the perpendicular to the linear Fresnel lens and the incident sunlight
The angle β formed by and the straight line from the center of the linear Fresnel lens to the solar cell element is not always equal. The reason for this is that oblique incidence of sunlight changes the focal line width and causes a bias in the intensity distribution of the focused light, and the bias depends on the incident angle α of the sunlight. However, it is not a constant value. However, by selecting the optimum value of the angle β within the range of 0.9α<β<1.3α with respect to the incident angle α, it is possible to place the solar cell element at the position of the peak value of the intensity distribution of the focused light. This makes it possible to obtain good solar cell output. On the other hand, the installation angle θ of the frame is ψ− relative to the latitude ψ of the installation location of the concentrating solar power generation device, in accordance with the declination.
It is unnecessary to explain that by taking a value of 24°<θ<ψ+24°, even better solar cell output can be obtained.

また、以上に述べた説明は南北1追尾型の集光型太陽光
発電装置に対しても、容易に適用できることは明らかで
ある。
Furthermore, it is clear that the above explanation can be easily applied to a north-south single tracking type concentrating solar power generation device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来例を示す東西1軸追尾式集光型太陽光発
電装置の概略を示す斜視図、第2図は本発明の一実施例
を示す斜視図、第3図はリニア7レネルレンズの入射光
角度と集光の状態を示す概略図である。 なお図において、1 ・・・太陽電池素子、1′・・放
熱板、2・・ リニア7レネルレンズ、3 ・・フレー
ム、4・・・・フレーム回転中心線、5 、6・°。 軸受部を含む支柱、7・・・・アーム、8−・・・・・
リニアフレネルレンズ中心線、である。 代理人 弁理士 内 原  晋゛[゛ ○ 事2図
Fig. 1 is a perspective view schematically showing a conventional east-west single-axis tracking type concentrating solar power generation device, Fig. 2 is a perspective view showing an embodiment of the present invention, and Fig. 3 is a linear 7 Lennel lens. FIG. 2 is a schematic diagram showing the incident light angle and the state of condensation. In the figure, 1... solar cell element, 1'... heat sink, 2... linear 7 renel lens, 3... frame, 4... frame rotation center line, 5, 6 degrees. Support column including bearing part, 7... Arm, 8-...
Linear Fresnel lens center line. Agent Patent Attorney Susumu Uchihara [゛○ Matter 2 Figure

Claims (1)

【特許請求の範囲】[Claims] 南向きに傾斜固定したリニアフレネルレンズと太陽電池
素子が該リニアフレネルレンズの焦線部に一致するよう
日中の太陽の移動に伴って移動する位置制御機構とを供
えた集光型太陽光発電装置において、前記リニア7レネ
ルレンズの水平面となす傾斜固定角度θが当該集光型太
陽光発電装置の設置場所の緯度ψに対してψ−24°く
θくψ+24°なる値であり、前記太陽電池素子が前記
リニアフレネルレンズの中心線を中心とし前記リニアフ
レネルレンズの焦線距離に相当する半径の円周上で移動
し、かつ鋼中時に該リニア7レネルレンズ中心部を通過
する垂線に対する太陽光の入射角度αと前記リニアフレ
ネルレンズ中心線から前記太陽電池素子に至る直線のな
す角度βとの関係が、雨中時はα−β=0であシ南中時
以外はQ、 9α〈β<1.3αであることを特徴とす
る集光型太陽光発電装置。
A concentrating solar power generation system equipped with a linear Fresnel lens fixedly tilted toward the south and a position control mechanism that moves the solar cell element as the sun moves during the day so that the solar cell element coincides with the focal line of the linear Fresnel lens. In the device, the fixed angle θ of inclination between the linear 7-Renel lens and the horizontal plane has a value of ψ −24° × θ + ψ + 24° with respect to the latitude ψ of the installation location of the concentrating solar power generation device, and the solar cell The element moves on a circumference centered on the center line of the linear Fresnel lens and has a radius corresponding to the focal line distance of the linear Fresnel lens, and when the element is placed in steel, sunlight is directed to a perpendicular line passing through the center of the linear Fresnel lens. The relationship between the incident angle α and the angle β formed by a straight line from the linear Fresnel lens center line to the solar cell element is α − β = 0 when it is raining, and Q when it is not raining, 9 α < β < 1 A concentrating solar power generation device characterized by .3α.
JP58061291A 1983-04-07 1983-04-07 Collecting-type solar power generating device Granted JPS59186378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58061291A JPS59186378A (en) 1983-04-07 1983-04-07 Collecting-type solar power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58061291A JPS59186378A (en) 1983-04-07 1983-04-07 Collecting-type solar power generating device

Publications (2)

Publication Number Publication Date
JPS59186378A true JPS59186378A (en) 1984-10-23
JPH0320074B2 JPH0320074B2 (en) 1991-03-18

Family

ID=13166940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58061291A Granted JPS59186378A (en) 1983-04-07 1983-04-07 Collecting-type solar power generating device

Country Status (1)

Country Link
JP (1) JPS59186378A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4225130A1 (en) * 1992-07-30 1994-02-03 Fraunhofer Ges Forschung Two-stage concentrator for solar radiation - has linear concentrator arranged above compound parabolic concentrator and forming given angle
JP2006339522A (en) * 2005-06-03 2006-12-14 Sharp Corp Module and equipment of light condensing solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4225130A1 (en) * 1992-07-30 1994-02-03 Fraunhofer Ges Forschung Two-stage concentrator for solar radiation - has linear concentrator arranged above compound parabolic concentrator and forming given angle
ES2078846A2 (en) * 1992-07-30 1995-12-16 Fraunhofer Ges Forschung Two-stage concentrator for solar radiation - has linear concentrator arranged above compound parabolic concentrator and forming given angle
JP2006339522A (en) * 2005-06-03 2006-12-14 Sharp Corp Module and equipment of light condensing solar cell

Also Published As

Publication number Publication date
JPH0320074B2 (en) 1991-03-18

Similar Documents

Publication Publication Date Title
US4139286A (en) Apparatus for concentrating solar energy
US6005236A (en) Automatic sun tracking apparatus
US7893391B2 (en) Positional sensor for solar energy conversion device
US4297521A (en) Focusing cover solar energy collector apparatus
US4284839A (en) Internal refractor focusing solar energy collector apparatus and method
US20070246095A1 (en) Apparatus for generating electrical power from solar radiation concentrated by a concave reflector
US4150663A (en) Solar energy collector and concentrator
US4644933A (en) Solar system
CN100427846C (en) Line focusing solar device with fixed reflection surface
WO2000071942A1 (en) Solar tracing sensor and application thereof in solar auto-tracing device
US4114596A (en) Method and apparatus for tracking the sun for use in a solar collector with linear focusing means
US4269168A (en) Focusing reflector solar energy collector apparatus and method
KR20100061787A (en) Photovoltaic system with cylindrical light focusing equipment
US20130146124A1 (en) Large-scale integrated radiant energy collector
US20100043777A1 (en) Solar collector system
US20110259397A1 (en) Rotational Trough Reflector Array For Solar-Electricity Generation
US20170104444A1 (en) Rigidly mounted tracking solar panel and method
JPH06213514A (en) Earth axis type solar dish
JPS59186378A (en) Collecting-type solar power generating device
JPS5848477A (en) Condenser type solar electric generator
US4342501A (en) Radiant energy collector with focal point between the plane of the frame and earth
KR101412533B1 (en) Concentrating Photovoltaics Apparatus Having Non-Powered Solar Light Tracking Function
JPH08148711A (en) Solar cell device
Aiuchi et al. Sun tracking photo-sensor for solar thermal concentrating system
JPS6391457A (en) Solar heat water heater capable of tracing height and azimuth