JPS59185803A - Turbine variable nozzle - Google Patents

Turbine variable nozzle

Info

Publication number
JPS59185803A
JPS59185803A JP5921383A JP5921383A JPS59185803A JP S59185803 A JPS59185803 A JP S59185803A JP 5921383 A JP5921383 A JP 5921383A JP 5921383 A JP5921383 A JP 5921383A JP S59185803 A JPS59185803 A JP S59185803A
Authority
JP
Japan
Prior art keywords
nozzle
pedestal
casing
face
circular pedestal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5921383A
Other languages
Japanese (ja)
Inventor
Tosaku Takamura
東作 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5921383A priority Critical patent/JPS59185803A/en
Publication of JPS59185803A publication Critical patent/JPS59185803A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/162Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for axial flow, i.e. the vanes turning around axes which are essentially perpendicular to the rotor centre line

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To eliminate a clearance between the end face of a nozzle blade and a casing by providing a disc-shaped pedestal and a swiveling axis on the end face of the nozzle blade and fitting the pedestal in a casing so as to swivel freely. CONSTITUTION:A disc-shaped pedestal 23 and a swiveling axis 22 concentric to the pedestal are provided on the end face of a nozle blade 21. The pedestal 23 is installed through fitting it in a casing and the face of the pedestal 23 facing the flow passage side is put in coincidence with the face of the casing. Thus, any clearance between the end face of the nozzle blade 21 and the casing is eliminated, and clearance loss can be reduced.

Description

【発明の詳細な説明】 本発明はタービン可変ノズルに関し、特に軸流タービン
における可変ノズルの取付は構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to variable turbine nozzles, and more particularly to the structure of mounting variable nozzles in axial flow turbines.

従来のこの種可変ノズルの構造としては、例えば第1図
に示すよ゛うなものがある。本例は1977年度のAS
MEの機関誌で77−GT−105に開示されたもので
あり、ここで、1は回動軸2を有する可変ノズル翼であ
り、複数のこのようなノズル翼1がタービンロータ3の
流入口4の周囲に等分の間隔を保って配置されている。
An example of the structure of a conventional variable nozzle of this type is as shown in FIG. This example is for the 1977 AS
77-GT-105 in the ME journal, where 1 is a variable nozzle vane having a rotation axis 2, and a plurality of such nozzle vanes 1 are connected to an inlet of a turbine rotor 3. They are arranged at equal intervals around 4.

5および6は流入口4を形成している内側ケーシングお
よび外側ケーシングであり、回動軸2は外側ケーシング
6にそれぞれブツシュ7を介して半径方向に軸支されて
いて、各回動軸2の外側にはピニオンキア8が装着しで
ある。9はこれらのピニオンキア8と噛合させたりング
ギアであり、このリングギア9を図示しない駆動装置を
介してロータ軸心3Aの回りに回動させることにより、
ノズル翼1を一斉に同一角度変化させることができる。
Reference numerals 5 and 6 denote an inner casing and an outer casing that form the inlet 4, and the rotating shafts 2 are radially supported by the outer casing 6 through bushings 7. The pinion Kia 8 is installed. Reference numeral 9 denotes a ring gear that meshes with these pinion gears 8, and by rotating this ring gear 9 around the rotor axis 3A via a drive device (not shown),
The nozzle blades 1 can be changed by the same angle all at once.

第2図はこれらのノズル翼1の配置を周方向に展開して
示、すもので、このように回動軸2はノズル翼1の弦長
のほぼ中心近傍に設けられており、翼間流路lOのスロ
ート11位置よりはかなり前縁IAに近い側に軸2か配
置されている。なお、ノズル翼1を流入口4の位置で回
動自在とするために、第1図に示されるようにノズル翼
1の一ヒ端面IBと外側ケーシング6の壁との間、およ
びノズル翼1の下端面ICと内側ケーシング5の壁との
間にはクリアランス12が設けられている。
FIG. 2 shows the arrangement of these nozzle blades 1 expanded in the circumferential direction. As shown, the rotation axis 2 is provided almost near the center of the chord length of the nozzle blade 1, and the rotation axis 2 is located near the center of the chord length of the nozzle blade 1. The shaft 2 is arranged much closer to the leading edge IA than the throat 11 position of the flow path IO. In order to make the nozzle blade 1 rotatable at the position of the inlet 4, as shown in FIG. A clearance 12 is provided between the lower end face IC and the wall of the inner casing 5.

このように構成されたタービン可変ノズルにあっては、
エンジンの運転状態1こ応じて駆動装置を動作させてノ
ズル翼1を回動させ、スロート11の面積を変化させて
エンジン効率の低下をきたさないよう流量特性を変化さ
せることができる。
In the turbine variable nozzle configured in this way,
The drive device is operated to rotate the nozzle blade 1 in accordance with the operating state of the engine, and the area of the throat 11 can be changed to change the flow rate characteristics so as not to cause a decrease in engine efficiency.

しかしながら、このような従来の可変ノズルでは、第2
図に示す翼1の圧力面IDと負圧面IEとの間に発生す
る圧力差のために第1図で示したクリアランス12を通
して圧力面ID側から負圧面IE側に漏れが生じる。し
かして、この漏れは圧力差が最も大きくなる負圧面IE
側のスロート11に面する位置11A大きいが、この位
置には漏れを遮るものがなく、このような漏れによって
論策特性を損い、エンジンの性能が低下してしまう。
However, in such conventional variable nozzles, the second
Due to the pressure difference generated between the pressure surface ID and the suction surface IE of the blade 1 shown in the figure, leakage occurs from the pressure surface ID side to the suction surface IE side through the clearance 12 shown in FIG. Therefore, this leak occurs on the negative pressure side IE where the pressure difference is greatest.
Although the position 11A facing the side throat 11 is large, there is nothing in this position to block the leakage, and such leakage impairs the engine performance and reduces the performance of the engine.

本発明の目的は、上述の欠点を除去し、このようなすき
ま漏れを抑制するようにした取付は構造のタービン可変
ノズルを提供することにある。
It is an object of the present invention to eliminate the above-mentioned disadvantages and to provide a variable turbine nozzle whose mounting structure is such that such clearance leakage is suppressed.

かかる目的を達成するために、本発明ではフロート部近
傍のノズル翼端面に円板型台座と、この台座と同心の回
動軸とを設けると共に、この円板型台座を外側ケーシン
グに回動自在に嵌め合わせて取付け、流路側に面する台
座の面をケーシングの面に合わせるようにして、スロー
I一部近傍に′8(するクリアランスを4肖減させる。
In order to achieve such an object, the present invention provides a disk-shaped pedestal on the nozzle blade end surface near the float portion and a rotating shaft concentric with the pedestal, and also provides a structure in which the disk-shaped pedestal is rotatable on the outer casing. Fit and install it, align the surface of the pedestal facing the flow path with the surface of the casing, and reduce the clearance by 4 degrees near a part of the throw I.

以下に、図面に基づいて本発明の詳細な説明する。The present invention will be described in detail below based on the drawings.

第3図は本発明の一実施例を示し、ここで、21はノズ
ル翼、22はその回動軸、23は回動軸22と同心に設
けた円板型台座である。このように台座23および回動
軸22の位置を設定して設けることにより、台座23と
ノズル翼21とが接合されている部分24(斜線記入γ
1ト分)シこはクリアランス12が介在しなくなる。
FIG. 3 shows an embodiment of the present invention, in which 21 is a nozzle blade, 22 is a rotating shaft thereof, and 23 is a disk-shaped pedestal provided concentrically with the rotating shaft 22. FIG. By setting and providing the positions of the pedestal 23 and the rotation shaft 22 in this way, the part 24 where the pedestal 23 and the nozzle blade 21 are joined (indicated by diagonal lines γ
1 part) The clearance 12 no longer intervenes.

なお1本例ではこれら台座23および軸22の中心1″
)冒i!l)、25をスロート部11よりやや下流側に
あたる翼形中心線近傍に設けたが、中心位置25の設定
にあたっては、スロート部11に対応する翼形中心線近
傍の位置からこの位置と翼後縁IFの中間位置までの間
とするのが漏洩を抑制するのに最も好適である。
In this example, the center of the pedestal 23 and the shaft 22 is 1''.
) Blasphemy! l), 25 was provided near the airfoil center line, which is slightly downstream of the throat part 11. However, when setting the center position 25, from a position near the airfoil center line corresponding to the throat part 11 to this position and the rear of the airfoil. To suppress leakage, it is most suitable to set the distance to the middle position of the edge IF.

ここで、台座23の流路10側の面は、図示しないか外
側ケーシング6の内面と一致させるように什J−げろ。
Here, the surface of the pedestal 23 on the flow path 10 side is not shown in the drawings, or is curved so as to match the inner surface of the outer casing 6.

更にまた、台座23の径としてはノズル翼21の翼断面
における翼弦全体を覆うようにすればこれらの間のクリ
アランス12を完全に消滅させることができるが、一般
にはノズル翼21の設けられる間隔よりノズル翼21の
翼弦の方が長いので隣接する台座同士が干渉し合う。し
たがって、台座23の径の設定にあたっては、このよう
な干渉の発生しない範囲内で決めるようにする。
Furthermore, if the diameter of the pedestal 23 is set to cover the entire chord of the cross section of the nozzle blades 21, the clearance 12 between them can be completely eliminated; Since the chord of the nozzle blade 21 is longer, adjacent pedestals interfere with each other. Therefore, when setting the diameter of the pedestal 23, it should be determined within a range that does not cause such interference.

なお、以上に述べたような範囲で台座23および回動軸
22を設定する限り、輔22をいずれの位1ざトに設定
しても、これによってノズルの可変機構に障害の発生す
るようなことはない。
Furthermore, as long as the pedestal 23 and the rotation axis 22 are set within the ranges described above, no matter which position the support 22 is set to, it will not cause any trouble to the nozzle variable mechanism. Never.

以」−説明してきたように、本発明によれば、ノズル翼
と一体型の円形台座およびこの円形台座に同心にして取
付けるノズル翼回動軸の中心を、ノズル翼負圧面上のス
ロー+−:aS形成位置から少なくとも翼の後縁側の翼
形上の位置に設け、円形台座をケーシングに回動自在に
埋設したので、最も漏洩の大ぎいスロー)・部近傍の翼
端とケーソング間のクリアランスを無くすことがてきて
、クリアランス損失を抑制することができ、良好なカス
流量特性を維乃させることがてさる。
As described above, according to the present invention, the center of the circular pedestal integrated with the nozzle blade and the rotation axis of the nozzle blade, which is attached concentrically to the circular pedestal, is aligned with the throw +- on the negative pressure surface of the nozzle blade. :The circular pedestal was installed at a position on the airfoil at least on the trailing edge side of the wing from the aS formation position, and the circular pedestal was rotatably embedded in the casing, so there was a clearance between the blade tip and the casing song near the throw section where the leakage was the greatest. This makes it possible to suppress clearance loss and maintain good waste flow characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のタービン可変ノズルの構成の一例を示す
断面図、第2図はその周方向等分の位置に配置されたノ
ズル翼を展開した状j;;で示す線図、第3図は本発明
タービン可変ノズルの構成の−例を周方向に展開した状
jn1で示す線図である。 1.21・・・ノズル翼、 IA・・・前縁、 1B・・・」一端面、 IC・・・下端面、 ID・・・圧力面、 IE・・・負圧面、 1F・・・後縁、 2.22・・・回動軸、 3・・・タービンロータ、 3A・・・軸心、 4・・・流入口、 5.6・・・ケーシング、 7・・・ブツシュ、 8・・・ピニオンギア、 9・・・リングギア、 10・・・流路、 11・・スロート、 12・・・クリアランス、 23・・・台座、 24・・・部分、 25・・・中心位置。 特 許 出 願 人  日産自動車株式会社第2図 第1図 11AIEI+         2 第3図
Fig. 1 is a sectional view showing an example of the configuration of a conventional variable turbine nozzle, Fig. 2 is a diagram showing the expanded nozzle blades arranged at equal positions in the circumferential direction, and Fig. 3 1 is a diagram showing an example of the configuration of the variable turbine nozzle of the present invention as expanded in the circumferential direction. 1.21... Nozzle blade, IA... Leading edge, 1B...' one end surface, IC... Lower end surface, ID... Pressure surface, IE... Negative pressure surface, 1F... Rear Edge, 2.22... Rotating shaft, 3... Turbine rotor, 3A... Axial center, 4... Inlet, 5.6... Casing, 7... Bush, 8... - Pinion gear, 9... Ring gear, 10... Channel, 11... Throat, 12... Clearance, 23... Pedestal, 24... Part, 25... Center position. Patent applicant Nissan Motor Co., Ltd. Figure 2 Figure 1 11 AIEI+ 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 回動軸に数句けたノズル翼を環状に形成されるカスター
ヒンの流入口に等間隔で半径方向に配置し、前記回動軸
をタービンケーシングに回動自在に枢支させて、前記回
動軸を一斉に回動させることにより前記ノズル翼の間の
スロート部における流路面積を変化させるようにしたタ
ービン可変ノズルにおいて、前記ノズル翼と一体の円形
台座を前記回動軸との間に該回動軸と同心に設け、前記
円形台座の中心を、前記ノズル翼の負正面上のスロート
部形成位置から少なくとも前記ノズル翼の少縁寄りの位
置での前記ノズル兄翼形上に位置させるようになして、
前記円形台座を前記タービンケーシングに回動自在に埋
設したことを特徴とするタービン可変ノズル。
Several nozzle blades are disposed on the rotating shaft at equal intervals in the radial direction at the inlet of a caster hinge formed in an annular shape, and the rotating shaft is rotatably supported on the turbine casing. In the variable turbine nozzle, the flow path area in the throat section between the nozzle blades is changed by rotating the nozzle blades all at once, wherein a circular pedestal integrated with the nozzle blades is interposed between the rotation shaft and the rotation shaft. The circular pedestal is provided concentrically with the moving axis, and the center of the circular pedestal is located on the older nozzle airfoil at least at a position closer to the minor edge of the nozzle airfoil from a throat forming position on the negative front surface of the nozzle airfoil. Without,
A variable turbine nozzle, characterized in that the circular pedestal is rotatably embedded in the turbine casing.
JP5921383A 1983-04-06 1983-04-06 Turbine variable nozzle Pending JPS59185803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5921383A JPS59185803A (en) 1983-04-06 1983-04-06 Turbine variable nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5921383A JPS59185803A (en) 1983-04-06 1983-04-06 Turbine variable nozzle

Publications (1)

Publication Number Publication Date
JPS59185803A true JPS59185803A (en) 1984-10-22

Family

ID=13106886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5921383A Pending JPS59185803A (en) 1983-04-06 1983-04-06 Turbine variable nozzle

Country Status (1)

Country Link
JP (1) JPS59185803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014516133A (en) * 2011-06-01 2014-07-07 ターボメカ Variable pitch nozzles for radial turbines, especially auxiliary power source turbines
WO2024056961A1 (en) * 2022-09-15 2024-03-21 Safran Aircraft Engines Sector of a guide vanes assembly for a turbine of an aircraft turbomachine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014516133A (en) * 2011-06-01 2014-07-07 ターボメカ Variable pitch nozzles for radial turbines, especially auxiliary power source turbines
WO2024056961A1 (en) * 2022-09-15 2024-03-21 Safran Aircraft Engines Sector of a guide vanes assembly for a turbine of an aircraft turbomachine
FR3139860A1 (en) * 2022-09-15 2024-03-22 Safran Aircraft Engines SECTOR OF A DISTRIBUTOR FOR A TURBINE OF AN AIRCRAFT TURBOMACHINE

Similar Documents

Publication Publication Date Title
US3723021A (en) Flexible airfoil for compressor
US20100232936A1 (en) Variable stator vane contoured button
US10287902B2 (en) Variable stator vane undercut button
JPH05312055A (en) Propfan turbine engine
KR20040002526A (en) Turbine
US4642026A (en) Centrifugal compressor with adjustable diffuser
US3305166A (en) Centrifugal compressor
JPS59185803A (en) Turbine variable nozzle
JP2000045784A (en) Variable capacity type turbo supercharger
JP3897222B2 (en) Horizontal shaft pump with spiral wings
US11920481B2 (en) Module for turbomachine
JP2008157110A (en) Exhaust strut
JP2000120521A (en) Water wheel
JP3040601B2 (en) Radial turbine blade
US5779440A (en) Flow energizing system for turbomachinery
WO2023218723A1 (en) Variable stator blade and compressor
WO2024142886A1 (en) Impeller and centrifugal compressor
JP2000204907A (en) Variable displacement turbine
JPH0914197A (en) Centrifugal type diffuser with moving blade
JPH11148364A (en) Variable capacity type turbo charger
JPH0148361B2 (en)
JPH09100812A (en) Deflector vane
US20240084714A1 (en) Centrifugal compressor and turbocharger
JP2000018004A (en) Radial turbine with nozzle
JPS6144000Y2 (en)