JPS59185541A - Coupling method of shaft and shaft - Google Patents

Coupling method of shaft and shaft

Info

Publication number
JPS59185541A
JPS59185541A JP5930483A JP5930483A JPS59185541A JP S59185541 A JPS59185541 A JP S59185541A JP 5930483 A JP5930483 A JP 5930483A JP 5930483 A JP5930483 A JP 5930483A JP S59185541 A JPS59185541 A JP S59185541A
Authority
JP
Japan
Prior art keywords
shaft
turbine
die
wheel
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5930483A
Other languages
Japanese (ja)
Inventor
Kazuhiro Tsuruoka
鶴岡 一広
Naonobu Kanamaru
尚信 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5930483A priority Critical patent/JPS59185541A/en
Publication of JPS59185541A publication Critical patent/JPS59185541A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K25/00Uniting components to form integral members, e.g. turbine wheels and shafts, caulks with inserts, with or without shaping of the components

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To couple securely two shafts with good accuracy in such a way as to withstand the torque in the axial and rotating directions of both shaft in the stage of coupling the two shafts by working a stopper groove on the outside circumference of the one shaft, fitting the other shaft thereto and ironing the outside circumference thereof. CONSTITUTION:A turbine revolving shaft 2 is projected from a turbine vane wheel 3 formed of ceramics or a casting in such a case in which the revolving shaft of a supercharger of an internal combustion engine, etc. is coupled to the shaft of the vane wheel. A coupling shaft 5 having the diameter smaller than the diameter of the shaft 2 is provided and plural pieces of rugged stopper grooves 5A extending in the axial direction are preliminarily formed on the shaft 5. After the circumference of the wheel 3 is held by a die 7, the shaft 2 is fitted to the shaft 5 and a die 6 is suspended from above to iron the shaft. The assembly is then disposed on a receiving die 8 so as to position downward the wheel 3 and the shaft 2 is plastically deformed by the outside ironing with the die 9, by which a compressor vane wheel 4 is bound thereto.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、軸と軸の結合方法に係り、特に内燃機関用過
給機等の回転軸と羽根車軸との結合等に好適な軸と軸の
結合方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a shaft-to-shaft coupling method, and in particular to a shaft-to-shaft method suitable for coupling a rotating shaft and an impeller shaft of a supercharger for an internal combustion engine, etc. Regarding the method of joining.

〔発明の背景〕[Background of the invention]

一般に軸と軸との結合は、軸を直列に並べそれを結合方
法と、軸に中空軸を恵ね合せそれらを結合する方法とが
ある。
In general, there are two ways to connect shafts: one is to arrange the shafts in series and connect them, and the other is to connect a hollow shaft to the shaft.

特開昭57−122125号公報は内燃機関用過給機の
場合の軸と軸の結合方法を示している。例えば過給機の
場合を例に取るならば、回転軸の一方には尚温にさらさ
れるタービン羽根車(鋳造品)が摩擦溶接等により固定
され、他方にはアルミHのコンプレッサー羽根車が回転
軸に嵌入された後、ナツトで締付固定されている。
JP-A-57-122125 discloses a method of connecting shafts to each other in a supercharger for an internal combustion engine. For example, in the case of a turbocharger, a turbine impeller (cast product) that is exposed to high temperatures is fixed to one side of the rotating shaft by friction welding, and an aluminum H compressor impeller rotates to the other side. After being fitted onto the shaft, it is tightened and fixed with a nut.

このように過給機のタービン回転軸には、夫々の羽根車
が強度上、組立上を考慮して一方は溶接固定、他方はネ
ジ固定されている。ところが溶接固定は作業性が悪いと
共に加熱して固着するので羽根車に対する熱影響が大き
く、又ミクロン単位の精度が要求される製品では非常に
作業性が悪かった。他方ネジによるナツト締付法によれ
ばナツトにより常に回転軸に引張シカがかかつている状
態なので、回転トルクによシ小さな曲り力がかかつても
容易に回転軸が曲ってしまうと問題点かあつた。この曲
シはコンプレッサーケーシングとの間隙を微少に保つこ
とができないばかりが、物によってケーシングとの接触
が生じ製品としての生命が失われる。又回転軸の曲シを
少なくするためにはナツトの加工精度を上ける必要があ
る。つまり量産品において、ナツトのネジ精度や、ネジ
と締め付端面の直角度、ネジ中心と外径の芯精度をミク
ロ単位で確保することは至難の技と言われておシ、上記
を満足するとすればナツトのコストが高くなることは必
至である。
In this manner, one impeller is fixed to the turbine rotating shaft of the supercharger by welding, and the other impeller is fixed by screws, in consideration of strength and assembly. However, fixing by welding has poor workability and has a large thermal effect on the impeller since it is heated and fixed, and workability is extremely poor for products that require precision on the micron level. On the other hand, according to the nut tightening method using screws, tension is always applied to the rotating shaft by the nut, so even if a small bending force is applied to the rotating torque, the rotating shaft can easily bend, which can be a problem. Ta. Not only is this bend unable to maintain a very small gap with the compressor casing, but objects may come into contact with the casing, resulting in the loss of the product's life. Furthermore, in order to reduce the bending of the rotating shaft, it is necessary to improve the machining accuracy of the nut. In other words, in mass-produced products, it is said to be extremely difficult to ensure the thread accuracy of nuts, the perpendicularity between the screw and the tightening end face, and the core accuracy of the screw center and outer diameter in microscopic units. If that happens, it is inevitable that Natsuto's cost will increase.

更に、排気タービン過給機は、最高回転数が大きさによ
シ異なるが、1ooooo〜280000(rpm)と
超高速回転機で回転体のバランスが生命である。
Furthermore, the maximum rotational speed of an exhaust turbine supercharger varies depending on the size, but it is an extremely high-speed rotating machine of 1000 to 280,000 (rpm), and the balance of the rotating body is vital.

このバランス精度は数ミクロンを必要とし、各部品のバ
ランス精度を良くせねばならないし、又単品のバランス
ばかシでなく、回転体の組立状態のバランス精度を確保
せねばならない。しかし前記した通シ溶接およびナツト
締結法はバランス精度を悪くすると同時に組立時に数ミ
クロン単位のバランス精度を確保することができない。
This balance accuracy requires several microns, and it is necessary to improve the balance accuracy of each component, and it is also necessary to ensure the balance accuracy of the assembled state of the rotating body, not just the balance of individual parts. However, the above-described through welding and nut fastening methods impair balance accuracy and at the same time cannot ensure balance accuracy of several microns during assembly.

〔発明の目的〕[Purpose of the invention]

本発明は、結合精度、製品精度の高い軸と軸の結合方法
を提供するにある。
The present invention provides a shaft-to-shaft coupling method with high coupling precision and product precision.

〔発明の概要〕[Summary of the invention]

本発明は、軸の外周に回シ止め用の溝を加工して、他の
軸を嵌合し、その外周をしごいて前記2つの軸を軸方向
、回転方向のトルクに耐得るように強固に固定結合する
ものである。
In the present invention, a groove for preventing rotation is machined on the outer periphery of the shaft, another shaft is fitted into the shaft, and the outer periphery is squeezed so that the two shafts can withstand torque in the axial and rotational directions. It is a strong fixed bond.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明を実施しだ排気タービン過給機の取付状
態図を示している。ハウジングケース1の中央部には軸
受を介してタービン回転軸2が軸承されて、その一方に
はタービン羽根車が固定され、他方にはコンプレッサー
羽根車が固定されている。
FIG. 1 shows an installed state diagram of an exhaust turbine supercharger embodying the present invention. A turbine rotary shaft 2 is supported in the center of the housing case 1 via a bearing, a turbine impeller is fixed to one side of the shaft, and a compressor impeller is fixed to the other side.

前記タービン羽根車3は鋳造製品あるいセラミック材か
らなシ、第2図に詳細を示す如く、予め羽根車の中心に
突出し、第1の部材であるタービン回転軸2の径よシ小
径の結合軸5を設けこの結合軸5には軸方向に伸びる複
数個の凹凸5Aがローレット加工で形成されている。
The turbine impeller 3 is made of a cast product or a ceramic material.As shown in detail in FIG. 2, the turbine impeller 3 protrudes from the center of the impeller in advance and has a diameter smaller than that of the first member, the turbine rotating shaft 2. A shaft 5 is provided, and a plurality of projections and depressions 5A extending in the axial direction are formed on the joint shaft 5 by knurling.

この凹凸5Aの長さは適宜であるが、その両端5B、5
Cの径D6は第4図から解るように少なくとも凹凸の外
径D5より小径としている。一方前記結合軸5の外径D
5と嵌合する第2の部材であるタービン回転軸2の端部
には凹穴2Aが形成され、その穴径D5よシ小さく自由
嵌合されるようになっている。前記凹穴2Aの外径部に
は環状の突起2Bが形成され、そ′の両端外径D3は別
途形成される金型6の加工歯6Aの内径D1とほぼ等し
く、外径D2は金型6の加工歯6A以外に接しないよう
に設計されている。
The length of this unevenness 5A is appropriate, but both ends 5B, 5
As can be seen from FIG. 4, the diameter D6 of C is at least smaller than the outer diameter D5 of the unevenness. On the other hand, the outer diameter D of the coupling shaft 5
A recessed hole 2A is formed at the end of the turbine rotating shaft 2, which is the second member to be fitted with the second member, and the recessed hole 2A is smaller than the hole diameter D5 and is freely fitted. An annular protrusion 2B is formed on the outer diameter part of the recessed hole 2A, the outer diameter D3 of both ends of which is approximately equal to the inner diameter D1 of the machining tooth 6A of the mold 6, which is formed separately, and the outer diameter D2 It is designed so that it does not come into contact with anything other than the machined teeth 6A of No. 6.

従って、タービン羽根車3の周囲を金型7にて垂直に保
持した後、結合軸5にタービン回転軸2を嵌合保持し、
更に上方向から金型6を垂下して加工歯6Aによシ突起
2Bをしごいて加工する。
Therefore, after holding the circumference of the turbine impeller 3 vertically with the mold 7, the turbine rotating shaft 2 is fitted and held on the coupling shaft 5,
Further, the mold 6 is lowered from above and the protrusions 2B are pressed against the processing teeth 6A to perform processing.

すると突起2Bの内部は凹穴2人の方向に塑性変形して
凹凸5Aの周囲および前後5B、5Cに食い込む、この
時結合軸2Bと凹穴2人間の空隙は突起2Bの変形量と
ほぼ同じ位となっているだめタービン回転軸2の伸びは
なく、規定の位置に確実に固定される。
Then, the inside of the protrusion 2B is plastically deformed in the direction of the two concave holes and bites into the periphery of the concave and convex portion 5A and into the front and back 5B and 5C. At this time, the gap between the connecting shaft 2B and the concave holes 2 is approximately the same as the amount of deformation of the protrusion 2B. There is no elongation of the turbine rotating shaft 2 which is in the position, and it is securely fixed at the specified position.

次にコンプレッサー羽根車4の固定は、第4図の如くタ
ービン回転軸2に羽根車3を固定してハウジングケース
1に支承した後、該ハウジングケースをタービン羽根車
3が下向きになるように受型8に配置し、回転軸2に固
定する。ここで回転軸2はその先端にローレット2Cと
、そのローレット形成基部に環状の凹面2Dを形成し、
コンプレッサー羽根車と一体に成形された中空シャット
4Aの一端を嵌合対向させているう このようにして配置されたコンプレッサー羽根車4は、
中空シャツ)4Aがその外径よシ小なる内径を有する金
型9で外周をしごかれ塑性変形する“ことによって結合
される。即ち中空シャフト4Aの端面から中空金型9が
圧入されると、アルミ材からなる中空シャツ)4Aは次
第に塑性変形されて行き、逃げ場のない一部材料はロー
レット2Cに食い込むと共に、環状の凹面2Dに流入し
、回転方向および軸方向の動きが阻止される。
Next, to fix the compressor impeller 4, after fixing the impeller 3 to the turbine rotating shaft 2 and supporting it in the housing case 1 as shown in FIG. It is placed in a mold 8 and fixed to the rotating shaft 2. Here, the rotating shaft 2 has a knurling 2C at its tip and an annular concave surface 2D at the knurling base,
The compressor impeller 4 is arranged in a cone-like manner, with one end of a hollow shut 4A formed integrally with the compressor impeller fitting and facing each other.
The outer circumference of the hollow shirt 4A is squeezed by a mold 9 having an inner diameter smaller than its outer diameter, resulting in plastic deformation.That is, when the hollow mold 9 is press-fitted from the end face of the hollow shaft 4A, , hollow shirt made of aluminum material) 4A is gradually plastically deformed, and some of the material that cannot escape bites into the knurling 2C and flows into the annular concave surface 2D, preventing movement in the rotational and axial directions.

上記の方法で結合されたタービン羽根車の結合軸および
コンプレッサー羽根車を固定するタービン回転軸の一端
は、それぞれ何等の変形圧および引張力を受けることも
なく確実に固定される。又固定時には金型で塑性成形し
ながら両者間を密着させて行くので、仕上り精度の良い
製品が得られる。
The coupling shaft of the turbine impeller coupled by the above method and one end of the turbine rotating shaft fixing the compressor impeller are securely fixed without being subjected to any deformation pressure or tensile force, respectively. Furthermore, when fixing, the two parts are brought into close contact while being plastically formed with a mold, so a product with good finishing accuracy can be obtained.

尚、コンプレッサー羽根車の固定部の形状は前記実施例
で示したローレット加工の他、スクリュー溝、綱目溝等
で良い。もちろん軸方向に数段に分けて設けることも必
要に応じて行える手法である。
The shape of the fixed portion of the compressor impeller may be, in addition to the knurling shown in the above embodiment, a screw groove, a mesh groove, or the like. Of course, it is also possible to provide it in several stages in the axial direction, if necessary.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば結合精度、製品精度の高い軸と軸
の結合方法が提供される。
As described above, according to the present invention, a shaft-to-shaft joining method with high joining precision and product precision is provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を用いたタービン過給機の一部断面側面
図、第2図は第1図におけるタービン羽根車とタービン
回転軸の結合方法を示す要部縦断面図、第3図は同第1
図におけるコンプレッサー羽根車とタービン回転軸の結
合方法を示す狭部縦断面図、第4図は第2図の一部分解
拡大図である。
Fig. 1 is a partial cross-sectional side view of a turbine supercharger using the present invention, Fig. 2 is a longitudinal sectional view of main parts showing the method of coupling the turbine impeller and the turbine rotating shaft in Fig. 1, and Fig. 3 is a partial cross-sectional side view of a turbine supercharger using the present invention. Same 1st
FIG. 4 is a longitudinal sectional view of a narrow portion showing a method of coupling the compressor impeller and the turbine rotation shaft in the figure, and FIG. 4 is a partially exploded enlarged view of FIG. 2.

Claims (1)

【特許請求の範囲】[Claims] 1、第1の軸部材と第2の軸部材を嵌合し両者を結合し
た軸と軸の結合方法において、外周表面上に軸方向に延
びる凹凸を設けた第1の部材と、該部材の外径と嵌合し
、少なくとも結合部が前記部材と同等以下の軟かい第2
の部材とからなシ、前記第1の部材に第2の部材を嵌合
させた後、第2の部材の材料を第1の凹凸部およびその
前後に金型で押圧塑性流動せしめ、前記凹凸の周方向に
入った材料で回転方向の動きを固定し、凹凸の軸方向両
路端部分の材料で軸方向の動きを固定したことを特徴と
する軸と軸の結合方法。
1. In a shaft-to-shaft coupling method in which a first shaft member and a second shaft member are fitted and joined together, the first member is provided with unevenness extending in the axial direction on the outer circumferential surface; A soft second part that fits with the outer diameter and has at least a joining part equal to or smaller than the above-mentioned member.
After fitting the second member to the first member, the material of the second member is pressed and plastically flowed with a mold in the first uneven portion and before and after the first uneven portion. A method for connecting shafts, characterized in that movement in the rotational direction is fixed by a material inserted in the circumferential direction of the shaft, and movement in the axial direction is fixed by material at both ends of the uneven axial direction.
JP5930483A 1983-04-06 1983-04-06 Coupling method of shaft and shaft Pending JPS59185541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5930483A JPS59185541A (en) 1983-04-06 1983-04-06 Coupling method of shaft and shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5930483A JPS59185541A (en) 1983-04-06 1983-04-06 Coupling method of shaft and shaft

Publications (1)

Publication Number Publication Date
JPS59185541A true JPS59185541A (en) 1984-10-22

Family

ID=13109495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5930483A Pending JPS59185541A (en) 1983-04-06 1983-04-06 Coupling method of shaft and shaft

Country Status (1)

Country Link
JP (1) JPS59185541A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798320A (en) * 1985-09-20 1989-01-17 Allied-Signal Inc. Ceramic-metal brazed joint for turbochargers
US5133122A (en) * 1990-01-10 1992-07-28 Ngk Insulators, Ltd. Method of manufacturing ceramic turbo charger rotor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798320A (en) * 1985-09-20 1989-01-17 Allied-Signal Inc. Ceramic-metal brazed joint for turbochargers
US5133122A (en) * 1990-01-10 1992-07-28 Ngk Insulators, Ltd. Method of manufacturing ceramic turbo charger rotor

Similar Documents

Publication Publication Date Title
US4519747A (en) Method for assembling an impeller onto a turboshaft
US10309300B2 (en) Electric rotor fit onto a turbomachine shaft
JPH11148492A (en) Fixing device for compressor impeller to be used for high speed turbo machine
JP2006207526A (en) Variable displacement type exhaust turbocharger and method for manufacturing variable nozzle mechanism structural member
JPH04103805A (en) Supercharger
JPS5874830A (en) Exhaust gas turbosupercharger with bearing section arranged between turbine and compressor
JP2005106029A (en) Rotating shaft
JP2002242884A (en) Mounting device for impeller of radial flow compressor
JP2531708Y2 (en) Ceramic / metal composite
JPH04103806A (en) Rotary junction body
JPS59185541A (en) Coupling method of shaft and shaft
JPH0216079Y2 (en)
JP4262353B2 (en) Ring gear
JPH0552356U (en) Turbomachine impeller mounting device
JPH03210026A (en) Manufacture of ceramic turbo-charger rotor
JPS58211597A (en) Impeller clamping mechanism for small-sized turbo compressor
JPH0744722Y2 (en) Coupling shaft structure of ceramic turbine rotor and metal shaft
JP2815697B2 (en) Turbocharger and turbine blade body
JP2681876B2 (en) Manufacturing method of universal joint
JP3140307B2 (en) Rotating body evaluation jig
JPH0217122Y2 (en)
JPH09209948A (en) Fluid machine
JPH06100083B2 (en) Fixing mechanism of impeller of centrifugal compressor or centrifugal turbine
JPH04339193A (en) Manufacture of rotor for mechanical drive supercharger
WO2018052025A1 (en) Supercharger and method for assembling supercharger