JPS5918540A - Field emission cathode - Google Patents
Field emission cathodeInfo
- Publication number
- JPS5918540A JPS5918540A JP57127513A JP12751382A JPS5918540A JP S5918540 A JPS5918540 A JP S5918540A JP 57127513 A JP57127513 A JP 57127513A JP 12751382 A JP12751382 A JP 12751382A JP S5918540 A JPS5918540 A JP S5918540A
- Authority
- JP
- Japan
- Prior art keywords
- filament
- cathode
- chip
- field emission
- tip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/30—Cold cathodes, e.g. field-emissive cathode
- H01J1/304—Field-emissive cathodes
Landscapes
- Cold Cathode And The Manufacture (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は電子顕微鏡などの電子ビーム応用機器において
有用な電子源に係るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron source useful in electron beam application equipment such as electron microscopes.
タングステン(W)針状チップ表面に単原子層程度のT
i、z、r、Hfなどの金属を付着させ、微量の酸素を
含む真空中で熱処理すると、(1001面の仕事関数が
低下し、この結晶面から優先的に電子放射が起こる。こ
の型の電子放射陰極は電子ビームの指向性が良く、また
放射電流も安定であるので各種の電子ビーム応用機器で
使用され始めている。ここで微量の酸素は熱処理の過程
で真空中の残留ガスから自然に供給されることが多いの
で、上記の陰極を実現するためには専らT’ 、z ”
eHfなどの金属をW針状チップにいかにうまく供給す
るかという点に工夫がこらされている。従来使用されて
いる代表的な方法を第1図に示す、(a)はW針状チッ
プの根本部にZrなどの水素化物の塊3を付着させ、フ
ィラメント1を通電加熱してこの化合物を蒸発させてW
針状チップ表面にZr金属原子を付着させる方法、(b
)はフィラメント1の一部にT;、Zr、Hfなとの細
線4を巻きつけておき、これを蒸発させる方法、(C)
は電界放射陰極の周囲に’I’i、Zr、Hfなとの蒸
発源5を設けておく方法などである。。A monoatomic layer of T is formed on the surface of a tungsten (W) needle-like tip.
When metals such as i, z, r, and Hf are attached and heat treated in a vacuum containing a trace amount of oxygen, the work function of the (1001 plane) decreases, and electron emission occurs preferentially from this crystal plane. Electron emitting cathodes have good electron beam directionality and stable emission current, so they are beginning to be used in various electron beam application devices.A trace amount of oxygen is naturally extracted from residual gas in vacuum during the heat treatment process. Therefore, in order to realize the above cathode, only T', z ”
Efforts have been made to find out how to properly supply metals such as eHf to the W needle tip. A typical method conventionally used is shown in Fig. 1. In (a), a lump 3 of a hydride such as Zr is attached to the root of a W needle-shaped tip, and the filament 1 is heated with electricity to remove this compound. Evaporate it W
Method for attaching Zr metal atoms to the surface of a needle-like tip, (b
) is a method of wrapping a thin wire 4 of T;, Zr, Hf, etc. around a part of the filament 1 and evaporating it; (C)
Another method is to provide an evaporation source 5 of 'I'i, Zr, Hf, etc. around the field emission cathode. .
これらの陰極では、’l’1lZr、Hfなどを付着し
ない型の電界放射陰極に比べてその構造が複雑になって
おり、同一規格の陰極を多量に製産する上での問題点に
なっていた。とくにTi、zr。These cathodes have a more complex structure than field emission cathodes that do not contain Zr, Hf, etc., and this poses a problem in producing large quantities of cathodes of the same standard. Ta. Especially Ti, zr.
Hfなとの金属を付着させたこの型の電界放射陰極では
その動作中に針状チップ表面を単原子層程度の薄い金属
層で常に覆っておく必要があり、動作条性を厳しく規定
する必要があるが、従来の陰極ではぞの構造の複雑さが
障害になっていた。In this type of field emission cathode with a metal such as Hf attached, the surface of the needle-like tip must be constantly covered with a thin metal layer of about a monoatomic layer during operation, and the operating conditions must be strictly regulated. However, the complexity of the structure of conventional cathodes has been an obstacle.
本発明の目的は、’pi、Zr、)(fを被覆した電子
放射陰極を同一規格で大量生産するために彦されたもの
であシ、簡略化された構造の電子放射陰極を提供するこ
とにある。The object of the present invention is to provide an electron-emitting cathode with a simplified structure, which has been developed to mass-produce electron-emitting cathodes coated with 'pi, Zr, )(f) according to the same standard. It is in.
Wチップを用いた電界放射陰極のフィラメントは、陰極
の動作に先立ってWチップを真空中で2000C以上の
高温に加熱して清浄化する必要があるため通常高融点金
属のW、MO,Taなどが使用される。清浄化の過程で
は不純物の蒸発と表面のW原子の拡散が起こり、チップ
は清浄で滑らかな形に変る。Ti、zr、y(fをWチ
ップ先端に付着せしめた型の電界放射陰極においても、
従来はフィラメント材料として専らWが使用されてきた
のもこの理由によるものである。しかるに、本発明者ら
の詳細な実験によると、Ti、zr。The filament of a field emission cathode using a W chip is usually made of high-melting point metals such as W, MO, Ta, etc., because it is necessary to clean the W chip by heating it in a vacuum to a high temperature of 2000 C or more before operation of the cathode. is used. During the cleaning process, impurities evaporate and W atoms on the surface diffuse, resulting in a clean and smooth chip. Even in a field emission cathode of the type in which Ti, zr, y(f is attached to the tip of the W tip,
This is also the reason why W has conventionally been exclusively used as a filament material. However, according to detailed experiments by the present inventors, Ti, zr.
Hfを付着せしめた型の電界放射陰極の場合、1500
t:’以下の加熱温度でもW針状チップを清浄化でき、
しかもチップ表面に該金属を単原子層程度再現性良く付
着させることが可能であるということがわかった。これ
はW表面にTI、Zr、Hfなとの金属が存在すると表
面エネルギーが低下[7、低い温度でも表面拡散が起こ
シ得るためと解釈される。従って、この場合フィラメン
ト材料としてWなどの高融点材料を1吏わねばならない
理由は消失する。1500 for a type of field emission cathode with Hf deposited.
The W needle-shaped tip can be cleaned even at heating temperatures below t:'.
Moreover, it has been found that it is possible to deposit the metal on the chip surface with good reproducibility to the extent of a monoatomic layer. This is interpreted to be because the presence of metals such as TI, Zr, and Hf on the W surface lowers the surface energy [7], and surface diffusion can occur even at low temperatures. Therefore, in this case, the reason why a high melting point material such as W must be used as the filament material disappears.
本発明はこの点に着目してなされたもので、フィラメン
ト材料としてTi、Zr、I−Ifのいずれかの材料を
使用することを特徴とする。ここではフィラメントと金
属元素供給源を共用できるので電子放射陰極の構造が大
幅に簡略化できる。融点はそれぞれT i (166s
c)、Z r (ls52c)。The present invention has been made with this point in mind, and is characterized by using any one of Ti, Zr, and I-If as the filament material. Here, since the filament and the metal element supply source can be shared, the structure of the electron-emitting cathode can be greatly simplified. The melting points are T i (166s
c), Z r (ls52c).
Hf (222oc)である。また、フィラメント材は
上記単体金属に限られるものでなく、その融点が150
0tl:’以上であるなら合金でも可能である。合金と
して用いられる金属元素は、Ti、 ZrJ(fよシ融
点が高く、シかもTi、Zr、Hfよシも蒸気圧が低い
ことが必要である。このような金属元属としては、11
(u、le、Qs、 Ir、 Nb。Hf (222oc). Furthermore, the filament material is not limited to the above-mentioned single metal, and its melting point is 150
If it is 0tl:' or more, an alloy is also possible. The metal elements used as alloys must have a higher melting point than Ti, ZrJ (f), and a lower vapor pressure than Ti, Zr, and Hf. Examples of such metal elements include 11
(u, le, Qs, Ir, Nb.
MO,Ta、Wなどがあシ、合金の製造の容易性、加工
性、経済性などの点からMO,Ta、Wがよシ好ましい
。これらの金属と、Tj、Zr、 もしくはHfの合金
からなるフィラメントを加熱すると、Ti、Zrもしく
はHfが優先的に蒸発して、これがWエミッタの先端に
供給されることになる。MO, Ta, and W are preferable, and MO, Ta, and W are more preferable from the viewpoint of ease of manufacturing the alloy, workability, economic efficiency, and the like. When a filament made of an alloy of these metals and Tj, Zr, or Hf is heated, Ti, Zr, or Hf is preferentially evaporated, and this is supplied to the tip of the W emitter.
具体的にこのような合金の例を示すとw−Ti。A specific example of such an alloy is w-Ti.
W−Zr、W−Hfなどがある。またTi、zr。Examples include W-Zr and W-Hf. Also Ti, zr.
Hf同士の合金、例えばTi−Zr、 Ti−Hf。Alloys of Hf, such as Ti-Zr and Ti-Hf.
Zr−)(fなども用いられる。Zr-)(f, etc. are also used.
以下、実施例によって説明する。Examples will be explained below.
実施例 1
第2図は電子放射陰極の構造図であシ、lは<100>
方位(2)W単結晶チップ、2はTi、Zr。Example 1 Figure 2 is a structural diagram of an electron emitting cathode, l is <100>
Orientation (2) W single crystal chip, 2 is Ti, Zr.
もしくはHf製のフィラメントである。この陰極を真空
装置に取シつけ、まず高温フラッシングによってWチッ
プの清浄化を行ない、ついでエージング処理によってフ
ィラメント部からTi、Zr。Or a filament made of Hf. This cathode was installed in a vacuum device, and the W chip was first cleaned by high-temperature flushing, and then Ti and Zr were removed from the filament by aging treatment.
Ht金金属Wチップ先端に拡散せしめた。表1はそれぞ
れの金属フィラメントを使用した場合の、適当な清浄化
温度、エージングを比較して示したものである。なお、
実験中の真空中の酸素分圧も合せて示した。この表よシ
も明らかなように、フィラメント材にTi、7.r、H
fなどの金属線を用いることによって、Wチップ表面を
これらの金属で覆った電子放射陰極を安定に動作できる
ことは明らかである。Ti、zr、Hfのフィラメント
を用いた電子放射陰極を電子顕微鏡の電子源として試用
してみたところ、いずれも安定に動作しこれらの金属を
被覆した陰極の特長がいかんなく発揮されることがわか
った。Ht was diffused onto the tip of the gold metal W tip. Table 1 shows a comparison of appropriate cleaning temperatures and aging when using each metal filament. In addition,
The oxygen partial pressure in vacuum during the experiment is also shown. As is clear from this table, the filament material contains Ti and 7. r, H
It is clear that by using metal wires such as f, it is possible to stably operate an electron emitting cathode whose W chip surface is covered with these metals. When we tried electron-emitting cathodes using filaments of Ti, Zr, and Hf as electron sources for electron microscopes, we found that all of them operated stably and fully utilized the features of cathodes coated with these metals. Ta.
実施例 2
第2図に示したのと同様の構造の電子放射陰極を、フィ
ラメント材料としてW−25at%Ti。Example 2 An electron emitting cathode having a structure similar to that shown in FIG. 2 was prepared using W-25 at% Ti as the filament material.
W−5at%Zr+ W 10at%Hf 合金を
使用して作製した。表2に清浄化温度、エージング温度
、および真空中の酸素分圧を示す。合金をフィラメント
に使用した場合はエージング温度が単体金属を用いた場
合に比べて10%程度上昇するが、いずれも電子源とし
て安定に動作することがゎかった。It was produced using a W-5at%Zr+W10at%Hf alloy. Table 2 shows the cleaning temperature, aging temperature, and oxygen partial pressure in vacuum. When an alloy is used for the filament, the aging temperature is about 10% higher than when a single metal is used, but all of them were able to operate stably as an electron source.
第1図は従来の方法による電子放射陰極の構造を示す図
、第2図は本発明の実施例において製造した電子放射陰
極の構造を示す図である。
1・・・Wフィラメント、2・・・(100)W針状チ
ップ3・・・zr水素化物、4・・・Ti、zr、 H
rなどの細線、5・・・’pi、Zr、もしくは)if
蒸発源、6葛 1 図FIG. 1 is a diagram showing the structure of an electron-emitting cathode produced by a conventional method, and FIG. 2 is a diagram showing the structure of an electron-emitting cathode manufactured in an example of the present invention. DESCRIPTION OF SYMBOLS 1...W filament, 2...(100)W needle-like tip 3...zr hydride, 4...Ti, zr, H
Thin line such as r, 5...'pi, Zr, or) if
Evaporation source, 6 kudzu 1 figure
Claims (1)
熱できるフィラメントから成る電界放射陰極において、
該フィラメント材としてTi。 zr及び)(fからなる群から選ばれた少なくとも一種
の金属、もしくはこれを含む合金を使用したことを特徴
とする電界放射陰極。[Claims] 1. A field emission cathode consisting of a tungsten needle tip and a filament that can hold and heat the tip,
Ti as the filament material. A field emission cathode characterized by using at least one metal selected from the group consisting of zr and )(f) or an alloy containing the same.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57127513A JPS5918540A (en) | 1982-07-23 | 1982-07-23 | Field emission cathode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57127513A JPS5918540A (en) | 1982-07-23 | 1982-07-23 | Field emission cathode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5918540A true JPS5918540A (en) | 1984-01-30 |
Family
ID=14961857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57127513A Pending JPS5918540A (en) | 1982-07-23 | 1982-07-23 | Field emission cathode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5918540A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01238304A (en) * | 1988-03-18 | 1989-09-22 | Fuji Elelctrochem Co Ltd | Dielectric resonator |
US5616926A (en) * | 1994-08-03 | 1997-04-01 | Hitachi, Ltd. | Schottky emission cathode and a method of stabilizing the same |
-
1982
- 1982-07-23 JP JP57127513A patent/JPS5918540A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01238304A (en) * | 1988-03-18 | 1989-09-22 | Fuji Elelctrochem Co Ltd | Dielectric resonator |
US5616926A (en) * | 1994-08-03 | 1997-04-01 | Hitachi, Ltd. | Schottky emission cathode and a method of stabilizing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2754259A (en) | Process and apparatus for growing single crystals | |
JPH02504444A (en) | Selected Area Nuclei and Growth Method for Metal Chemical Deposition Using Focused Ion Beams | |
JP5636053B2 (en) | Gas field ion source, method of using the same, and ion beam apparatus | |
US6798126B2 (en) | High angular intensity Schottky electron point source | |
US3102828A (en) | Method of manufacturing semiconductor bodies | |
JP4038218B2 (en) | Emitter to be an ion source and production method thereof | |
JPS5918540A (en) | Field emission cathode | |
JPS6223418B2 (en) | ||
US6940218B2 (en) | Doped field-emitter | |
JPH0817373A (en) | Thermo-electric field emission electron gun | |
JP2002260520A (en) | Metal cathode and heat radiating cathode structural body having the same | |
JPWO2019107113A1 (en) | Emitter, electron gun using the same, electronic device using the same, and manufacturing method thereof | |
JP2005339922A (en) | Electron source and its manufacturing method | |
JPH0864110A (en) | Carbide film coating electron emitting material and manufacture thereof | |
JPS59102890A (en) | Method for growing thin film crystal | |
JP2002080211A (en) | Method of making carbon nanotube | |
JP2008297174A (en) | Method of manufacturing substrate for growing carbon nanotubes | |
ES351239A1 (en) | Microheating elements,more particularly for cathodes of electron tubes | |
US6761803B2 (en) | Large area silicon cone arrays fabrication and cone based nanostructure modification | |
US2012339A (en) | Rectifier | |
EP1803834A2 (en) | Method of forming carbon fibers using metal-organic chemical vapor deposition | |
JPH0676730A (en) | Thermonic emission cathode | |
JP2009238443A (en) | Electron source, and manufacturing method of electron source | |
JPH03735B2 (en) | ||
JPS5918541A (en) | Manufacturing method for electron emission cathode |