JPS59184796A - Preparation of group iii-v compound semiconductor single crystal - Google Patents

Preparation of group iii-v compound semiconductor single crystal

Info

Publication number
JPS59184796A
JPS59184796A JP5792683A JP5792683A JPS59184796A JP S59184796 A JPS59184796 A JP S59184796A JP 5792683 A JP5792683 A JP 5792683A JP 5792683 A JP5792683 A JP 5792683A JP S59184796 A JPS59184796 A JP S59184796A
Authority
JP
Japan
Prior art keywords
signal
crystal
temperature
temp
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5792683A
Other languages
Japanese (ja)
Inventor
Toru Katsumata
徹 勝亦
Kazutaka Terajima
一高 寺嶋
Hiroaki Nakajima
中島 宏明
Tsuguo Fukuda
承生 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5792683A priority Critical patent/JPS59184796A/en
Priority to GB08408563A priority patent/GB2140704B/en
Priority to US06/596,705 priority patent/US4586979A/en
Publication of JPS59184796A publication Critical patent/JPS59184796A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/28Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using weight changes of the crystal or the melt, e.g. flotation methods

Abstract

PURPOSE:To obtain group III-V compound semiconductor single crystal contg. no defect by fixing the barrel size of the crystal by operating a temp. compensation signal from the rate of weight increase of crystal in the course of growth and superposing a adjustment signal on the temp. compensation signal when a reverse response signal is contained in said signal. CONSTITUTION:A seed crystal is allowed to contact with the melt of starting material for group III-V compound semiconductor and pulled up to grow the crystal 1. The weight of the crystal 1 is continuously measured by a sensor 3, and inputted to an operating circuit 5 where it is compared with a set value to operate a temp. compensation value. The compensation value is inputted to a control circuit 6 of a heater current source to control the temp. of the heater. When a reverse response signal is contained in the superposed signal in this control, deviation of change of diameter from set value is inputted to a reverse response compensation circuit 7 to operate a temp. compensation value. The temp. compensation signal is inputted to the heater current source control circuit 6 and an adjustment signal is superposed on the temp. compensation signal. By this method. a semiconductor single crystal having uniform crystal size is obtd.

Description

【発明の詳細な説明】 この発明は液体封止引き上げ法によ−るIII −V族
化合物半導体単結晶の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a III-V group compound semiconductor single crystal by a liquid-sealed pulling method.

ガリウム砒素(GaA5) 、ガリウム燐(GaP)、
インジウムアンチモン(工n5b) 、インジウム燐(
工nk)などの■−v族化合物半導体は電子移動度が大
きい、発光し易くまた光を検知する、高温でも動作する
などの特徴を有し、マイクロ波用トランジスタ、高速集
M回路、太@電池、光−ta子素子材料として広く用い
られつつある。
Gallium arsenide (GaA5), gallium phosphide (GaP),
Indium antimony (N5B), Indium phosphorus (
■-V group compound semiconductors, such as those in It is becoming widely used as a material for batteries and photo-TA devices.

III −V族化合物半導体のなかでもGaAs  単
結晶はシリコン単結晶に比べて5−6倍の電子移動度を
持ち、高速あるいは低消費電力動作を行うGaAs  
集速回路の開発が盛んに行われている。
Among III-V group compound semiconductors, GaAs single crystals have 5-6 times higher electron mobility than silicon single crystals, and are capable of high-speed and low-power operation.
Speed collector circuits are being actively developed.

また工nP単結晶は光通信に用いる光ファイバーの低損
失帯に高感度を示し、将来の光通信用材料として注目を
浴びている。
In addition, engineered nP single crystals exhibit high sensitivity in the low-loss band of optical fibers used in optical communications, and are attracting attention as materials for future optical communications.

上述の如< 、GaAB  単結晶が集積回路用の結晶
基板に用いられるには高絶縁性であること、転位、格子
欠陥などの物理的欠陥、化学的欠陥がない局品質な単結
晶であること、結晶内の均一性が良いこと、大型円形の
ウェハーが得られることなどが要求される。このような
要求を満すGaAs  単結晶の製造方法としては高圧
液体封止引き上げ法が挙げられる。この高圧液体封止引
き上げ法は酸化ボロン(B203)  などの低融点ガ
ラスを封止剤として用い、高圧下でGaAs  を溶融
させ、形成したGaAs  融液に種結晶を接触させ回
転させながら引き上げることにより円筒状のGaAs 
 単結晶が形成する。この高圧下での結晶成長中の融液
の温度は非常に微妙であって、一般に温度が高くなると
成長している結晶の径は小さくなり、結晶の重量変化も
小さくなる。
As mentioned above, in order for GaAB single crystal to be used as a crystal substrate for integrated circuits, it must have high insulating properties, and must be a local quality single crystal free of physical defects such as dislocations and lattice defects, and chemical defects. , good uniformity within the crystal, and the ability to obtain large circular wafers are required. A method for manufacturing GaAs single crystals that satisfies these requirements is a high-pressure liquid seal pulling method. This high-pressure liquid-sealed pulling method uses a low-melting glass such as boron oxide (B203) as a sealant, melts GaAs under high pressure, brings a seed crystal into contact with the formed GaAs melt, and pulls it up while rotating. Cylindrical GaAs
A single crystal forms. The temperature of the melt during crystal growth under this high pressure is very sensitive; generally, as the temperature increases, the diameter of the growing crystal becomes smaller and the weight change of the crystal also becomes smaller.

一方融液の温度が低くなると結晶径は大きくなり、重量
変化も大きくなる傾向を示す。
On the other hand, as the temperature of the melt decreases, the crystal diameter tends to increase and the weight change also increases.

これまで、成長中の結晶直径を一定の大きさに保つため
、上述の現象を利用して第1図に示すように下端に種結
晶を取付けた回転引き上げ軸2の上部に重量センサー3
を設け、この重量センサーによって成長中の結晶/の重
量を継続的に測定して演算回路3へ送り、演算回路にお
いては、測定値を基に結晶重量の増加率が一定値を維持
するようにヒーター電源制御回路6を介してルツボを加
熱するヒータークの温度を調整していた。
Until now, in order to maintain the crystal diameter during growth at a constant size, a weight sensor 3 has been installed on the top of a rotating pulling shaft 2 with a seed crystal attached to the bottom end, as shown in Figure 1, using the above-mentioned phenomenon.
The weight sensor continuously measures the weight of the growing crystal and sends it to the arithmetic circuit 3, and the arithmetic circuit maintains the rate of increase in the weight of the crystal at a constant value based on the measured value. The temperature of the heater for heating the crucible was adjusted via the heater power supply control circuit 6.

しかし、m−v族化合物の如き結晶の密度が融液の密度
より小さい物質では結晶成長中の融液の加熱温度を急激
に変動させると、逆応答現象が生じる。即ち、加熱温度
を上昇させると実際に結晶の径は小さくなるが結晶重量
増加率の大きな信号が発生し、温度を下降させると結晶
径は増大するが、増加率の小さい重量信号が発生する。
However, in materials such as m-v group compounds whose crystal density is smaller than the density of the melt, if the heating temperature of the melt during crystal growth is suddenly changed, an inverse response phenomenon occurs. That is, when the heating temperature is increased, the crystal diameter actually decreases, but a signal with a large crystal weight increase rate is generated, and when the temperature is decreased, the crystal diameter increases, but a weight signal with a small increase rate is generated.

従って上述の制御方法では重ffl信号の増加率によっ
て融液の加熱温度を調整しているため、結晶径が小さく
なっているにも拘らず重量信号の増加率が大きいと更に
加熱温度を高めるようにヒーターを調整するため、発振
現象が生じ得られた結晶直径は一定値とならず、それに
伴って結晶欠陥なども増える。
Therefore, in the above control method, the heating temperature of the melt is adjusted by the rate of increase in the weight ffl signal, so if the rate of increase in the weight signal is large even though the crystal diameter is small, the heating temperature may be further increased. Since the heater is adjusted to the desired temperature, an oscillation phenomenon occurs and the resulting crystal diameter does not remain constant, and crystal defects also increase accordingly.

この発明の目的は成長中の結晶胴部分の径を一定値に維
持し、結晶欠陥などの発生を抑制したITJ −V族化
合物半導体単結晶の製造方法を提供するものである。
An object of the present invention is to provide a method for manufacturing an ITJ-V group compound semiconductor single crystal in which the diameter of the crystal body portion during growth is maintained at a constant value and the occurrence of crystal defects is suppressed.

上記目的を達成するためこの発明においては継続して測
定される結晶重量信号より結晶増加率を求め、増加率が
設定値と一致しない場合はその差に相当する補正温度値
を求め、上記補正温度値に基く温度補正信号によるヒー
ター加熱温度を調整したときに重量信号中に逆応答信号
が含まれているかを判定し、逆応答信号が含まれている
ときは上記温度補正信号に重畳的に温度調整信号を付加
して温度を調整する。上述の如く、この発明では重i、
(信号に逆応答信号が含まれていない場合と含まれてい
る場合とに分けて、それぞれ別個の信号により温度を調
整するので、発振現象の発生は抑制され、径の一定な単
結晶が形成することとなる。
In order to achieve the above object, in this invention, the crystal increase rate is determined from the crystal weight signal that is continuously measured, and when the increase rate does not match the set value, a correction temperature value corresponding to the difference is determined, and the above correction temperature is When adjusting the heater heating temperature using a temperature correction signal based on the value, it is determined whether a reverse response signal is included in the weight signal, and if a reverse response signal is included, the temperature is superimposed on the temperature correction signal. Adjust the temperature by adding an adjustment signal. As mentioned above, in this invention, heavy i,
(Since the temperature is adjusted using separate signals for cases in which the signal does not contain a reverse response signal and cases in which it does contain a reverse response signal, the occurrence of oscillation phenomenon is suppressed and a single crystal with a constant diameter is formed. I will do it.

GaAs 、  工nP  の如き結晶の密度が融液の
密度より小さい物質では、結晶成長中の融液の加熱温度
を第2図(A)に示すように少しだけ高くすると(連続
線)、結晶の重量信号の増加率は成る時間辷れの後に減
少する(点線)。しかし、加熱温度を第2図CB)に示
すように急激に扁くすると(連続線)、結晶の重量信号
の増加率は成る時間増えた後に急激に減少する。このよ
うに結晶径が小さくなっていくのに拘らず、重量増加率
が大きくなる逆応答現象は種結晶と結晶原料融液界面近
傍のメニスカスの上下動によって生じることが知られ、
GaAs  の場合、融液の加熱温度を5C前後変化さ
せると顕著に生じる。第3図は一例としてGaAs融液
を1260 Cで加熱しながら10鶴/時の引き上げ速
度で50陥径の結晶を成長しているとき、加熱温度を5
C上昇させたときの結晶直径変化量と時間の関係を示す
グラフであって、曲線αは重量センサーよりの重量信号
を直径に換算した変化値、bは実際の形成した結晶の直
径の変化値、Cは逆応答信号を直径に換算した変化値を
示し、a −h = cの関係を有する。上記グラフよ
り温度の上昇に伴って結晶径が縮小はじめ、15分後に
約7 tnrn余り小さくなったが、重用信号に換算し
た変化値Cによると、結晶径は約1u程太くなり、約1
0分経過後、縮小されはじめることが判る。
For materials such as GaAs and nP whose crystal density is lower than that of the melt, if the heating temperature of the melt during crystal growth is slightly increased as shown in Figure 2 (A) (continuous line), the crystal density will increase. The rate of increase of the weight signal decreases after a time delay (dotted line). However, when the heating temperature is sharply decreased as shown in FIG. 2 (CB) (continuous line), the rate of increase in the weight signal of the crystal sharply decreases after increasing time. It is known that the reverse response phenomenon in which the weight increase rate increases despite the decreasing crystal diameter is caused by the vertical movement of the meniscus near the interface between the seed crystal and the crystal raw material melt.
In the case of GaAs, this phenomenon occurs significantly when the heating temperature of the melt is changed to around 5C. Figure 3 shows an example in which a crystal with a diameter of 50 is grown at a pulling rate of 10/hour while heating a GaAs melt at 1260 C.
This is a graph showing the relationship between the amount of change in crystal diameter and time when C is increased, where curve α is the change value obtained by converting the weight signal from the weight sensor into diameter, and b is the change value in the diameter of the actual crystal formed. , C indicates a change value obtained by converting the inverse response signal into a diameter, and has the relationship a − h = c. As shown in the above graph, the crystal diameter started to decrease as the temperature rose and became smaller by about 7 tnrn after 15 minutes, but according to the change value C converted to the heavy duty signal, the crystal diameter became thicker by about 1 u and became smaller by about 1 tnrn.
It can be seen that the image starts to be reduced after 0 minutes have elapsed.

そこで温度の変化量と逆記、答信号の発生について更に
検討した結果、上述の実施例の場合、第4図に示すよう
に、ヒーターを調整する温度の変化量が±05C以内の
ときは発生する逆応答信号は重量信号中の雑音成分に較
べて充分小さく、径の制御に影響を与えないので逆応答
成分を補正しなくても正確な制御が行えるが(以後、「
安定領域」と称する。)、温度変化量が±0,5C以上
を越えると、重量信号に雑音成分以上の逆応答信号を含
み(以後、[不安定領域−と称する。)、従来の結晶径
の制御法では発振現象が生じ、正確な制御が行えないこ
とが判った。
Therefore, as a result of further consideration of the amount of change in temperature, reverse writing, and generation of response signals, in the case of the above-mentioned example, as shown in Figure 4, when the amount of change in temperature for adjusting the heater is within ±05C, the occurrence of The reverse response signal generated by
"stable region". ), when the amount of temperature change exceeds ±0.5C or more, the weight signal contains a reverse response signal that is more than the noise component (hereinafter referred to as the unstable region), and conventional crystal diameter control methods cause oscillation. It was found that accurate control could not be performed.

安定領域では温度の変動に対する結晶径の応答は一次応
答として充分近似できるので、結晶径の温度変化に対す
る応答の関数f(t)は(1)式で表わされ、不安定領
域では重量変化量信号値より逆応答信号値を差し引いた
値が真の直径変化量であるから、その応答の関数f(t
)  は(2)式のように逆応答成分が補償されるよう
に表わされる。
In the stable region, the response of the crystal diameter to temperature changes can be sufficiently approximated as a first-order response, so the function f(t) of the response of the crystal diameter to temperature changes is expressed by equation (1), and in the unstable region, the weight change is Since the value obtained by subtracting the inverse response signal value from the signal value is the true diameter change amount, the response function f(t
) is expressed in such a way that the inverse response component is compensated for as shown in equation (2).

f(t) −K・(1−θ−(t−2)/’r)・1(
を−丁)・・・・・・(1)f(t) = (o、o8
x・(1−(1十〇、1t)θ−[!1t−D、055
x、t −e−’ 2t)) 1 (t) −−(2)
式中、Kはゲイン(温度変化量)、eは自然対数、Tは
時定数、tは時間、τは時間遅れ、1(t)は単位スラ
ップ関数を表わす。
f(t) -K・(1-θ-(t-2)/'r)・1(
−d)・・・・・・(1) f(t) = (o, o8
x・(1-(100, 1t)θ-[!1t-D, 055
x, t -e-' 2t)) 1 (t) --(2)
In the formula, K is a gain (amount of temperature change), e is a natural logarithm, T is a time constant, t is time, τ is a time delay, and 1(t) is a unit slap function.

上述の式はGaAs  の場合の一例を示し、炉の構成
、規模、結晶の引き上げ条件、引き上げる1  化合物
の種類などが変ると、それに伴って、各定数、K、T、
  τ、化合物による係数008゜0.035.0.1
.0.2などを変える必要がある。
The above equation shows an example for GaAs, and as the furnace configuration, scale, crystal pulling conditions, type of compound to be pulled, etc. change, the constants, K, T,
τ, coefficient due to compound 008°0.035.0.1
.. It is necessary to change 0.2 etc.

この発明においては上述の如く結晶重量信号より増加率
を求めて、結晶径の形成状態を判断し、増加率が所定値
と一致しない場合はその差に相当する補正温度値を(1
)式により求め、得られた温度補正値信号にてヒーター
の加熱温度を調整したときに、重量信号中に逆応答信号
が含まれるか判断し、逆応答信号が含まれる場合は(2
)式に基いて補正温度値を求め、得られた温度調整信号
によりヒーターの加熱温度を重畳的に補正する。
In this invention, as described above, the rate of increase is determined from the crystal weight signal, the formation state of the crystal diameter is determined, and if the rate of increase does not match a predetermined value, a correction temperature value corresponding to the difference is determined (1
), and when the heating temperature of the heater is adjusted using the obtained temperature correction value signal, it is determined whether a reverse response signal is included in the weight signal, and if a reverse response signal is included, (2
) A corrected temperature value is obtained based on the equation, and the heating temperature of the heater is corrected in a superimposed manner using the obtained temperature adjustment signal.

次にこのう3 FAを第5図のブロックは1により具体
的に説明すると、種結晶をルツボ内のni −v族化合
物原料融液に接触し、回転しながら引き上げることによ
り結晶/が成長し、この結晶の重f7iは重量センサー
、?にょって継続的に測定され、演′4ン回路汐へ送ら
れる。演算回路5では継続して送られて来る重量信号よ
り直径変化量を計多ンし、増加率を設定値と絶えず比較
し、ずれている場合はそのずれた値に相当する泌Mt 
’pfi正値を(1)式に基いて計算し、得られた温度
補正信号をヒーター電源制御回路乙へ送り、ヒーターの
温度を制御する。通常流度のfliII御が順調に行わ
れている七きは()aAB  の場合温度の補正値岨は
±05′c以下の範囲であり、逆応答信号は含まれてい
ない。
Next, to explain this 3 FA in more detail using block 1 in Figure 5, the seed crystal is brought into contact with the melt of the Ni-V group compound raw material in the crucible and pulled up while rotating, thereby growing the crystal. , this crystal weight f7i is a weight sensor? It is continuously measured and sent to the output circuit. The arithmetic circuit 5 counts the amount of change in diameter from the continuously sent weight signals, constantly compares the rate of increase with the set value, and if it deviates, calculates the amount of change in diameter corresponding to the deviated value.
'pfi positive value is calculated based on equation (1), and the obtained temperature correction signal is sent to the heater power supply control circuit B to control the temperature of the heater. Normally, in the case of a AB in which fliII control of the flow rate is performed smoothly, the temperature correction value is in the range of ±05'c or less, and no reverse response signal is included.

温度b′j正信号によりヒーターの加熱温度を上ダPす
るように制御したにも拘らず、演算回路へ送られて来る
重量信号も増加しはじめた場合、重量信号には逆応答信
号が含まれていることになり演算回路!より重量信号か
ら求めた直径変化量と設定値とのずれた/111fを逆
応答抽正回l1−7+7へ送り、上記の回路では(2)
式に基いて温度補正値を計算し、その温度調整信号をヒ
ーター電源制御回路6へ送り、逆応答信号が含まれてい
る温度補正値信号でのヒーターの制御を温rx *q整
倍信号行うようにする。ヒーターの加〃(温度を下げる
ように制御したにも拘らず、j■以信号も減少しはじめ
た場合も逆応答信号が含まれていることとなり、上記と
同梯の操作を行う。逆応答信号が発生している時間が経
過したら再び(1)式に基いて温度補正値を計算し、温
度の制御を行う。
If the weight signal sent to the arithmetic circuit starts to increase even though the heating temperature of the heater is controlled to be increased by the positive temperature b'j signal, the weight signal will include a reverse response signal. This means that it is an arithmetic circuit! The difference between the diameter change amount obtained from the weight signal and the set value /111f is sent to the reverse response extraction circuit l1-7+7, and in the above circuit (2)
The temperature correction value is calculated based on the formula, and the temperature adjustment signal is sent to the heater power supply control circuit 6, and the heater is controlled using the temperature correction value signal that includes the reverse response signal. Do it like this. Even if the heating signal starts to decrease even though the heater is controlled to lower the temperature, this means that a reverse response signal is included, and the same operation as above is performed. Reverse response After the time period during which the signal has been generated has elapsed, the temperature correction value is calculated again based on equation (1), and the temperature is controlled.

実際的には逆応答信号が含まれない氾度抽正値範囲は経
験的に知ることができ、演′Jン、’回路にその温度補
正信号凹を記鉋させて、湿度補正値が上記睨囲内であれ
ば(1)式に基き制匍Iし、上記範囲を超えた場合は(
2)式に基き制御するようにする。
Practically speaking, the range of the extracted flood level value that does not include the reverse response signal can be known empirically, and by having the circuit record the temperature correction signal, the humidity correction value can be determined as above. If it is within the range, it is controlled based on formula (1), and if it exceeds the above range (
2) Control is based on the formula.

この発明は上記の説明で明らかなように、結晶成長中に
測定した結晶重量信号によって結晶径を制御する場合に
検出された結晶NMk信号に逆応答信号が含まれている
か否かを判別し、それぞれの場合について別個に最適な
制御を行うようにしたのであるから、発!M現象の発生
を抑制し、はぼ均一の径を有する円筒状11TI −V
族化合物半導体単結晶が100%の少滴りで出来るよう
になり、製品の信頼性が著しく向上する。
As is clear from the above description, the present invention determines whether or not a reverse response signal is included in the crystal NMk signal detected when controlling the crystal diameter using the crystal weight signal measured during crystal growth. Since the optimal control is performed separately for each case, it is possible to start! Cylindrical 11TI-V that suppresses the occurrence of the M phenomenon and has a nearly uniform diameter
Group compound semiconductor single crystals can now be produced with 100% small droplets, significantly improving product reliability.

次にこの発明を実施例により説明する。Next, the present invention will be explained with reference to examples.

実施例 内径100+u、深さ130mTRの円形状のバイ四す
テツク蟹化ボロン製ルツボにQa500ji’ 、As
5501人れ、更に液体封止剤としてB2O2を150
1その上に入れ、ルツボをM正答器内に設置してアルゴ
ンガスを圧入して2o気圧とした後にルツボをヒーター
により1260 t:” に加熱し、上部にn2o3 
 溶融液層が、下部にGaAs  融液層が形成したら
種結晶を4)aAs  融液面に接触させ、種結晶を1
分間6回、ルツボを反対方向に1分間20回の割合で回
転させながら種結晶を10mm1時の割合で引き上げて
結晶成長を行った。
Example: Qa500ji', As
5501 people, and 150 B2O2 as a liquid sealant.
1 Place the crucible on top of that, place the crucible in the M Correct Answer Machine, pressurize argon gas to create a pressure of 2o, then heat the crucible to 1260t:'' with a heater, and add n2o3 to the top.
When a GaAs melt layer is formed at the bottom, the seed crystal is brought into contact with the aAs melt surface, and the seed crystal is
Crystal growth was carried out by pulling the seed crystal to 10 mm at a rate of 1 hour while rotating the crucible in the opposite direction at a rate of 6 times per minute and 20 times per minute.

約1時間経過後、直径5 Q 1iMの胴部が形成し、
このときのM虚センサーより測定された結晶重量信号よ
り重量増加率は王76 P/分であった。
After about 1 hour, a body with a diameter of 5 Q 1 iM was formed,
At this time, the weight increase rate was 76 P/min based on the crystal weight signal measured by the M-imaginary sensor.

重量増加率から計算した結晶直径の変化に伴う温度補正
は(1)式に基いて行い、補正値が±50を超えた場合
は(2)式に基いて補正するJ:う演タト回路を設定し
、8時間結晶引き上げ操作を行った結果、長さ95yn
m、重量約960g−の円筒状GaAs  巣結晶が形
成し、この産結晶の胴部の径は50 mmで変動率は±
1.5%以内であった。
Temperature correction due to the change in crystal diameter calculated from the weight increase rate is performed based on equation (1), and if the correction value exceeds ±50, it is corrected based on equation (2). As a result of setting and performing crystal pulling operation for 8 hours, the length was 95yn.
A cylindrical GaAs nest crystal with a weight of about 960 g is formed, and the diameter of the body of this crystal is 50 mm, and the fluctuation rate is ±
It was within 1.5%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は公知の液体封止引き上げ法による成長中の結晶
径の制御方法を示すブロック図、第2図は温度変化量と
重量信号変化用、の関係を示すグラフ、第6図はGaA
s  結晶成長における〕((凰信号、直径の変化、逆
応答信号のW1係を示すグラフ、第4図は温度の変化源
と逆応谷信号の関係を示すグラフ、第5図はこの発明に
よる成長中の結晶径の制御方法を示すブロック図である
。 /・・・成長中の結晶、3・・・重量センサー、グ・・
・ヒーター、S・・・演算回路、t・・・ヒーター電源
制御回路、7・・・逆応答補正回路。
Figure 1 is a block diagram showing a method for controlling the crystal diameter during growth using the known liquid-sealed pulling method, Figure 2 is a graph showing the relationship between temperature change and weight signal change, and Figure 6 is a graph showing the relationship between the amount of temperature change and weight signal change.
s in crystal growth] It is a block diagram showing a method of controlling the crystal diameter during growth. /...Crystal during growth, 3... Weight sensor, G...
- Heater, S... Arithmetic circuit, t... Heater power supply control circuit, 7... Reverse response correction circuit.

Claims (1)

【特許請求の範囲】[Claims] 成長中の結晶重量を継続的に測定して重量増加率を求め
、該重患増加率を予じめ定められた増加率設定値と比較
してその差に相当する温度補正値に基く温度補正信号に
よりヒーターの加熱温度を調整して結晶引き上げ操作を
行う液体封止引き上げ法によるITJ −V族化合物半
導体単結晶の製造方法において、上記温度補正値信号に
よるヒーター加熱温度調整時の重量信号中に逆応答信号
の存否を判定し、逆応答信号が含まれているときは上記
温度補正信号に重畳的に温度調整信号を付加することを
特徴とする単結晶の製造方法。
Temperature correction is performed by continuously measuring the weight of growing crystals to determine the weight increase rate, comparing the weight increase rate with a predetermined increase rate setting value, and using a temperature correction value corresponding to the difference. In a method for manufacturing an ITJ-V group compound semiconductor single crystal by a liquid seal pulling method in which a crystal pulling operation is performed by adjusting the heating temperature of a heater according to a signal, a weight signal when adjusting the heater heating temperature using the temperature correction value signal is used. A method for producing a single crystal, comprising: determining the presence or absence of a reverse response signal, and adding a temperature adjustment signal in a superimposed manner to the temperature correction signal when the reverse response signal is included.
JP5792683A 1983-04-04 1983-04-04 Preparation of group iii-v compound semiconductor single crystal Pending JPS59184796A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5792683A JPS59184796A (en) 1983-04-04 1983-04-04 Preparation of group iii-v compound semiconductor single crystal
GB08408563A GB2140704B (en) 1983-04-04 1984-04-03 Control of crystal pulling
US06/596,705 US4586979A (en) 1983-04-04 1984-04-04 Method for manufacture of III-V group compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5792683A JPS59184796A (en) 1983-04-04 1983-04-04 Preparation of group iii-v compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPS59184796A true JPS59184796A (en) 1984-10-20

Family

ID=13069604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5792683A Pending JPS59184796A (en) 1983-04-04 1983-04-04 Preparation of group iii-v compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPS59184796A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294017B1 (en) * 1987-06-30 2001-09-25 The National Research Development Corporation Growth of semiconductor single crystals

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935089A (en) * 1982-08-20 1984-02-25 Toshiba Corp Method for controlling diameter of iii-v group compound semiconductor single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935089A (en) * 1982-08-20 1984-02-25 Toshiba Corp Method for controlling diameter of iii-v group compound semiconductor single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294017B1 (en) * 1987-06-30 2001-09-25 The National Research Development Corporation Growth of semiconductor single crystals

Similar Documents

Publication Publication Date Title
TW201009133A (en) Method and apparatus for controlling diameter of a silicon crystal ingot in a growth process
US5030315A (en) Methods of manufacturing compound semiconductor crystals and apparatus for the same
US4586979A (en) Method for manufacture of III-V group compound semiconductor single crystal
Kürten et al. Czochralski growth of SitGe1-x single crystals
EP0751242B1 (en) Process for bulk crystal growth
JP5481125B2 (en) Semiconductor crystal growth method and crystal manufacturing apparatus
US5385115A (en) Semiconductor wafer heat treatment method
JP2002531935A (en) Method and system for manufacturing semiconductor crystals with temperature control
US20170088974A1 (en) Method for manufacturing single crystal
JPS59184796A (en) Preparation of group iii-v compound semiconductor single crystal
JP3867476B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
JPS59184797A (en) Preparation of group iii-v compound semiconductor single crystal
KR20030020474A (en) A control system for Silicon Ingot Growing Apparatus
KR102051024B1 (en) Ingot growing temperature controller and ingot growing apparatus with it
JPH0952788A (en) Manufacture of single crystal and manufacturing apparatus
EP0194051B1 (en) Method for manufacturing single crystal
JPS59184798A (en) Preparation of group iii-v compound semiconductor single crystal
KR100490276B1 (en) Single Crystal Growth Method
CN115584557A (en) Temperature control method and equipment and single crystal furnace
JPH078754B2 (en) Single crystal manufacturing method
TW202035804A (en) Process for pulling a cylindrical crystal from a melt
JPS63190797A (en) Production of compound semiconductor single crystal and device
JP5161169B2 (en) Silicon single crystal pulling apparatus and pulling method
JPS5895698A (en) Crystal growing method of inp and growing apparatus therefor
JPH07110797B2 (en) Method for producing compound semiconductor single crystal containing high vapor pressure component