JPS59183762A - New anti-thromolytic material - Google Patents

New anti-thromolytic material

Info

Publication number
JPS59183762A
JPS59183762A JP58057700A JP5770083A JPS59183762A JP S59183762 A JPS59183762 A JP S59183762A JP 58057700 A JP58057700 A JP 58057700A JP 5770083 A JP5770083 A JP 5770083A JP S59183762 A JPS59183762 A JP S59183762A
Authority
JP
Japan
Prior art keywords
antithrombotic
plasma
mucopolysaccharide
nylon
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58057700A
Other languages
Japanese (ja)
Other versions
JPS6158195B2 (en
Inventor
亮 児玉
広津 敏博
志村 幸雄
津田 圭四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58057700A priority Critical patent/JPS59183762A/en
Publication of JPS59183762A publication Critical patent/JPS59183762A/en
Publication of JPS6158195B2 publication Critical patent/JPS6158195B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は新規な抗血栓性材料に関し、さらに詳しくは、
ナイロンやポリエステルなどの高分子材料の表面をプラ
ズマクロー放電処理によって活性化したのち、ムコ多糖
を結合させて得られた抗血栓性及び生体適合性が優れる
上に、力学的強度の良好な医療用高分子相料に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to novel antithrombotic materials, and more particularly to:
After activating the surface of a polymeric material such as nylon or polyester by plasma claw discharge treatment, mucopolysaccharide is bound to the surface.It has excellent antithrombotic properties and biocompatibility, and has good mechanical strength for medical use. It relates to polymeric phase materials.

近年、医療用H料として多くの高分子材料が用いられる
ようになったが、これを直接血液と接触する個所に用い
る医用材料、例えば人工血管、血管カテーテル、人工腎
臓用チューブ、人工心肺、血液バイパスチューブ、人工
心臓ポンピングチェンバー、バルーンポンピング用材料
などとして使用する場合、抗血栓性はもちろんのこと、
生体適合性や弾性、耐久性、湿潤強靭性々どの力学的強
度に優れていることが必要である。
In recent years, many polymeric materials have come into use as medical H materials, and these are used in medical materials that come into direct contact with blood, such as artificial blood vessels, vascular catheters, artificial kidney tubes, heart-lung machines, and blood. When used as bypass tubes, artificial heart pumping chambers, balloon pumping materials, etc., it not only has antithrombotic properties, but also
It is necessary to have excellent mechanical strength such as biocompatibility, elasticity, durability, and wet toughness.

現在、医療用材料として用いられている高分子材料の中
で、例えばナイロン、ポリエステル、ポリエチレン、ポ
リプロピレン、ポリウレタンなどは抗血栓性ケもたず、
これ全直接血液と接触する個所で使用する場合、血液が
凝固して血栓が生じるため、これらの高分子材料に抗血
栓性をもたせる工夫がなされてきた。
Among the polymer materials currently used as medical materials, for example, nylon, polyester, polyethylene, polypropylene, and polyurethane do not have antithrombotic properties.
When these polymer materials are used in places where they come into direct contact with blood, the blood coagulates and thrombi are formed, so efforts have been made to make these polymeric materials have antithrombotic properties.

従来、前記の高分子材料に抗血栓性をもたせる方法とし
て、材料自体を血栓紮生じにくいものとする方法、例え
ばヘパリンのような天然の抗凝血剤を材料に混合したり
、あるいは化学結合させる方法、さらには生体適合性の
優れたコラーゲン孕材料表面にコーティングする方法な
どが知られている。
Conventionally, methods for imparting antithrombotic properties to the above-mentioned polymeric materials include methods of making the material itself less likely to cause thrombotic ligation, such as mixing a natural anticoagulant such as heparin into the material or chemically bonding it to the material. Furthermore, methods of coating the surface of collagen-containing materials with excellent biocompatibility are known.

前記の方法の中で、材料自体全血栓が生じにくいものに
する方法の例としては、ある種のポリラフクン系化合物
を疎水性と親水性の部分が交互に表面にでる構造をもた
せたもの、あるいはヒドロゲル又は親水性ポリマーを基
材ポリマーに結合させたものがある。しかし々から、こ
れらの高分子材料はかなり高い抗血栓性ケ示すものの、
まだ実用に供するには不十分であって満足しうるものは
得られていない。
Among the above-mentioned methods, examples of methods to make the material itself less likely to cause thrombus are to use a certain kind of polyrafukun compound with a structure in which hydrophobic and hydrophilic parts alternately appear on the surface, or Some include hydrogels or hydrophilic polymers attached to a base polymer. However, although these polymeric materials exhibit fairly high antithrombotic properties,
It is still insufficient for practical use, and nothing satisfactory has yet been obtained.

また、ヘパリ/のような天然抗凝血剤を材料に化学結合
させる方法の例としては、基材ポリマーに第三級アミン
基をもつビニル化合物ケクラフト重合させたのち、グラ
フト化されたポリマー中のアミノ基を第四級化し、次い
でヘパリン化する方法が知られている。しかしながら、
このようにしてヘパリン化した高分子材料は、基材ポリ
マーが本来有する望ましい力学的強度が低下し、実用に
際して必要な強度や耐久性が得られなくなるという欠点
がある。
In addition, as an example of a method for chemically bonding a natural anticoagulant such as Heparin to a material, after polymerizing Kekraft, a vinyl compound with a tertiary amine group, in the base polymer, Methods are known in which amino groups are quaternized and then heparinized. however,
The polymeric material heparinized in this manner has the disadvantage that the desirable mechanical strength inherent in the base polymer is reduced, making it impossible to obtain the strength and durability required for practical use.

でらに、コラーゲンkl料表面にコーティングする方法
の例として、ポリエチレン、ポリプロピレン、ポリエス
テルなどの表面を、例えばクロム酸混液処理やアルカリ
処理などの極性化処理によって親水化したのち、コラー
ゲンを塗布し、次いで放射線を照射して該コラーゲンを
コーティングする方法(特公昭4 f’i −3743
3号公報)、あるいはシリコンゴム累月の表面を、プラ
ズマグロー放電処理や化学的処理などの極性化処理によ
って親水化したのち、前記と同様にしてコラーゲンをコ
ーティングする方法(%公昭49−4559号公報)が
提案されている。しかしながら、このようにしてコラー
ゲンをコーティングした高分子材料は、基材ポリマーが
本来有する望ましい力学的強度は低下しないものの、抗
血栓性については必ずしも満足しうるものではない。
In addition, as an example of a method for coating the surface of collagen Kl material, the surface of polyethylene, polypropylene, polyester, etc. is made hydrophilic by polarization treatment such as chromic acid mixture treatment or alkali treatment, and then collagen is applied. Next, a method of coating the collagen by irradiating radiation (Japanese Patent Publication No. 4 F'i-3743
3), or a method in which the surface of a silicone rubber moon is made hydrophilic by polarization treatment such as plasma glow discharge treatment or chemical treatment, and then coated with collagen in the same manner as described above (% Kosho 49-4559) Public bulletin) has been proposed. However, although the polymer material coated with collagen in this manner does not reduce the desirable mechanical strength inherent to the base polymer, it is not necessarily satisfactory in terms of antithrombotic properties.

本発明者らは、このような事情に鑑み、従来の抗血栓性
高分子材料のもつ欠点全克服して、優れた杭血栓性と生
体適合性ケ有し、かつ力学的強度の良好な高分子材料全
提供すべく鋭意研究全型ねた結果、ムコ多糖が抗血栓性
及び生体適合性に極めて優れていることに着目し、との
ムコ多糖?プラズマグロー放電処理によシ表面が活性化
された高分子材料に結合させて得られたものがその目的
を達成しうること全見出し、この知見に基づいて本発明
全完成するに至った。
In view of these circumstances, the present inventors have overcome all the drawbacks of conventional antithrombotic polymer materials, and have developed a high-quality polymer material that has excellent pile thrombogenicity and biocompatibility, and has good mechanical strength. As a result of intensive research to provide all molecular materials, we focused on the fact that mucopolysaccharide has extremely excellent antithrombotic properties and biocompatibility. We have discovered that the object can be achieved by bonding to a polymeric material whose surface has been activated by plasma glow discharge treatment, and based on this knowledge, we have completed the present invention.

すなわち、本発明は、プラズマグロー放電処理により活
性化された高分子材料の表面にムコ多糖全結合させて成
る抗血栓性材料を提供するものである。
That is, the present invention provides an antithrombotic material in which mucopolysaccharide is fully bound to the surface of a polymeric material activated by plasma glow discharge treatment.

本発明において用いる高分子材料としては、例えばナイ
ロン、ポリエステル、ポリエチレン、ポリプロピレン、
ポリウレタン、シリコンゴムなどの機械的性能の優れた
疎水性高分子化合物が好ましく挙げられる。
Examples of polymeric materials used in the present invention include nylon, polyester, polyethylene, polypropylene,
Preferred examples include hydrophobic polymer compounds with excellent mechanical properties such as polyurethane and silicone rubber.

また、本発明において用いるムコ多糖には、例エバコン
ドロイチン硫酸、ヒアルロン酸、ヘパリン、キトサンな
どがあり、これらは極めて優れた抗血栓性及び生体適合
性を有している。このことはそれらのムコ多糖を有する
生体の血管表面が抗血栓性及び生体適合性ともに優れて
いることからも明らかである。
Mucopolysaccharides used in the present invention include, for example, evachondroitin sulfate, hyaluronic acid, heparin, and chitosan, which have extremely excellent antithrombotic properties and biocompatibility. This is clear from the fact that the surface of blood vessels of living organisms containing these mucopolysaccharides has excellent antithrombotic properties and biocompatibility.

本発明においては、高分子材料表面にムコ多糖を強固に
結合きせるために、該表面孕プラズマグロー放電処理に
よって活性化する必要がある。゛このプラズマクロー放
電処理は、高分子相料の表ff1ffi常法に従って清
浄にしたのち、プラズマクロー放電発生装置により発生
するプラズマを該高分子材料の表面に均一に当てること
によって行われる。この処理により該高分子月利の表面
は活性化されて、マイナス荷電をもつムコ多糖と強固に
結合する性質ケもつようになる。
In the present invention, in order to firmly bond the mucopolysaccharide to the surface of the polymeric material, it is necessary to activate the surface by plasma glow discharge treatment. This plasma claw discharge treatment is carried out by cleaning the surface of the polymer phase material according to a conventional method, and then uniformly applying plasma generated by a plasma claw discharge generator to the surface of the polymer material. This treatment activates the surface of the polymer, giving it the property of strongly binding to negatively charged mucopolysaccharides.

このようなプラズマグロー放電処理によって活性化され
た高分子材料の表面にムコ多糖全結合させる方法として
は、例えば01〜10重量%濃度(濃度はムコ多糖の分
子量に依存する)のムコ多糖水溶液全該高分子材別の表
面に塗布する方法、該高分子材料全提供ムコ多糖水溶液
に浸せきする方法、あるいは容器状のものやチューブ状
のものの内面に結合σせる場合は、該ムコ多糖水溶液を
それらに注入、排出する方法などによって、ムコ多糖孕
均−に高分子材料の表面に結合させたのち、遊離のムコ
多糖を水又は生理食塩水で洗浄して取り除き、次いで風
乾又は室温で真空乾燥するという方法が用いられる。
As a method for fully bonding mucopolysaccharide to the surface of a polymeric material activated by such plasma glow discharge treatment, for example, a total mucopolysaccharide aqueous solution with a concentration of 01 to 10% by weight (the concentration depends on the molecular weight of the mucopolysaccharide) is used. When coating the surface of the polymeric material, immersing the entire polymeric material in an aqueous mucopolysaccharide solution, or bonding it to the inner surface of a container or tube, the aqueous mucopolysaccharide solution is applied to the surface of the polymeric material. After the mucopolysaccharide is bonded to the surface of the polymeric material by injecting and discharging the mucopolysaccharide, the free mucopolysaccharide is removed by washing with water or physiological saline, and then air-dried or vacuum-dried at room temperature. This method is used.

このようにして得られた本発明の抗血栓性材料は優れた
抗血栓性と生体適合性を有し、かつ機械的性能が良好で
あり、直接血液と接触する個所に用いられる各種機器の
祠料として極めて価値あるものである。
The antithrombotic material of the present invention thus obtained has excellent antithrombotic properties and biocompatibility, and has good mechanical performance, and is suitable for use in various devices used in areas that come into direct contact with blood. It is extremely valuable as a gift.

次に実施例によって本発明ケさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 ナイロンシートの表ikアセトンで洗浄したのち、熱水
で再洗浄し、次いで風乾して表面を清浄にした。
Example 1 The surface of a nylon sheet was washed with acetone, washed again with hot water, and then air-dried to clean the surface.

この清浄にされた表面に、プラズマクロー放電発生装置
より発生するプラズマを当てる。放電中はできるだけ全
表面に均一にプラズマが当るように操作しながら]、 
3.56 M Hzのラジオ波を用いた誘導結合法によ
り放電ケ行った。放電圧は25Wのもとてプラズマ孕点
灯した。このプラズマグロー放電処理によってナイロン
シートの表面は活性化され、マイナス電荷ケもつムコ多
糖と強固に結合しうる状態となった。
Plasma generated from a plasma claw discharge generator is applied to this cleaned surface. During the discharge, operate so that the plasma hits the entire surface as uniformly as possible]
Discharge was performed by an inductive coupling method using 3.56 MHz radio waves. The discharge voltage was 25W, and the plasma was lit. The surface of the nylon sheet was activated by this plasma glow discharge treatment, and became in a state where it could be strongly bonded to the mucopolysaccharide having a negative charge.

次に、10重量係のコンドロイチン硫酸を含有した0、
 1.5N規定の生理食塩水溶液中(pH=7.3 )
に20℃で10分間浸せきしたのち、水洗し、次いで風
乾して抗血栓性材料を得た。
Next, 0, which contained 10 parts by weight of chondroitin sulfate,
In 1.5N normal saline solution (pH=7.3)
The material was soaked in water at 20° C. for 10 minutes, washed with water, and then air-dried to obtain an antithrombotic material.

このようにして得られた抗血栓性材料の表面構造を調べ
るために、内部多重全反射フーリエ変換赤外吸収スペク
トル法によって、赤外線差スペクトルを求めた。その結
果金策1図に示f。
In order to investigate the surface structure of the antithrombotic material thus obtained, an infrared difference spectrum was determined by internal multiple total reflection Fourier transform infrared absorption spectroscopy. The result is shown in Figure 1 f.

なお、第1図において、Aはナイロンシー)k前記のよ
うにプラズマグロー放電処理してコラーゲン塗付け、で
らにpH孕調整してコンドロイチン硫酸を付けたもので
あり、Bは前記のようにして得られた抗血栓性材料であ
る。この図から明らかなように、AとBは基本的には同
じスペクトルであって、本発明の抗血栓性材料の表面は
コンドロイチン硫酸で被覆されていることが判る。
In Fig. 1, A is a nylon sheet treated with plasma glow discharge as described above, coated with collagen, pH adjusted and chondroitin sulfate added, and B is a nylon sheet treated with collagen as described above. This is an antithrombotic material obtained by As is clear from this figure, A and B basically have the same spectra, and it can be seen that the surface of the antithrombotic material of the present invention is coated with chondroitin sulfate.

次に、血漿タンパク質のアルブミン全生理食塩水に溶か
した溶液中に前記で得られた抗血栓性材料′ff:35
℃で10分間浸せきしたのち、風乾し、吸着アルブミン
の構造を前記と同様に赤外線差スペクトルを求めて調べ
た。表お比較のだめに無処理ナイロンシー)k前記と同
様に処理して、赤外線差スペクトル?求めた。これらの
結果を第2図に示す。
Next, the antithrombotic material obtained above was added to a solution of plasma protein albumin dissolved in total physiological saline.
After immersing at ℃ for 10 minutes, it was air-dried, and the structure of the adsorbed albumin was investigated by obtaining an infrared difference spectrum in the same manner as above. (Table for comparison) Untreated nylon seams) K treated in the same way as above, infrared difference spectrum? I asked for it. These results are shown in FIG.

第2図においてBは実施例で得た抗血栓性材料、Cは無
処理ナイロンシートラそれぞれ処理したものである。こ
の図から判るように、本発明の抗血栓性材料を処理した
ものは、無処理ナイロンシートを処理したものと比べて
、タンパク質に特有なアマイド■、アマイド■のピーク
の形状が異々つでおり、これは吸着アルブミンの構造が
異なることを示している。
In FIG. 2, B is the antithrombotic material obtained in the example, and C is the treated nylon sheetra. As can be seen from this figure, the shapes of the peaks of amide ■ and amide ■, which are characteristic of proteins, are different in the case of the antithrombotic material of the present invention compared to the case of the untreated nylon sheet. This indicates that the structure of the adsorbed albumin is different.

さらに、アルブミン溶液の代りに、血漿タンパク質のフ
ィブリノーゲン溶液音用いて、前記と同様の処理全行い
、赤外線差スペクトルを求めた。
Furthermore, in place of the albumin solution, a plasma protein fibrinogen solution was used, and the same procedures as above were performed to obtain an infrared difference spectrum.

その結果ケ第3図に示す。The results are shown in Figure 3.

第3図において、B、Cは前記と同様である。In FIG. 3, B and C are the same as above.

この図から明らかなように、無処理ナイロンシートケ処
理したものは、フィブリノーゲン吸着量が多く、マたフ
ィブリノーゲンの構造変化も大きいが、本発明の抗血栓
性材料全処理したものはフィブリノーゲン吸着量は少な
く、構造変化も少ないことが判る。
As is clear from this figure, the amount of fibrinogen adsorbed is large in the untreated nylon treated with Sheetke, and the structural change of fibrinogen is also large, but the amount of fibrinogen adsorbed is large in the untreated nylon sheet treated with the antithrombotic material of the present invention. It can be seen that there are few structural changes.

次に、in vj、tro (生体外)実験で、赤血球
ケとり除いた血小板多血漿ケ用いて、実施例で得られた
抗血栓性材料及び無処理ナイロンシートの抗血栓性全訳
べた。無処理ナイロンシートはフィブリン網の形成や血
小板の変形、吸着が烈しいが、本発明の抗血栓性材料は
フィブリン網の形成もなり、捷だ血小板の変形も少なく
かつ吸着量も少ない。
Next, in in vitro and in vitro experiments, the antithrombotic properties of the antithrombotic materials and untreated nylon sheets obtained in the examples were investigated using platelet-rich plasma from which red blood cells had been removed. Untreated nylon sheets are prone to formation of fibrin networks, deformation and adsorption of platelets, but the antithrombotic material of the present invention forms fibrin networks, causes less deformation of shattered platelets, and has a small amount of adsorption.

実施例2 実施例1におけるナイロンシートの代りに、ナイロン系
を用いる以外1dXまった〈実施例1と同様にして糸状
の抗血栓性材料ケ得た。
Example 2 A thread-like antithrombotic material was obtained in the same manner as in Example 1, except that a nylon sheet was used instead of the nylon sheet in Example 1.

j、n  vi、vo(生体内)実験において、前記の
糸状の抗血栓性材料を犬の動脈に浮遊させて抗血栓性を
調べた。
In a j, n vi, vo (in vivo) experiment, the above thread-like antithrombotic material was suspended in the artery of a dog to examine its antithrombotic properties.

なお、比較のために、無処理ナイロン糸についても同様
にして抗血栓性ケ調べた。
For comparison, antithrombotic properties of untreated nylon threads were also investigated in the same manner.

その結果、無処理ナイロン糸は血栓が生じたのに対し、
本発明の抗血栓性材料はまったく血栓が生じなかった。
As a result, blood clots occurred with untreated nylon thread, whereas
The antithrombotic material of the present invention did not cause any thrombus formation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図及び第3図は各種処理を施したナイロン
シートの表面構造ケ調べるだめの、内部多重全反射フー
リエ変換赤外吸収スペクトル法による赤外線差スペクト
ルであって、第1図は本発明の抗血栓性材料とプラズマ
グロー放電処理したのちコラーゲン及びコンドロイチン
硫酸を遂次付けたものの赤外線差スペクトル、第2図及
び第3図は本発明の抗血栓性材料と無処理ナイロンシー
トに、それぞれアルブミン及びフィブリノーゲンを吸着
させたものの赤外線差スペクトルである。 −11− 第1図 fL  4L  (cm−’> 第2図 遠 我 (cm一つ 第3図 浅 教 (C?f+−1)
Figures 1, 2, and 3 are infrared difference spectra obtained by internal multiple total reflection Fourier transform infrared absorption spectroscopy to investigate the surface structure of nylon sheets subjected to various treatments. Figures 2 and 3 show infrared difference spectra of the antithrombotic material of the present invention and an untreated nylon sheet treated with plasma glow discharge treatment and then sequentially coated with collagen and chondroitin sulfate. These are infrared difference spectra of albumin and fibrinogen adsorbed, respectively. -11- Fig. 1 fL 4L (cm-'> Fig. 2 Toga (cm) Fig. 3 Shokyo (C?f+-1)

Claims (1)

【特許請求の範囲】 、1 プラズマグロー放電処理により活性化された高分
子材料の表面にムコ多糖全結合させて成る抗血栓性材料
。 2 高分子材料がナイロン、ポリエステル、ポリエチレ
ン、ポリプロピレン、ポリウレタン又はシリコンゴムで
ある特許請求の範囲第1項記載の抗血栓性材料。
[Claims], 1. An antithrombotic material comprising mucopolysaccharide fully bound to the surface of a polymeric material activated by plasma glow discharge treatment. 2. The antithrombotic material according to claim 1, wherein the polymeric material is nylon, polyester, polyethylene, polypropylene, polyurethane, or silicone rubber.
JP58057700A 1983-03-31 1983-03-31 New anti-thromolytic material Granted JPS59183762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58057700A JPS59183762A (en) 1983-03-31 1983-03-31 New anti-thromolytic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58057700A JPS59183762A (en) 1983-03-31 1983-03-31 New anti-thromolytic material

Publications (2)

Publication Number Publication Date
JPS59183762A true JPS59183762A (en) 1984-10-18
JPS6158195B2 JPS6158195B2 (en) 1986-12-10

Family

ID=13063205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58057700A Granted JPS59183762A (en) 1983-03-31 1983-03-31 New anti-thromolytic material

Country Status (1)

Country Link
JP (1) JPS59183762A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130623A (en) * 1983-12-15 1985-07-12 バイオマトリツクス,インコ−ポレイテツド Polymer product reformed with hyaluronic acid or salt of same
WO1996024392A1 (en) * 1995-02-07 1996-08-15 Fidia Advanced Biopolymers, S.R.L. Process for the coating of objects with hyaluronic acid, derivatives thereof, and semisynthetic polymers
JP2001129074A (en) * 1999-11-08 2001-05-15 Asahi Intecc Co Ltd Lubricated guiding catheter and spring guide wire
CN102247810A (en) * 2011-04-26 2011-11-23 浙江大学 Method for surface modification of chitosan and application of chitosan subjected to surface modification

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130623A (en) * 1983-12-15 1985-07-12 バイオマトリツクス,インコ−ポレイテツド Polymer product reformed with hyaluronic acid or salt of same
WO1996024392A1 (en) * 1995-02-07 1996-08-15 Fidia Advanced Biopolymers, S.R.L. Process for the coating of objects with hyaluronic acid, derivatives thereof, and semisynthetic polymers
JP2001129074A (en) * 1999-11-08 2001-05-15 Asahi Intecc Co Ltd Lubricated guiding catheter and spring guide wire
CN102247810A (en) * 2011-04-26 2011-11-23 浙江大学 Method for surface modification of chitosan and application of chitosan subjected to surface modification

Also Published As

Publication number Publication date
JPS6158195B2 (en) 1986-12-10

Similar Documents

Publication Publication Date Title
AU621873B2 (en) Medical material and process for their production
US5578073A (en) Thromboresistant surface treatment for biomaterials
EP0241838B1 (en) Antithrombogenic material
JP2806510B2 (en) Artificial organ membrane or medical device
CA2634301C (en) Biological surgical patch prepared from animal tissue
JPH0145373B2 (en)
JPH03254752A (en) Artificial blood vessel coated with polysaccharide or its derivative and manufacture of said artificial blood vessel
JPH0751353A (en) Production of spacer for bonding vital molecule to solid surface and base for covalent bonding vital molecule to solid surface
WO2021239080A1 (en) Biological heart valve with both anticoagulation and anti-calcification properties, and preparation method therefor
DE3639561C2 (en)
EP0923390B1 (en) Method for making improved heparinized biomaterials
Bruck Interactions of synthetic and natural surfaces with blood in the physiological environment
CN108530670A (en) Based on carragheen from anti-freezing heparan microballoon and the preparation method and application thereof
US5098960A (en) Methods and compositions for providing articles having improved biocompatibility characteristics
EP0781089B1 (en) Thromboresistant surface treatment for biomaterials
JPS61191364A (en) Anti-thrombotic material
JPS59183762A (en) New anti-thromolytic material
WO1996008149A9 (en) Thromboresistant surface treatment for biomaterials
CN105199125A (en) Anticoagulation biological material and preparing method thereof
JPS6158196B2 (en)
WO2015188716A1 (en) Anticoagulation coating and applying method therefor
JPH0236267B2 (en)
CN114601970A (en) Modified protein coating material, preparation method and application thereof
JP4626005B2 (en) Hemocompatible composition and medical device coated therewith
JPH0240341B2 (en)