JPS59183373A - Rotary apparatus - Google Patents

Rotary apparatus

Info

Publication number
JPS59183373A
JPS59183373A JP5891183A JP5891183A JPS59183373A JP S59183373 A JPS59183373 A JP S59183373A JP 5891183 A JP5891183 A JP 5891183A JP 5891183 A JP5891183 A JP 5891183A JP S59183373 A JPS59183373 A JP S59183373A
Authority
JP
Japan
Prior art keywords
signal
rotational
angular velocity
rotation
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5891183A
Other languages
Japanese (ja)
Inventor
Toshio Abe
俊雄 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5891183A priority Critical patent/JPS59183373A/en
Publication of JPS59183373A publication Critical patent/JPS59183373A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable the automatic monitor of a rotation irregularity frequency spectrum, by converting a vibration spectrum obtained by developing a rotary angle speed signal to Fourier series to a correlated rotation irregularity spectrum. CONSTITUTION:The revolving and rotating angle of a rotary table 2 on which an object 1 to be tested is mounted is detected by an angle detector 8 and compared with a reference value by an angle encoder 9 to be converted to a rotary angle signal which is, in turn, stored in a memory apparatus 15 through an A/D converter 17, an input output interface 13 and CPU14. In this case, the stored signal is read by CPU14 to perform development to Fourier series to determine a vibration frequency spectrum. In addition, conversion operation to a rotation irregularity frequency spectrum correlated to the vibration frequency spectrum is performed and a converted result is displayed by an output display apparatus 16. By this mechanism, the rotation irregularity frequency spectrum in performing a rotation test by using a flight body such as an artificial satellite as an object to be tested can be automatically monitored.

Description

【発明の詳細な説明】 この発明&了人工衛星などの回転する飛しよう体等を供
試体として搭載し、これら供試体を回転させる回転装#
において1回転むらの周波数分析を行い回転むらの周波
数スペクトラムを自動的に監視する機能を有する回転装
置を提供するものである。
[Detailed Description of the Invention] This Invention & Completion A rotating device that mounts rotating flying objects such as artificial satellites as test objects and rotates these test objects.
The present invention provides a rotating device having a function of automatically monitoring the frequency spectrum of the rotational unevenness by analyzing the frequency of the rotational unevenness in the rotational unevenness.

まず従来の、この種回転装置について図を用いて簡単に
説明する。
First, a conventional rotating device of this type will be briefly explained using figures.

第1図は従来の、この種装置の構成を示すもので9図に
おいて(1)は供試体、(2)は上記供試体を搭載して
回転する回転台、(31&j構体、(4)は上記回転台
(2)と構体(3)との間に設けられた軸受け、(5)
は上記回転台に接続され、これに回転力を伝える回転軸
、(6)は上記回転軸(5)に回転力を与えるモーター
Fig. 1 shows the configuration of a conventional device of this kind. In Fig. 9, (1) is the specimen, (2) is the rotary table on which the specimen is mounted and rotates, (31&j structure, and (4) is a bearing (5) provided between the rotating table (2) and the structure (3);
(6) is a rotating shaft that is connected to the rotary table and transmits rotational force thereto, and (6) is a motor that applies rotational force to the rotating shaft (5).

(7)は上記モーター(6)を駆動する駆動部、(8)
は上記回転軸(5)に取9つけられその回転角度を検出
する角度検出器(例えはタコメータや、リゾルバーなど
)、+91は上記角度検出器(8)が送出する角度信号
を処理する角度エンコーダー、Qlf丁上記駆動部(7
)と角度エンコーダ(9)とにケーブル(111経由接
続され。
(7) is a drive unit that drives the motor (6); (8)
+91 is an angle detector (e.g., tachometer, resolver, etc.) that is attached to the rotation shaft (5) and detects its rotation angle, and +91 is an angle encoder that processes the angle signal sent out by the angle detector (8). , Qlf Ding above drive unit (7
) and angle encoder (9) via cable (111).

角度エンコーダー(9)から得られる信号を基に駆動部
(7)を制御する制御部である。
This is a control section that controls the drive section (7) based on the signal obtained from the angle encoder (9).

従来の回転装置はこのように構成されているから供試体
(1)は回転台(2)に取付けられ、この回転台(2)
は軸受け(4)によって摩際なく回転することができる
Since the conventional rotating device is configured in this way, the specimen (1) is attached to the rotating table (2), and the rotating table (2)
can be rotated without friction by the bearing (4).

この回転は回転!til[I C5+がモーター(6)
によって回転されることによって行われるが1回転を安
定にするため、駆動部(7)へ送る制御信号は、角度検
出部(8)で検出した角度信号をエンコーダー(9)で
処理し。
This rotation is rotation! til [I C5+ is the motor (6)
In order to stabilize one rotation, the control signal sent to the drive section (7) is generated by processing the angle signal detected by the angle detection section (8) with the encoder (9).

制御部aαへ入力し、この制御HISQQIで回転角速
度が一定となるような制御信号として作られたものであ
る。このような制御を行ってもなお回転角速度の時間的
変動すなわち回転むらが発生するのは避けられない。
This control signal is input to the control unit aα and created as a control signal such that the rotational angular velocity becomes constant with this control HISQQI. Even with such control, it is inevitable that temporal fluctuations in rotational angular velocity, that is, rotational unevenness, occur.

一方1回転速度全一定に保ち9回転むらを極力低くおさ
えることは1人工衛星などの姿勢制御系スピン試験を行
う際、極めて重要なことで、もし7回転むらがある場合
は供試体(1)としての人工衛星に搭載される電子機器
の動作に悪影響全役は′し正しい試験が不可能となる。
On the other hand, it is extremely important to keep the 1st rotation speed constant and to suppress the 9th rotation unevenness as low as possible when conducting attitude control system spin tests for artificial satellites. This has a negative effect on the operation of the electronic equipment on board the satellite, making correct testing impossible.

一方1回転むらを生ずる要因としては供試体(1)の不
つシあいや空気抵抗。
On the other hand, factors that cause unevenness in one rotation include imperfections in the specimen (1) and air resistance.

また軸受(4)の振動などがある。これらの要因を完全
にと9除き回転むらを無くすることは不可能に近い。
There is also vibration of the bearing (4). It is almost impossible to completely eliminate these factors and eliminate uneven rotation.

したがって上記回転むらを計測し、この回転むら計測値
全利用して、上記供試体(1)に発生する回転むら関連
の影響を識別する必要があった。
Therefore, it was necessary to measure the rotational unevenness and use all of the rotational unevenness measurement values to identify the effects related to the rotational unevenness occurring in the specimen (1).

この発明は上記回転むらを計測する機能を有する回転装
wi′全提供する目的でなされたものである。
The present invention has been made for the purpose of providing a rotating device having the function of measuring the rotational unevenness mentioned above.

次にこの発明に係る装置の一実施例全図を用いて詳述す
る。
Next, one embodiment of the apparatus according to the present invention will be described in detail using full drawings.

第2図はこの発明の一実施例の構成を示すブロック図、
第3図は処理の流れを示す流れ図、第4図は回転むら計
測の概念図である。
FIG. 2 is a block diagram showing the configuration of an embodiment of the present invention;
FIG. 3 is a flowchart showing the flow of processing, and FIG. 4 is a conceptual diagram of rotational unevenness measurement.

図中、(1)から01)は第1図に同じである。但し。In the figure, (1) to 01) are the same as in FIG. however.

(9)は上記角度信号を基準値と比較し、これらの誤差
分を回転角速度信号として送出する角度エンコーター−
、flZは中央処理装置α41(CPUと呼ぶ)に情報
を入力する入力装置(例えはキーボード)。
(9) is an angle encoder that compares the above angle signal with a reference value and sends out these errors as a rotational angular velocity signal.
, flZ is an input device (for example, a keyboard) that inputs information to the central processing unit α41 (referred to as CPU).

G31&X CP U (141と各釧入出力装置it
 tug口Z +161及び(+71との中継を行う入
出力インクフェース+ ll51に計測データや処理プ
ログラムを記憶する記憶装置、 Qei&ゴ出力表示装
置(例えばCRT)、(17]は上記角用エンコーター
(9)から出力される角度信号を、アナログ信号に変換
し、このディジクル信号を入出力インクフェース03)
経由C、P U (141へ送出するA / Dコンバ
ータである。
G31&X CPU (141 and each input/output device it
(17) is a storage device for storing measurement data and processing programs in the input/output ink face +ll51 that relays with the tug opening Z +161 and (+71), Qei & Go output display device (e.g. CRT), (17) is the above-mentioned corner encoder (9 ) is converted into an analog signal, and this digital signal is used as input/output ink face 03).
Via C, PU (A/D converter that sends to 141).

次のこの発明による装置の動作を説明する。+11から
01)までの各賛成要素の動作は第1図における従来例
と同じであるから省略する。
Next, the operation of the apparatus according to the present invention will be explained. The operations of the agreeing elements from +11 to 01) are the same as in the conventional example shown in FIG. 1, and will therefore be omitted.

ざて第3図のAで回転装置の駆動条件、すなわち回転角
速度0回転むら開側周波数範囲及び計611j時間など
を入力装置i!J″1121によシ入力する。この人力
データは入出力インタフェース031とCP U f1
41i経由して記憶装置051に記憶される。
At A in Fig. 3, input the drive conditions of the rotating device, that is, rotation angular velocity 0 rotation unevenness open side frequency range and total 611j time using the i! J″1121. This manual data is input to the input/output interface 031 and the CPU f1.
41i and is stored in the storage device 051.

次にBで供試体(1)を回転台(2)に搭載する。Next, at B, the specimen (1) is mounted on the rotary table (2).

次に第3図のCで回転台(21の回転全開始する命令を
入力装#o21から入力する。
Next, at C in FIG. 3, a command to start full rotation of the turntable (21) is inputted from the input device #o21.

この命令警工入出力インタフェースu31経由CPU0
41へ入り、処理プログラムが起動される。
This command is sent to CPU0 via input/output interface U31.
41, and a processing program is started.

次に第3図のDでCP U Q41から送出された駆動
部命令が制御部a(llvc入シ、制御部0旧ま駆動部
<71を起動したモーター(6)を回転させ回転台(2
)の所定の回転角速度で回転させる。
Next, at D in FIG. 3, the drive unit command sent from the CPU Q41 rotates the motor (6) that started the drive unit <71 when the control unit a (llvc is input) and the turntable (2) is activated.
) at a predetermined rotational angular velocity.

次に第3図のEで角度検出器(8)から送出される角度
信号全角度エンコーダー]9)で回転角速度信号Hに変
’l’J=j してA/Dコンバータa′rIに入力し
、このA/Dコンバータ(171により回転角速度信号
Rをアナログ値からディジタル値へ変換し、このディジ
タル値を入出力インタフェースOQ経由CP U (1
41へ入力し、記憶装置(15)に記憶する。
Next, at E in Fig. 3, the angle signal sent from the angle detector (8) is converted into a rotational angular velocity signal H by the full-angle encoder]9) and input to the A/D converter a'rI. This A/D converter (171) converts the rotational angular velocity signal R from an analog value to a digital value, and this digital value is sent to the CPU (171) via the input/output interface OQ.
41 and stored in the storage device (15).

このようにして上記回転角速度信号Rの値が時間的に連
続した時間系列化データとして記憶装置05)に記憶さ
れる。
In this way, the value of the rotational angular velocity signal R is stored in the storage device 05) as temporally continuous time-series data.

次に第3図のEで、所定の時間だけ回転むら計測を行っ
たかどうかを判足し、終了の場合は第3図のGで上記回
転角速度信号Rの周波数分析を行う計算を実施する。
Next, at E in FIG. 3, it is determined whether or not the rotational unevenness measurement has been performed for a predetermined period of time. If the measurement is finished, at G in FIG. 3, calculations are performed to analyze the frequency of the rotational angular velocity signal R.

ここで行う計算は、記憶装置(151K記憶された上記
回転角速度信号Rの時間系列化データをCPU(141
内にと9こみ、処理プログラムに従ってフーリエ展開を
行う。その結果9胞転むらスペクトラムS(第4図)が
得られる。
The calculations performed here are based on the time-series data of the rotational angular velocity signal R stored in the storage device (151K) and the CPU (141K).
9 and performs Fourier expansion according to the processing program. As a result, a nine-cell rotation spectrum S (Fig. 4) is obtained.

一方9例えば供試体(1)として人工衛星のメカニカル
デスパンアンテナ(以下MDAと呼ぶ)ヲ選ぶと、MD
Aは人工衛星が軌道上で回転するとき地球指向を維持す
るよう0人工衛星の回転方向と逆向きに回転される。
On the other hand9, for example, if we select a mechanical despan antenna (hereinafter referred to as MDA) for an artificial satellite as the specimen (1), the MD
A is rotated in the opposite direction to the rotation direction of the 0 satellite so as to maintain earth pointing as the satellite rotates in orbit.

このような機能金もつMDAを有する供試体(1)を回
転させ、その地球指向を維持する試験を行う楊合、上述
の回転むらスペクトラムは重要な意味を持つ。
The above-mentioned rotational unevenness spectrum has an important meaning in Yanghe, who rotates the specimen (1) having MDA with such a functional metal and performs a test to maintain its earth orientation.

それは9回転台(2ンの回転むらによって上記MDAの
制御動作が干渉され、MDAの地球指向が乱されてふら
つきが生ずる。このふらつきは第4図のように1回転む
ら周波数に関連する特性を有してお役、ある回転むら周
波数において最大のふらつきを生ずる点Pが存在する。
The uneven rotation of the 9-rotation platform (2) interferes with the control operation of the MDA, which disturbs the earth orientation of the MDA and causes wobbling.As shown in Figure 4, this wobbling has characteristics related to the 1-rotation unevenness frequency. However, there is a point P at which the maximum fluctuation occurs at a certain rotational unevenness frequency.

このように上記MDAのふらつきは回転むら周波数の関
数となっているから、上記回転むらスペクトラムSを求
め、特にMDAのふらつきに大きな干渉を及ばすS1近
傍の回転むらスペクトラムを低減略せる必をがある。
In this way, the wandering of the MDA is a function of the rotational unevenness frequency, so it is necessary to obtain the rotational unevenness spectrum S and reduce the rotational unevenness spectrum near S1, which has a large interference with the MDA wandering. be.

ところで81近傍の回転むらスペクトラムは供試体(1
)の不つりあいに大きく依存するものである。
By the way, the rotational unevenness spectrum near 81 is that of the specimen (1
) depends largely on the imbalance between

したがって上記S1近傍の回転むらスペクトラムの主要
部分を供試体(14絡1有の不つ夛あい全除去すること
によって低減することができる。
Therefore, the main part of the rotational unevenness spectrum near S1 can be reduced by completely removing the irregularities in the specimen (14 circuits with 1).

さて0次に1(で、上記回転むしスペクトラム第6図の
S全出力表示装置(16)に表示する。
Now, the 0th order is 1 (and the above-mentioned rotating insect spectrum is displayed on the S total output display device (16) in FIG. 6.

このような動作をするから、その効果としては。Since it works like this, the effect is.

回転むらスペクトラムを知ることができ、供試体+11
の回転中に、供試体(1)の動作に干渉を与えないよう
対策を施すための有効な手段を提供できる利点がある。
You can know the rotational unevenness spectrum, and the specimen +11
There is an advantage in that it can provide an effective means for taking measures to prevent interference with the operation of the specimen (1) during the rotation of the specimen (1).

さらに、上記回転むらスペクトラムは自動的に、かつ高
速に求められるので従来、はとんど不司能であった上記
回転むら周波数スペクトラムの計測を可能とする利点が
ある。
Furthermore, since the rotational unevenness spectrum can be obtained automatically and at high speed, there is an advantage that it is possible to measure the rotational unevenness frequency spectrum, which has conventionally been impossible.

次に、この発明の他の実施例を9図を用いて記述する。Next, another embodiment of the present invention will be described using FIG. 9.

第5図は、この発明の他の実施例の構成を示すブロック
図で、第6図は処理の流れを示す流れ図。
FIG. 5 is a block diagram showing the configuration of another embodiment of the invention, and FIG. 6 is a flow chart showing the flow of processing.

第7図は回転むら計測の概念図である。FIG. 7 is a conceptual diagram of rotational unevenness measurement.

図中(1)から(171は第2図と同じである。Uは構
体(3)の基礎部(21)の一点に取りつけられ、圧力
を検出して電気信号に変換し、この圧力検出信号を送出
する圧力検出器、ttst’;c上記圧力検出器θ〜の
圧力検出信号を増幅する増幅器、味は上記増幅器0印で
増幅された上記圧力検出信号に含まれた雑音を除去する
ため、低域沖波特性を有するフィルタである。
In the figure, (1) to (171) are the same as in Figure 2. U is attached to one point of the base (21) of the structure (3), detects pressure and converts it into an electric signal, and this pressure detection signal a pressure detector for transmitting ttst';c; an amplifier for amplifying the pressure detection signal of the pressure detector θ~; This is a filter with low-frequency offshore wave characteristics.

次にこの発明の他の実施例の動作を説明する。Next, the operation of another embodiment of the invention will be explained.

な訃、ここでは実施例と異る動作に限って説明する。第
6図の工で圧力検出器Q汐により、供試体tl+の不つ
りあいに主として起因する構体(3ンの振動を圧力変化
として検出し、振動検出信号として増幅器四へ入力する
。増幅器il!IG工上記振動検出信号を計測に適する
レベルまで増幅し、フィルタ(20)へ出力する。フィ
ルタ痴・は上記の増幅された振動検出信号に含聾れる雑
音を除去し、これiA/Dコンバーク0′71へ送出す
る。
However, only operations that differ from the embodiment will be explained here. In the process shown in Fig. 6, the pressure detector Q detects the vibration of the structure (3) mainly caused by the unbalance of the specimen tl+ as a pressure change, and inputs it as a vibration detection signal to the amplifier 4.Amplifier il!IG The vibration detection signal obtained during construction is amplified to a level suitable for measurement and output to the filter (20).The filter removes the noise contained in the amplified vibration detection signal and converts it into iA/D converter 0'. 71.

A / Dコンバータ(171は上記振動検出信号をア
ナログ値からディジタル値に変換して入出力インタフェ
ース113経由CP U Q41へ送る。CP U Q
41は処理プログラムに従って上記振動検出信号をフー
リエ展開して振動スペクトラムU(第7図)?生成する
The A/D converter (171 converts the vibration detection signal from an analog value to a digital value and sends it to the CPU Q41 via the input/output interface 113. CPU Q
41 is a vibration spectrum U (Fig. 7) obtained by Fourier expansion of the vibration detection signal according to the processing program. generate.

ざらに1回転むらスペクトラムS(第7図)と上記振動
スペクトラムUの相関係数Xを計算する。
The correlation coefficient X between the rough one-turn unevenness spectrum S (FIG. 7) and the vibration spectrum U is calculated.

Xが1に近いほど上記SとUとの関連性が深いこと、す
なわち上記SがUに起因して発生することを示すことに
なる。
The closer X is to 1, the deeper the relationship between S and U, that is, the more S occurs due to U.

一方、振動スペクトラムJj供試体(1)の不つシあい
、軸受けの構造、供試体(1)が回転中に受ける空気抵
抗などによって発生し、これらの要素がどの程度の振動
をもたらすか(まあらかじめ解析的に求めることができ
る。
On the other hand, the vibration spectrum Jj is caused by imperfections in the specimen (1), the structure of the bearing, the air resistance that the specimen (1) receives during rotation, etc., and the degree of vibration caused by these factors (or It can be obtained analytically in advance.

したがって上述のようにSとUの相関係数x−6求める
ことによって回転むらが何に起因しているものであるか
を把握することができる。
Therefore, by determining the correlation coefficient x-6 between S and U as described above, it is possible to understand what is causing the uneven rotation.

回転むらの要因を把握することによって1例えば供試体
(1)の不つ9あいを修正するとか、空気抵抗の変化を
少なくするよう地境や供試体(])の形状を整えるなど
の適切な回転むら減少のための対策を講することができ
る利点がある。
By understanding the causes of uneven rotation, we can take appropriate measures such as correcting imperfections in the specimen (1), or adjusting the shape of the specimen () and ground boundaries to reduce changes in air resistance. This has the advantage of being able to take measures to reduce rotational irregularities.

なお実施例では各構成要素をそれぞれ分離した形で示し
たが、いくつかの構成埜素全一つにまとめて前記した各
構成要素個有の機能を持たせることもできるなど、シス
テム構成についてはこの発明の要旨とする点を逸脱しな
い範囲においで種々の変形がある。
Although each component is shown separately in the embodiment, it is also possible to combine several components into one component to provide the unique functions of each component. Various modifications may be made without departing from the gist of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の回転装匍の構成ブロック図、第2図はこ
の発明による装置の一実施例の構成ブロック図、第3図
はこの発明による装置の一実施例の処理の流れを示フ〜
流れ図、第4図は回転むら計測の概念図、第5図はこの
発明による装置の他の実施例の構成ブロック図、第6図
はこの発明による装置の他の実施例の処理の流れを示す
流れ図。 第1図は回転むら計測の概念図である。 図中(1)は供試体、(2)は回転台、(3)は構体、
(4)は軸受け、(5)は回転軸、(6)はモーター、
(7丹ま駆IIIJ部。 (8丹丁角度検出器、(9)は角度エンコーダ、aQ 
kZ %lI 鉤部、a1)はケーブル、(1zは入力
装置、 03は入出力インタフェース、u4)は中央処
理装置、u51は記憶装置。 IJG1kl出力表示装置、 a’nlはA / Dコ
ンバーター、・αυ(ヱ圧力検出器、uaBj垢幅器、
(支))はフィルタ、Ql)は基礎部である。 なお9図中同一あるいは相当部分には同一符号を付して
示しである。 代理人大岩増雄 第1図 第2図 第3図 第4図 υ 可転fう冒漕数 第5図 /6− 第6し1 第7図
FIG. 1 is a block diagram of the configuration of a conventional rotary mount, FIG. 2 is a block diagram of the configuration of an embodiment of the device according to the present invention, and FIG. 3 is a diagram showing the processing flow of an embodiment of the device according to the present invention. ~
Flowchart, FIG. 4 is a conceptual diagram of rotational unevenness measurement, FIG. 5 is a block diagram of the configuration of another embodiment of the device according to the present invention, and FIG. 6 is a flowchart of processing of another embodiment of the device according to the present invention. flow diagram. FIG. 1 is a conceptual diagram of rotational unevenness measurement. In the figure, (1) is the specimen, (2) is the turntable, (3) is the structure,
(4) is the bearing, (5) is the rotating shaft, (6) is the motor,
(7 Tanma Kaku IIIJ section. (8 Tancho angle detector, (9) is angle encoder, aQ
kZ %lI Hook part, a1) is a cable, (1z is an input device, 03 is an input/output interface, u4) is a central processing unit, and u51 is a storage device. IJG1kl output display device, a'nl is A/D converter, αυ (ヱpressure detector, uaBj width meter,
(support)) is a filter, and Ql) is a foundation part. Note that the same or corresponding parts in FIG. 9 are designated by the same reference numerals. Agent Masuo Oiwa Fig. 1 Fig. 2 Fig. 3 Fig. 4 υ Number of rotations Fig. 5/6- Fig. 6 1 Fig. 7

Claims (2)

【特許請求の範囲】[Claims] (1)構造物全搭載して回転運動を行う回転台と。 この(ロ)1台を支持する箱状の杭体と、上記回転台と
上記構体との間に設けられた軸受は機構と、上記回転台
に接続された回転圓[と、上記回転軸に回転力を与える
モーターと、上記モーターを駆動する駆動部と、上記回
転軸にとりつけられ、この回転角度な一検出する角度検
出器と、上記回転角度によって上記回転台の回転速度を
制御する制御信号を上記駆動部に送出する制御部と金偏
えた回転装置において、上記角度検出器から得られる回
転角度信号を回転角速度1b号に変換する手段と、上記
回転角速度信号を基に所定のテータ処理を行うに必要な
プログラム及び上記回転角速度信号を記憶する記憶装置
gと、上記記憶装置との間で情報の授受全行うと共に上
記駆動部を制御する制御部に制御信号を与え、かつ上記
回転角速度を基に所定の計算を行う中央処理装置と上記
回転台の駆動条件や、上記回転角速度の計測時間などを
上記中央処理装置に入力する入力手段と、計測結果を出
力する出力手段とを倫え、上記構造物を回転させたとき
の上記回転角速度信号の時間的装動、すなわち回転むら
全、上記回転角速度信号のフーリエ級数展開によって回
転むらスペクトラムに変換して上記出力手段に出力する
ことを特徴とする回転装置。
(1) A rotating table on which all structures are mounted and performs rotational motion. (b) A box-shaped pile that supports one unit, a bearing provided between the rotating table and the structure, connects the mechanism, the rotating circle connected to the rotating table, and the rotating shaft to the rotating shaft. a motor that provides rotational force; a drive unit that drives the motor; an angle detector that is attached to the rotating shaft and detects the rotational angle; and a control signal that controls the rotational speed of the rotating table based on the rotational angle. A control unit that sends the rotation angle signal to the drive unit, and a rotating device that includes a means for converting the rotation angle signal obtained from the angle detector into a rotation angular velocity No. 1b, and a predetermined data processing based on the rotation angular velocity signal. All information is exchanged between the storage device g that stores the program necessary for the execution and the rotational angular velocity signal, and the storage device, and a control signal is given to the control unit that controls the drive unit, and the rotational angular velocity is controlled by the storage device g. A central processing unit that performs predetermined calculations based on the above, an input means that inputs the driving conditions of the turntable, a measurement time of the rotational angular velocity, etc. to the central processing unit, and an output means that outputs the measurement results, When the structure is rotated, the rotational angular velocity signal is changed over time, that is, the rotational angular velocity signal is converted into a rotational unevenness spectrum by Fourier series expansion, and the rotational angular velocity signal is converted into a rotational unevenness spectrum and outputted to the output means. rotating device.
(2)上記構体の基礎部の一点にとりつけられ。 この点に加わる圧力を電気信号に袈俣する圧力検出器と
、上記圧力検出器が出力する圧力検出信号を垢1幅する
増幅器と、上記増幅器の出力信号をP波するフィルタと
、上記出力信号音ディジタル信号にして上記中央処理装
置に入力する手段と全備え、上記圧力検出信号全フーリ
エ級数展−して振動スペクトラムを求め、これと上記回
転むらスペクトラムとの相関係数を求めて上記出力手段
に出力すること′?r:傷、徴とする%許請求の範囲第
t]1項記載の回転装置。
(2) Attached to a point on the foundation of the above structure. A pressure detector that converts the pressure applied to this point into an electrical signal, an amplifier that converts the pressure detection signal output from the pressure sensor into an electrical signal, a filter that converts the output signal of the amplifier into a P wave, and the output signal A means for inputting the sound digital signal into the central processing unit, a vibration spectrum obtained by performing the full Fourier series expansion of the pressure detection signal, and a correlation coefficient between this and the rotation unevenness spectrum obtained by the output means. to output to′? r: scratches, marks (percentage) Claim t] The rotating device according to claim 1.
JP5891183A 1983-04-04 1983-04-04 Rotary apparatus Pending JPS59183373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5891183A JPS59183373A (en) 1983-04-04 1983-04-04 Rotary apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5891183A JPS59183373A (en) 1983-04-04 1983-04-04 Rotary apparatus

Publications (1)

Publication Number Publication Date
JPS59183373A true JPS59183373A (en) 1984-10-18

Family

ID=13097994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5891183A Pending JPS59183373A (en) 1983-04-04 1983-04-04 Rotary apparatus

Country Status (1)

Country Link
JP (1) JPS59183373A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395371A (en) * 1986-10-09 1988-04-26 Mitsubishi Electric Corp Measuring apparatus for uneven rotation
JPH01304358A (en) * 1988-03-31 1989-12-07 Heidelberger Druckmas Ag Revolutions measuring method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395371A (en) * 1986-10-09 1988-04-26 Mitsubishi Electric Corp Measuring apparatus for uneven rotation
JPH01304358A (en) * 1988-03-31 1989-12-07 Heidelberger Druckmas Ag Revolutions measuring method and apparatus

Similar Documents

Publication Publication Date Title
US9200979B2 (en) System for bearing fault detection
US3838593A (en) Acoustic leak location and detection system
CN110320038B (en) Abnormality diagnosis method and abnormality diagnosis device for rolling bearing
US20090067080A1 (en) Selectively mitigating multiple vibration sources in a computer system
US6101453A (en) Method and apparatus for analyzing vibration of housing of disk device
JPH10508354A (en) Method and apparatus for automatically balancing a rotating machine
JP3001873B2 (en) Method and apparatus for balancing a spin stand and disk test apparatus
JPS6262238A (en) Balancing machine method and device for wheel, etc. for car
JPS59183373A (en) Rotary apparatus
US6158286A (en) Process and devices for the determination of the vibrations of the rotor of a rotary machine
US3939715A (en) Method and apparatus for developing balance information for rotating equipments and assemblies
US7891249B2 (en) Multi-axis vibration method and apparatus
JP2002257687A (en) Bearing supporting structure for measuring bearing load
US20090217765A1 (en) Sensor failure diagnosis device and sensor failure diagnosis method
KR100436573B1 (en) Automatic vibration and sound quality evaluation system
US6560553B1 (en) Method of estimating an eccentric position of an acceleration sensor and acceleration generating apparatus with an eccentricity adjuster
RU2351899C1 (en) Test bed for carrying out kinematic trials and method of its use
US3456484A (en) Transducer calibration system
JP4419561B2 (en) Motor torque ripple measuring apparatus and torque ripple measuring method
US6757622B2 (en) Predicting disc drive acoustic sound power from mechanical vibration
JPH11230733A (en) Deflection measurement device of rotating body
JPH08210909A (en) Operation abnormal sound detection device for electrical apparatus
SU1084674A1 (en) Cyclic action mechanism checking method
JP2577110B2 (en) Street accuracy measuring device and street accuracy measuring method at construction site
RU2783189C1 (en) Method for controlling the physical parameters of the resonator of a solid-state wave gyroscope