JPS59183192A - Intermittent water repellency regulator for temperature sensitive working steam trap - Google Patents

Intermittent water repellency regulator for temperature sensitive working steam trap

Info

Publication number
JPS59183192A
JPS59183192A JP5840983A JP5840983A JPS59183192A JP S59183192 A JPS59183192 A JP S59183192A JP 5840983 A JP5840983 A JP 5840983A JP 5840983 A JP5840983 A JP 5840983A JP S59183192 A JPS59183192 A JP S59183192A
Authority
JP
Japan
Prior art keywords
valve
temperature
condensate
steam trap
valve port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5840983A
Other languages
Japanese (ja)
Inventor
村本 睦司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYAWAKI STEAM TRAP Manufacturing
MIYAWAKISHIKI SUCHIIMU TORATSUPU SEISAKUSHO KK
Original Assignee
MIYAWAKI STEAM TRAP Manufacturing
MIYAWAKISHIKI SUCHIIMU TORATSUPU SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYAWAKI STEAM TRAP Manufacturing, MIYAWAKISHIKI SUCHIIMU TORATSUPU SEISAKUSHO KK filed Critical MIYAWAKI STEAM TRAP Manufacturing
Priority to JP5840983A priority Critical patent/JPS59183192A/en
Publication of JPS59183192A publication Critical patent/JPS59183192A/en
Pending legal-status Critical Current

Links

Landscapes

  • Temperature-Responsive Valves (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 一般に蒸気配管系統には該蒸気の凝縮により発生する復
水排除のためにいわゆるスチームトラップが接続される
DETAILED DESCRIPTION OF THE INVENTION Generally, a so-called steam trap is connected to a steam piping system to remove condensate generated by condensation of the steam.

このスチームトラップは、復水発生の様相に適合すべく
、多種の作動型式に分かれるが、と(にトレース配管す
なわち、一般に石油化学工業などにおける油送管路の断
熱被覆層中に埋設されて管路門流体の加熱を司る蒸気配
管の復水排除には、感温追従性にすぐれたバイメタル式
スチームトラップが多く用いられる。
Steam traps can be divided into various operating types to suit the conditions of condensate generation, but (in trace piping, that is, generally in the petrochemical industry etc., steam traps are buried in the heat insulating coating layer of oil pipelines, etc.). Bimetallic steam traps, which have excellent temperature sensitivity, are often used to remove condensate from steam piping that controls the heating of roadway fluids.

すなわちトレース配管における復水発生量が、通気初期
を除いてほぼ一定であり、従ってバイメタルにより設定
した復水温度に至る温度勾配が保持されたまま、スチー
ムトラップの安定な弁開度の下に連続的な排水か特定の
温度において持続され、ここにトレース配管でもって油
送管路に対する加熱作濯が、不変かつ適切に維持される
からである。
In other words, the amount of condensate generated in the trace piping is almost constant except for the initial stage of ventilation, and therefore the temperature gradient leading to the condensate temperature set by the bimetal is maintained, and the condensate is continuously generated under a stable valve opening of the steam trap. This is because the water discharge is maintained at a specific temperature, and the heating and washing of the oil pipeline by means of trace piping is maintained unchanged and properly.

しかるにかような連続排水は、復水の排出温度が比較的
低いときにはともかく、高温高圧下の操業を必要とする
とき、弁口を流出した高温、高圧復水は激しく再蒸発す
るため低温復水と比べて流速が極端に高まるので、弁お
よび弁座部材の材質上も不利な高温環境と相まって、エ
ロージョンその他スチームトラップの耐久性の面で、著
しく不都合である。
However, such continuous drainage is difficult when the condensate discharge temperature is relatively low, but when operation under high temperature and high pressure is required, the high temperature and high pressure condensate that flows out of the valve port is violently re-evaporated, resulting in low temperature condensation. Since the flow velocity is extremely high compared to the above, this combined with the high temperature environment, which is disadvantageous in terms of the material of the valve and valve seat members, is extremely disadvantageous in terms of erosion and other durability of the steam trap.

この点に関して、上記バイメタル方式を代表例とする感
温作動スチームトラップの高温・高圧下の作動に関して
間けつ排水を司るように規制することを目的とする開発
研究を行い、次の事項により、その目的が有利に解決さ
れ得る方途を講じたものである。
In this regard, we conducted research and development aimed at regulating the operation of temperature-sensitive steam traps, of which the bimetal type described above is a typical example, at high temperatures and high pressures to control intermittent drainage. This means that the objective can be solved advantageously.

まず前提事項としては、開閉方向に働く熱膨張推力とこ
れに対抗するコイルばねの反力との作用を受ける弁ホル
タに、該ばねの反力方向にのみ相対的に可動として係止
した弁子を、上記熱膨張推力を由来する復水の低温化に
伴う選択的な排水を司る固定弁口と向い合わせに対設し
た、感温作動スチームトラップがその対象である。
First, the prerequisite is that the valve holder is fixed to the valve holter, which is subjected to the action of the thermal expansion thrust acting in the opening/closing direction and the counterforce of the coil spring, so as to be relatively movable only in the direction of the reaction force of the spring. The object of this study is a temperature-sensitive steam trap that is installed opposite to a fixed valve port that selectively discharges water as the temperature of the condensate, which originates from the thermal expansion thrust, decreases.

このトラップの上記固定弁口の下流側に、該弁口を通る
復水圧力の作用を受けて開弁する、”自閉傾向をもつ一
方向弁を、とくにそなえさせることか、上記規制のため
の必須事項なのである。
In order to comply with the above regulations, it is recommended that this trap be provided with a one-way valve with a self-closing tendency that opens in response to the action of condensate pressure passing through the valve port on the downstream side of the fixed valve port. This is an essential requirement.

この一方向弁は、感熱作動をする弁子の微小開度の際に
はなお開弁ぜず、その開度が充分に拡大したのちにはじ
めて排水の流出を許すこと、その流動の結果として逆の
感熱作動で弁子の開度が縮小したときその閉弁の直前に
先行着座を生じて、スチームトラップの間けつ排水規制
を行い、ここに微小開度における復水の高速流動を阻止
し、これによるエロージョンの有効な回避に役立つ。
This one-way valve does not open even when the heat-sensitive valve is slightly opened, and allows wastewater to flow out only after the valve opening has expanded sufficiently, and as a result of the flow, a reverse reaction occurs. When the opening of the valve is reduced by the heat-sensitive operation of the valve, a pre-seating occurs just before the valve closes, regulating the drainage between the steam traps and preventing the high-speed flow of condensate at minute openings. This helps effectively avoid erosion.

さて第1図に実施例として、間けつ排水を司るバイメタ
ル式スチームトラップの断面を、閉弁状態において図解
した。
Now, as an example, FIG. 1 illustrates a cross section of a bimetallic steam trap that controls intermittent drainage in a closed state.

図中1はボディ、2はその入口、3は出口、4は隔壁で
あり、また5はボンネット、6はパツキン、7はキャッ
プを示す。
In the figure, 1 is a body, 2 is an inlet, 3 is an outlet, 4 is a partition, 5 is a bonnet, 6 is a gasket, and 7 is a cap.

この例で隔壁4に中空のベース部材8をねじ込み固定し
て入、出口2〜3間を連通させ、このベース部材8には
さらに筒状の弁座9をねじ込んでこれを取囲むコイルば
ね10を配置し、弁座9の内部で昇降摺動可能な弁ホル
ダ11を支持させる。
In this example, a hollow base member 8 is screwed and fixed to the partition wall 4 to communicate between the inlet and outlet 2 and 3, and a cylindrical valve seat 9 is further screwed into the base member 8 and a coil spring 10 surrounding it. is arranged to support a valve holder 11 that is movable up and down inside the valve seat 9.

弁ホルダ11は中空の鍔付き筒状をなしてその鍔12を
ばね座に用い、上面でスパイダ状に開口させた数この孔
13により筒状の弁座9の内周との摺動面上に半円状み
ぞ14を形成し、さらに中央孔15の底部に内向き鍔1
6を設ける。
The valve holder 11 has a hollow cylindrical shape with a flange, the flange 12 of which is used as a spring seat, and a number of holes 13 opened in a spider shape on the top surface, which are arranged on the sliding surface with the inner periphery of the cylindrical valve seat 9. A semicircular groove 14 is formed in the center hole 15, and an inward flange 1 is formed at the bottom of the central hole 15.
6 will be provided.

内向き鍔16にはこれによって係止される頂鍔を有する
この例で円錐状の弁子17を中央孔15内で支持させ、
この中央孔15の上端には受はブツシュ18を係止させ
る。
The inward facing flange 16 has a top flange engaged therewith and supports a conical valve 17 in the central hole 15;
A bushing 18 is engaged with the upper end of the central hole 15.

受はブツシュ18にはバイメタルコラム19を串差し状
に支持する推力ステム20の下端を支持させ、その上端
は、ボンネット5の頂壁中央を気密に貫通する調節ねじ
21の端部開口内に保持し、この調節ねじ21はグラン
ドパツキン22の押えねじスリーブ23にねじ込みする
The bushing 18 supports the lower end of a thrust stem 20 that supports the bimetal column 19 in a skewered manner, and its upper end is held within the end opening of an adjustment screw 21 that passes airtight through the center of the top wall of the bonnet 5. The adjusting screw 21 is screwed into the cap screw sleeve 23 of the gland packing 22.

なお第2図に詳しく示したように弁子17の頂鍔には、
受はブツシュ18との間にコイルばね24、またステム
20との間にすき間をへだてて短小なロンド25をそれ
ぞれ配置することがのぞましい。また図中26はバイメ
タルコラム19の止め輪、27は低膨張側を内に向い合
わせたバイメタル対の相互間に挟在させるを可とするワ
ッシャである。
Furthermore, as shown in detail in Figure 2, the top tsuba of the valve 17 has a
It is preferable that the receiver is provided with a coil spring 24 between it and the bush 18, and a short iron 25 with a gap between it and the stem 20. Further, in the figure, 26 is a retaining ring for the bimetal column 19, and 27 is a washer that can be sandwiched between a pair of bimetals with their low expansion sides facing inward.

以上のべたバイメタル式スチームトラップの既知構成に
おいて、蒸気配管系統中への通気開始番こ際し、第2図
に示したへん平状態番こてノくイメタルコラム19は、
弁ホルダ11に作用するコイルばね10の反発力で押上
げられ、従って弁子17番マ弁座9の弁孔28から離隔
するので通気圧力下に配管系統中の空気、ついでこれに
追尾する初期a結水が弁孔28から排除され、引続く高
温復水の到来によりノくイメタルコラム19が第1図の
ように膨張変形して、その熱膨張推力が、推力ステム2
0を介し弁ホルダ11をコイルばね10に打かつて押下
げ、かくして弁子17の閉弁をもたらし、その後ボンネ
ット5からの放熱で復水温度が下ってパイ、メタルコク
ム19の熱膨張推力が低下することにより、コイルばね
10の復元力にて弁子17の開弁離座による復水の再放
出を来すような作動を数度にわたりくり返すが、やがて
蒸気配管系統中の復水温度勾配が、一定値に落着いて弁
子17の特定開度(調節ねじ21による温度設定で定ま
る)の下に連続排水が継続するのは、さきに触れたとお
りであり、配管系統中の蒸気が、高温高圧のとき、それ
に付帯する問題点を伴うことについてもすでに説明した
とおりである0この点の有効な回避手段として、第1図
のように弁孔28の下流側に、この例ではベース部材8
に第2の弁口29を設け、これに対して弁孔28を通り
抜けた復水の通路30内圧力の作用を受けて開弁する一
方向弁31を配置する。一方向弁31はこの例でベース
部材8の下方スカート部32内で昇降し得る中空フリー
ピストン33をゆるく貫通するステム34を有し、これ
と向い合って一方向弁31のリフトを定めるように下方
スカート32の端部にねじ込んだストッパ35と中空フ
リーピストン33との間に、弱いコイルばね36を内蔵
させることによ□す、自閉傾向をもつものとする。図中
37はストッパ35にあけたスパイダ一孔である。
In the known configuration of the solid bimetallic steam trap described above, when starting ventilation into the steam piping system, the flat metal column 19 shown in FIG.
The repulsive force of the coil spring 10 acting on the valve holder 11 pushes up the valve holder 11, and as a result, the valve 17 is separated from the valve hole 28 of the valve seat 9, so that the air in the piping system under ventilation pressure, and then the initial stage of tracking this. The condensed water is removed from the valve hole 28, and the metal column 19 expands and deforms as shown in FIG. 1 due to the subsequent arrival of high-temperature condensate.
The valve holder 11 is pressed against the coil spring 10 through the coil spring 10 and pushed down, thus causing the valve 17 to close, and then the temperature of the condensate decreases due to heat radiation from the bonnet 5, and the thermal expansion thrust of the metal coum 19 decreases. As a result, the restoring force of the coil spring 10 causes the valve 17 to open and separate, causing condensate to be released again several times, but eventually the condensate temperature gradient in the steam piping system increases. As mentioned earlier, the reason why water continues to drain continuously under a certain opening degree of the valve 17 (determined by the temperature setting with the adjusting screw 21) after reaching a constant value is that the steam in the piping system is As already explained, when the pressure is high, there are problems associated with it.As an effective means to avoid this problem, as shown in FIG.
A second valve port 29 is provided at the second valve port 29, and a one-way valve 31 that opens under the action of the internal pressure of the condensate passage 30 that has passed through the valve hole 28 is disposed on the second valve port 29. The one-way valve 31 in this example has a stem 34 that loosely passes through a hollow free piston 33 which can be raised and lowered within the lower skirt portion 32 of the base member 8, and which faces the stem 34 to define the lift of the one-way valve 31. A weak coil spring 36 is built in between the stopper 35 screwed into the end of the lower skirt 32 and the hollow free piston 33, so that it has a self-closing tendency. 37 in the figure is a spider hole drilled in the stopper 35.

一方向弁31は、中空フリーピストン33を介して働く
、コイルばね36の偏倚力により第2の弁口29を閉止
し、弁子17の微小開度のときもこの閉止を維持するが
、該゛開度が十分に大きくなったとき、弁孔28を通り
抜けた通路30内の復水の圧力(静圧十動圧)の作用に
圧倒されて一方向弁31が開放するや否や、該復水の圧
力が中空フリーピストン33の全受圧面積に働いてこれ
を押下げ、こ\に開通する一方向弁31のステム34と
、中空フリーピストン33の中空孔との間隙から、スパ
イダ一孔37を通した排水の流動が導かれる。
The one-way valve 31 closes the second valve port 29 by the biasing force of the coil spring 36 acting via the hollow free piston 33, and maintains this closure even when the valve element 17 is slightly opened.゛When the opening degree becomes sufficiently large, as soon as the one-way valve 31 opens due to the pressure of the condensate in the passage 30 passing through the valve hole 28 (static pressure and dynamic pressure), the condensate opens. The water pressure acts on the entire pressure receiving area of the hollow free piston 33 and pushes it down, and from the gap between the stem 34 of the one-way valve 31 and the hollow hole of the hollow free piston 33, which opens, the spider hole 37 The flow of wastewater is directed through.

この復水排出によって入口2に到来する復水の温度が漸
増し、やがてバイメタルコラム19の膨張により、すで
にのべたように弁ホルダ11がコイルばね10を押し下
げ、ひいては弁子17は弁座9に接近することにより弁
孔28を通る。復水の流動が制限され始1めると、その
結果通路30における復水圧力が減少し、一方向弁31
がその自閉傾向により第2の弁口29を、弁子17によ
る弁孔28の閉止に先立って閉ざし、こうして弁子17
の緩徐な閉弁作動をもたらすので、その微小開度の下に
高速の排出流動が継続される場合に懸念されるエロージ
ョンが回避されるわけである。
Due to this condensate discharge, the temperature of the condensate arriving at the inlet 2 gradually increases, and as a result of the expansion of the bimetal column 19, the valve holder 11 pushes down the coil spring 10 as already mentioned, and the valve element 17 is then pressed against the valve seat 9. The approach passes through the valve hole 28. As the condensate flow begins to be restricted 1, the condensate pressure in passage 30 decreases and one-way valve 31
Due to its self-closing tendency, the second valve port 29 is closed before the valve hole 28 is closed by the valve element 17, and thus the valve element 17 closes the second valve port 29.
Since the valve closes slowly, erosion, which is a concern when the high-speed discharge flow continues under the minute opening, is avoided.

第2図の例では弁孔28の下流における弁座9の端面開
口を第2の弁口29に利用し、これにステム34をゆる
(はめ合わせた一方向弁31の背面に直接、弱いコイル
ばね36を作用させるようにtで、中空フリーピストン
を省略した変形を示し、この場合もすでにのべたところ
とほぼ同様番こして、弁孔28を通る連続的な排水作動
は適時に遮断され、間けつ排水規制が、成就される。
In the example shown in FIG. 2, the end face opening of the valve seat 9 downstream of the valve hole 28 is used as the second valve port 29, and the stem 34 is loosely attached to the end face opening of the valve seat 9 downstream of the valve hole 28. At t, a variant is shown in which the hollow free piston is omitted, so that the spring 36 acts, and in this case, in much the same way as already mentioned, the continuous drainage action through the valve hole 28 is interrupted in a timely manner; Intermittent drainage regulations will be achieved.

以上のべたようにして、自閉傾向をもつ一方向弁の付設
によるだけの簡便な構成により、感温作動スチームトラ
ップの連続排水作動を、高温、高圧の際により適切な間
欠作動に規制することができる。
As described above, the continuous drainage operation of the temperature-sensitive steam trap can be regulated to intermittent operation that is more appropriate at high temperatures and high pressures, using a simple configuration that includes the addition of a one-way valve with a self-closing tendency. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は閉弁状態におけるバイメタル式スチームトラッ
プの断面図、第2図は内部構成の詳細を別例について示
す断面図である。 11・・・・弁ホルダ 28・・・・・固定弁孔 29
・・・・・・第2の弁口 31・・・・・一方向弁 特許出願人の名称 株式会社宮脇式スチームトラップ製作所第1図 第2図
FIG. 1 is a cross-sectional view of a bimetallic steam trap in a closed state, and FIG. 2 is a cross-sectional view showing the details of the internal structure of another example. 11... Valve holder 28... Fixed valve hole 29
... Second valve port 31 ... One-way valve Patent applicant name Miyawaki Steam Trap Manufacturing Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 閉弁方向に働く熱膨張推力とこれに対抗するコイルばね
の反力との作用を受ける弁ホルダに、該ばねの反力方向
にのみ、相対的に可動として係止した弁子を、上記熱膨
張推力を由来する復水の低温化に伴う選択的な排水を司
る固定弁口と向い合わせに対設した、感温作動スチーム
トラップにして、該固定弁口の下流側に、該弁口を通る
復水圧力の作用を受けて開弁する、自閉傾向をもつ一方
向弁をさらにそなえることからなる、感温作動スチーム
トラップの間けり排水規制装置。
The valve element, which is relatively movable only in the direction of the reaction force of the spring, is fixed to the valve holder which is subjected to the action of the thermal expansion thrust acting in the valve closing direction and the reaction force of the coil spring opposing this. A temperature-sensitive steam trap is installed opposite to a fixed valve port that controls selective drainage as the temperature of the condensate derived from the expansion thrust decreases, and the valve port is installed on the downstream side of the fixed valve port. An intermittent drainage control device for a temperature-sensitive steam trap, further comprising a one-way valve with a self-closing tendency, which opens under the action of the condensate pressure passing therethrough.
JP5840983A 1983-04-01 1983-04-01 Intermittent water repellency regulator for temperature sensitive working steam trap Pending JPS59183192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5840983A JPS59183192A (en) 1983-04-01 1983-04-01 Intermittent water repellency regulator for temperature sensitive working steam trap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5840983A JPS59183192A (en) 1983-04-01 1983-04-01 Intermittent water repellency regulator for temperature sensitive working steam trap

Publications (1)

Publication Number Publication Date
JPS59183192A true JPS59183192A (en) 1984-10-18

Family

ID=13083565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5840983A Pending JPS59183192A (en) 1983-04-01 1983-04-01 Intermittent water repellency regulator for temperature sensitive working steam trap

Country Status (1)

Country Link
JP (1) JPS59183192A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164679U (en) * 1987-04-15 1988-10-26
JP2007187256A (en) * 2006-01-13 2007-07-26 Tlv Co Ltd Temperature-responsive valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164679U (en) * 1987-04-15 1988-10-26
JP2007187256A (en) * 2006-01-13 2007-07-26 Tlv Co Ltd Temperature-responsive valve
JP4680781B2 (en) * 2006-01-13 2011-05-11 株式会社テイエルブイ Temperature-responsive valve

Similar Documents

Publication Publication Date Title
KR920009600B1 (en) Scald prevention assembly for shower
JPS5950846B2 (en) Thermal response bypass valve device
SE7706808L (en) REAR VALVE
JP3316737B2 (en) Condensate discharge device
JPS59183192A (en) Intermittent water repellency regulator for temperature sensitive working steam trap
DE3676657D1 (en) TEMPERATURE SENSITIVE VALVE.
JPS62237190A (en) Valve operated by device housing expansible wax cooperating with thermistor
US3467309A (en) Disk-type steam trap having movable bimetallic element
US2770440A (en) Pilot-controlled hydraulic valve
US2919069A (en) Thermostat
US6536676B2 (en) Valves
US3315890A (en) Reverse acting double port thermostat with butterfly characteristic
US4016853A (en) Control system and improved pneumatically operated temperature controlled valve construction therefor or the like
US4471906A (en) Thermostatically controlled trap
US2815174A (en) Cooling radiator thermostatic valve
JP4036913B2 (en) Steam trap
US2988282A (en) Fluid separating valve
US2729395A (en) Thermostats and outlet castings used in mounting thermostats in automotive cooling systems
US1371060A (en) Thermostatic valve
JPH0313654Y2 (en)
JPH0828785A (en) Thermally-actuated steam trap
JP2761674B2 (en) Thermo-responsive steam trap
JPS6145119B2 (en)
JPH0444960Y2 (en)
JPH073108Y2 (en) Temperature control valve for constant temperature bath