JPS591829A - Liquid-enclosing vibration-proof device - Google Patents

Liquid-enclosing vibration-proof device

Info

Publication number
JPS591829A
JPS591829A JP11095682A JP11095682A JPS591829A JP S591829 A JPS591829 A JP S591829A JP 11095682 A JP11095682 A JP 11095682A JP 11095682 A JP11095682 A JP 11095682A JP S591829 A JPS591829 A JP S591829A
Authority
JP
Japan
Prior art keywords
vibration
fluid chamber
damping
liquid
vibration isolator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11095682A
Other languages
Japanese (ja)
Inventor
Yukio Aono
青野 幸夫
Isao Ozawa
小沢 功
Ryoichi Muroi
良一 室井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP11095682A priority Critical patent/JPS591829A/en
Publication of JPS591829A publication Critical patent/JPS591829A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/26Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions
    • F16F13/264Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions comprising means for acting dynamically on the walls bounding a working chamber

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

PURPOSE:To prevent the wide-range transmission of vibration in a device to be used for the mount of an engine by keeping a dynamic spring constant and a damping coefficient together at a high level in the vibration-damping area of low frequency, and at a low level in the vibration-proof area of high frequency. CONSTITUTION:On the basis of the output signal of a control device 12 receiving the signal of the relative displacement between an engine and a car body, a change-over switch 11 switches over a battery 10 connected to a coil 9 between positive and negative poles. In the vibration-damping area of low frequency, an actuator 14 composed of a permanent magnet is moved downward by the coil 9 when an elastic wall 1 is contracted, and upward when extended for increasing the pressure difference between fluid chambers A and B to increase the effect of damping. In the vibration-proof are of high frequency, the actuator 14 is moved oppositely to the above, and the pressure difference between fluid chambers A and B is reduced to reduce the effect of damping.

Description

【発明の詳細な説明】 本発明は車両用エンジンマウントに使用する防振装置で
あって、ゴム弾性体壁よυなる互いに独立の第1および
第2の流体室を有し、振動が作用して上記両流体室が変
形した時に、両流体室間の仕切部に形成された絞り孔を
封入液体が流通することによシ振動の減衰作用をなす液
封入防振装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a vibration isolating device for use in a vehicle engine mount, which has first and second fluid chambers independent of each other and made of a rubber elastic wall, and is not subject to vibrations. The present invention relates to a liquid-filled vibration isolating device that damps vibrations by causing the sealed liquid to flow through a throttle hole formed in a partition between the two fluid chambers when the two fluid chambers are deformed.

エンジンの共振周波数は通常10 Hzないし20 H
z程度の低周波数域にあり、低速回転時にエンジン振動
は最も大きくなる。この低周波振動の車体への伝達を低
減せしめて乗り心地を良くするためには、上記防振装置
は低周波数域すなわち制振領域にて大きな減衰係数を有
する必要がある。また、走行中に路面から受ける低周波
の車体振動をエンジンに伝達せしめないためにも同様に
制振領域での減衰係数は大きいほうが良い。同様の目的
で制振領域では装置のバネ定数も大きくする必要がある
The resonant frequency of the engine is usually between 10 Hz and 20 H.
It is in the low frequency range of about Z, and engine vibration is greatest at low speeds. In order to reduce the transmission of this low frequency vibration to the vehicle body and improve ride comfort, the vibration isolator needs to have a large damping coefficient in the low frequency range, that is, the vibration damping region. Furthermore, in order to prevent low-frequency vehicle body vibrations received from the road surface while driving from being transmitted to the engine, it is better to have a large damping coefficient in the damping region. For the same purpose, it is also necessary to increase the spring constant of the device in the damping region.

高速回転時のエンジン振動は小さいが、この高周波振動
は可聴領域にあるため、振動が車体に伝達されると車内
騒音が大きくなる。この高周波数域すなわち防振領域に
おける振動の伝達を防止するためには上記防振装置の防
振領域における減衰係数を小さくする必要がある。同様
の目的で防振領域では装置のバネ定数も小さくする必要
がある。
Engine vibrations during high-speed rotation are small, but since these high-frequency vibrations are in the audible range, when the vibrations are transmitted to the car body, the noise inside the car increases. In order to prevent the transmission of vibrations in this high frequency range, that is, the vibration isolation region, it is necessary to reduce the damping coefficient in the vibration isolation region of the vibration isolator. For the same purpose, it is also necessary to reduce the spring constant of the device in the vibration isolation area.

ここで、従来の液封入防振装置を第1図に示す。Here, a conventional liquid-filled vibration isolator is shown in FIG.

図の従来例において、lは第1の流体室Aの室壁を構成
するとともに、エンジンの荷重を受ける厚肉のゴム弾性
体壁である。このゴム弾性体壁1は外形が円錐台形で、
その上面部には円錐形の凹所が形成しである。肉厚は上
方へ漸次薄くなっている。またゴム弾性体壁lには凹所
の頂点と下面の中心を結ぶ軸線に沿って絞り孔をなす貫
通孔2が形成しである。
In the conventional example shown in the figure, l is a thick rubber elastic wall that constitutes the chamber wall of the first fluid chamber A and receives the load of the engine. This rubber elastic wall 1 has a truncated conical outer shape,
A conical recess is formed in its upper surface. The wall thickness gradually decreases upward. Further, a through hole 2 is formed in the rubber elastic body wall 1 and serves as a restricting hole along an axis connecting the apex of the recess and the center of the lower surface.

凹所を形成したゴム弾性体壁1の上部にけ凹所を覆りよ
うに上板3が設けてあシ、その中央部にはボルト31が
突設しである。このポルト31にて図示しないエンジン
本体を本装置に固着する。一方、ゴム弾性体壁1の底面
には底板4が接合してあり、その中心に通孔41が設け
られて上記絞り孔2と合致している。
An upper plate 3 is provided on the upper part of the rubber elastic wall 1 in which a recess is formed so as to cover the recess, and a bolt 31 is provided protruding from the center of the upper plate 3. The engine body (not shown) is fixed to the device using this port 31. On the other hand, a bottom plate 4 is joined to the bottom surface of the rubber elastic body wall 1, and a through hole 41 is provided in the center thereof, which matches the aperture hole 2 described above.

6はゴム弾性体シートで、ドーム形に変形してその容積
を増すことができる。この弾性体シート6と底板4によ
り第2の流体室Bが形成される。
6 is a rubber elastic sheet which can be deformed into a dome shape to increase its volume. A second fluid chamber B is formed by the elastic sheet 6 and the bottom plate 4.

上記上板3に当接してストッパ部材5が冠着しである。A stopper member 5 is mounted in contact with the upper plate 3.

ストッパ部材5の左右両端は下方へ屈曲して垂直部51
を形成し、その下端は所定の間隔をおいて、ゴム弾性体
で被覆された底板4の上面と対向し、ゴム弾性体壁1が
設定範囲以上に変形したときに、底板4の上面と当接し
てストッパの役割を果す。ストッパ部材5の中央部には
ボルト3]貫通用の穴52が形成しである。
Both left and right ends of the stopper member 5 are bent downward to form a vertical portion 51.
The lower end faces the upper surface of the bottom plate 4 covered with a rubber elastic body at a predetermined interval, and comes into contact with the top surface of the bottom plate 4 when the rubber elastic body wall 1 is deformed beyond a set range. acts as a stopper. A hole 52 for passing the bolt 3 is formed in the center of the stopper member 5.

7は保護カバーで、中央部は第2の流体室Bの室壁だる
ゴム弾性体シート6を覆う形状のドーム形をなし、その
周縁部は底板4を覆う形状に形成しである。そしてポル
)41a、41bをあらかじめ立設しだ底板4に密着し
である。
Reference numeral 7 denotes a protective cover, the central part of which has a dome shape that covers the chamber wall of the second fluid chamber B and the rubber elastic sheet 6, and the peripheral part of which is formed to cover the bottom plate 4. Then, the poles 41a and 41b are set up in advance and are in close contact with the bottom plate 4.

上記ポル)41a、41bにて本装置を車体に固着する
This device is fixed to the vehicle body using the above-mentioned ports 41a and 41b.

上記のように構成し、エンジンを支持せしめだ液封入防
振装置において、エンジンが振動すると第1の流体室A
の室壁をなすゴム弾性体壁lが弾性的に変形する。これ
により第1の流体室Aは容積変化して液圧が変化し、封
入液体は絞り孔2を通って両流体室A、B間を流動する
In the saliva-filled vibration isolator configured as described above and supporting the engine, when the engine vibrates, the first fluid chamber A
The rubber elastic wall l forming the chamber wall is elastically deformed. As a result, the volume of the first fluid chamber A changes and the hydraulic pressure changes, and the sealed liquid flows between the two fluid chambers A and B through the throttle hole 2.

この時の流通抵抗によって第7図の線りの如く、低周波
域だる制橡領域での大きな減衰係数が得られる。しかし
、この構造では第6図の線りで示すように高周波域たる
防振領域で動バネ定数が急激に上昇する。
Due to the flow resistance at this time, a large attenuation coefficient can be obtained in the low frequency droop control region, as shown by the line in FIG. However, in this structure, as shown by the line in FIG. 6, the dynamic spring constant increases rapidly in the vibration isolation region, which is a high frequency region.

本発明は上記従来装置の不具合を解消し、制振領域では
動バネ定数、減衰係数がともに大きく、防振領域では動
バネ定数、減衰係数がともに小さくなる防振装置を提供
することを目的とするもので、防振装置の第1の流体室
Aの室壁をなす上板3の一部を伸縮可能で、容積可変な
ベローズとなし、とのベローズに装着した永久磁石よシ
なるアクチュエータに磁界を作用させて、制振領域では
第1の流体室Aの内圧の絶対値を増大するようにベロー
ズを作動せしめ、防振領域ではその反対に作動せしめる
ようにして、上記目的を達成したものである。
It is an object of the present invention to solve the above-mentioned problems of the conventional device, and to provide a vibration isolator in which both the dynamic spring constant and the damping coefficient are large in the vibration damping region, and the dynamic spring constant and the damping coefficient are both small in the vibration damping region. A part of the upper plate 3 forming the chamber wall of the first fluid chamber A of the vibration isolator is formed into a bellows which is expandable and contractible and whose volume is variable, and an actuator such as a permanent magnet attached to the bellows is used. The above object is achieved by applying a magnetic field to actuate the bellows to increase the absolute value of the internal pressure of the first fluid chamber A in the vibration damping area, and vice versa in the vibration isolation area. It is.

第2図は本発明の第1の実施例を示すもので、基本的な
構造は従来装置と変わらない。上板3の中心には抜き穴
が設けてあり、この抜き穴にはベローズ13の一方の開
【コ部が接合しである。
FIG. 2 shows a first embodiment of the present invention, the basic structure of which is the same as the conventional device. A hole is provided in the center of the upper plate 3, and one open portion of the bellows 13 is connected to this hole.

アクチュエータ14は軸の両端に異径の円板を形成した
もので、軸を垂直にした断面丁字形の下側の円板は上記
ベローズ13の他方の開口部を封じて、第1の流体室A
の可動壁をなしている。また上側の円板は上下面にそれ
ぞれN極、S極を形成した永久磁石でできている。アク
チュエータ14の軸回りには同心状にコイ/I/9が配
設してあり、このコイ/l/9は上板3に突設したボμ
)31a、311)VC嵌着固定されたプラケットsa
、sbによって支持されている。上記コイ7L’9はま
たリード線16a、16bによシ切換スイッチ11を介
してバッテリ]、0に接続しである。上記切換スイッチ
11は振動によるエンジンと車体の相対変位を検出する
図示しないセンサの信号を受けた制御装置12の出力信
号により、コイ1v9に接続されるバッテリ10の正負
極を切換えることができるようになっている。
The actuator 14 has disks with different diameters formed at both ends of the shaft, and the lower disk, which has a T-shaped cross section with the shaft vertical, seals the other opening of the bellows 13 and opens the first fluid chamber. A
It forms a movable wall. The upper disk is made of a permanent magnet with N and S poles formed on the upper and lower surfaces, respectively. A coil/I/9 is arranged concentrically around the axis of the actuator 14, and this coil/I/9 is attached to a button protruding from the upper plate 3.
) 31a, 311) VC fitted and fixed placket sa
, sb. The coil 7L'9 is also connected to the battery 7L'9 through the lead wires 16a and 16b and the changeover switch 11. The changeover switch 11 is configured to switch between positive and negative electrodes of the battery 10 connected to the coil 1v9 in response to an output signal from a control device 12 that receives a signal from a sensor (not shown) that detects relative displacement between the engine and the vehicle body due to vibrations. It has become.

上記構成を有する防振装置の作動を以下に述べる。The operation of the vibration isolator having the above configuration will be described below.

低周波の制振領域において、振動特上板5が下方へ押し
下げられて弾性体壁1が縮み、第1の流体室Aの容積が
小さくなってその内圧が上がると、切換スイッチ11を
介してコイ/L/9により発生する磁界が上方にN7を
作るようにバッテリ10より電流を供給する。するとア
クチュエータ14が下方へ動き、ベローズ]、3が収縮
してその容積が小さくなり、上記第1の流体室Aの内圧
はさらに上昇せしめられる。これにより両流体室A、B
の圧力差が増大し、密封液は絞υ孔2を高速で流通せし
められ、流通抵抗が増大する結果、減衰作用が大きくな
る。反対に上板3が上方へ引き上げられて弾性体壁lが
伸び、第1の流体室Aの容積が大きくなって第1の流体
室Aの内圧が下がると、コイル9により発生する磁界の
向きを反対にして、アクチュエータ14を上方へ動作さ
せ、ベローズ13を伸長せしめてその容量を増す。これ
によυ第1の流体室Aの内圧はさらに下降せしめられる
から、両流体室A、Bの圧力差は増大し、流通抵抗が増
大して、同様に減衰作用が大きくなる。
In the low frequency vibration damping region, when the vibration special plate 5 is pushed down and the elastic wall 1 contracts, the volume of the first fluid chamber A becomes smaller and its internal pressure increases, the changeover switch 11 A current is supplied from the battery 10 so that the magnetic field generated by the coil/L/9 forms N7 upward. Then, the actuator 14 moves downward, and the bellows 1 and 3 contract to reduce their volume, and the internal pressure of the first fluid chamber A is further increased. As a result, both fluid chambers A and B
As the pressure difference increases, the sealing liquid is forced to flow through the restrictor υ hole 2 at high speed, and as a result of the increased flow resistance, the damping effect increases. On the other hand, when the upper plate 3 is pulled upward and the elastic wall l is extended, the volume of the first fluid chamber A increases and the internal pressure of the first fluid chamber A decreases, the direction of the magnetic field generated by the coil 9 changes. is reversed to move actuator 14 upwards, extending bellows 13 and increasing its capacity. As a result, the internal pressure of the first fluid chamber A is further lowered, so that the pressure difference between the two fluid chambers A and B increases, the flow resistance increases, and the damping effect similarly increases.

上記どちらの場合も第1の流体室Aの内圧の絶対値が大
きいから動バネ定数は大きい@高周波の防振領域では制
振領域と反対に、弾性体壁1の収縮時はアクチュエータ
14を上方に、弾性体壁1の伸長時にはアクチュエータ
14を下方に動作させる。これによυ両流体室A1Bの
圧力差が減少し、流通抵抗が減少する結果、減衰作用が
小さくなる。この場合には第1の流体室Aの内圧の絶対
値は小さいから、動バネ定数は小さくなる。
In both of the above cases, since the absolute value of the internal pressure of the first fluid chamber A is large, the dynamic spring constant is large.@In the high frequency vibration isolation area, contrary to the vibration damping area, when the elastic wall 1 contracts, the actuator 14 is moved upward. Furthermore, when the elastic wall 1 is extended, the actuator 14 is moved downward. As a result, the pressure difference between the two fluid chambers A1B is reduced, the flow resistance is reduced, and the damping effect is reduced. In this case, since the absolute value of the internal pressure of the first fluid chamber A is small, the dynamic spring constant becomes small.

上記本発明の防振装置による制振、防振の両領域におけ
る動バネ定数、減衰係数を第6図、第7図の線Mで示す
。これによれば、従来装置に比して動バネ定数、減衰係
数とも、制振領域ではより大きく、防振領域ではより小
さくなって、防振装置として理想的な特性を示している
Dynamic spring constants and damping coefficients in both vibration damping and vibration isolation regions by the vibration isolating device of the present invention are shown by line M in FIGS. 6 and 7. According to this, both the dynamic spring constant and the damping coefficient are larger in the vibration damping region and smaller in the vibration isolating region than in the conventional device, and exhibit ideal characteristics as a vibration isolating device.

以上の如く、本開明の液封入防振装置は、第1の流体室
Aの可動壁をなすベローズを制振領域では第1の流体室
の内圧の絶対値が増大するように作動せしめて減衰係数
、動バネ定数とも増大せしめ、防振領域では上記内圧の
絶対値が減少するように作動せしめて、減衰係数、動バ
ネ定数とも減少せしめることにより、エンジンの低速回
転、高速回転にかかわらず、車体への振動伝達を減少せ
しめ、防振装置として優れた効果を発揮する。
As described above, the liquid-filled vibration isolator of the present invention operates the bellows forming the movable wall of the first fluid chamber A so that the absolute value of the internal pressure of the first fluid chamber increases in the vibration damping region, thereby damping the vibration. Both the coefficient and the dynamic spring constant are increased, and the absolute value of the above-mentioned internal pressure is decreased in the vibration isolation region.By reducing both the damping coefficient and the dynamic spring constant, the It reduces vibration transmission to the vehicle body and exhibits excellent effects as a vibration isolator.

第3図ないし第5図は振動によるエンジンと車体の相対
位置を検出するためのセンサを内装した本発明の防振装
置の第2ないし第40突施例を示すものである。
3 to 5 show second to fortieth embodiments of the vibration isolating device of the present invention, which are equipped with a sensor for detecting the relative position between the engine and the vehicle body due to vibration.

第3図において、ゴム弾性体61の底面には絞り孔2に
一致する抜き穴を設けた電極板17が一面に当着してあ
り、この電極板17と底板4間には、弾性体壁1と同一
形状の絞シ孔を形成した導電性ゴム18が介設しである
。上記電極板17と底板4には導電性ゴム18の抵抗変
化を測定すべく、リード線15a、15bの一端が接続
され、このリード線の他端はコントローラ12に達して
いる。
In FIG. 3, an electrode plate 17 having a punched hole corresponding to the aperture hole 2 is in contact with the bottom surface of the rubber elastic body 61, and an elastic body wall is placed between the electrode plate 17 and the bottom plate 4. A conductive rubber 18 having a constriction hole of the same shape as 1 is interposed. One ends of lead wires 15a and 15b are connected to the electrode plate 17 and the bottom plate 4 in order to measure the resistance change of the conductive rubber 18, and the other end of the lead wires reaches the controller 12.

上記の如き構成において、振動によって上記弾性体壁1
が圧縮されると、同時に導電性ゴム18も圧縮せしめら
れ、その抵抗値が下がる。
In the above configuration, the elastic wall 1 is caused by vibration.
When the conductive rubber 18 is compressed, the conductive rubber 18 is also compressed, and its resistance value decreases.

弾性体壁1が伸長すると、同時に導電性ゴム18も伸長
せしめられ、その抵抗値が上がる。この抵抗値変化を検
出したコントローラ12は切換スイッチ11を介し、て
コイ/L/9による磁界の方向を変化せしめ、上述した
ように制振領域においては、第1の流体室Aの内圧増大
時にはさらに内圧を増大せしめ、反対に防振領域では第
1の流体室への内圧を減少せしめるように、アクチュエ
ータ14を上下に作動させる。これにより本装置の減衰
係数、バネ定数は制振領域ではともに大きくなり、防振
領域ではともに小さくなる。
When the elastic wall 1 is expanded, the conductive rubber 18 is also expanded and its resistance value increases. The controller 12 detects this change in resistance value and changes the direction of the magnetic field generated by the coil/L/9 via the changeover switch 11. The actuator 14 is actuated up and down to further increase the internal pressure and, conversely, to decrease the internal pressure to the first fluid chamber in the vibration isolation region. As a result, the damping coefficient and spring constant of this device both become large in the vibration damping region, and both become small in the vibration isolation region.

以上の如く、エンジンと車体の相対距離の液化を検知す
るセンサを本発明の防振装置に内装することにより、そ
の優れた性能に加えて装置全体をコンパクトにすること
ができる。
As described above, by incorporating a sensor that detects liquefaction in the relative distance between the engine and the vehicle body into the vibration isolating device of the present invention, in addition to its excellent performance, the entire device can be made compact.

第4図は相対距離検出センサだる導電性ゴム18を弾性
体壁lの外周に形成した本発明の第3の実施例である。
FIG. 4 shows a third embodiment of the present invention in which a conductive rubber 18, which serves as a relative distance detection sensor, is formed on the outer periphery of the elastic wall l.

導電性ゴム18はゴム弾性体壁1とともに伸縮するから
、この抵抗変化をリード線15a。
Since the conductive rubber 18 expands and contracts together with the rubber elastic wall 1, this change in resistance is measured by the lead wire 15a.

151)を介してコントローラ12に入力する。151) to the controller 12.

本実施例においても第2の実施例と同様の効果を奏する
This embodiment also provides the same effects as the second embodiment.

第5図はゴム弾性体壁1の下部に圧電センサ19を埋設
した第4の実施例である。
FIG. 5 shows a fourth embodiment in which a piezoelectric sensor 19 is embedded in the lower part of the rubber elastic wall 1.

振動を受けた弾性体壁1の伸縮による弾性体壁1内の応
力変化を上記圧電センサ19にて検出し、リード線15
a、115bを介して、その発生電圧の変化をコントロ
ーラ12に入力するようにしだものである。本実施例に
おいても第2の実施例と同様の効果を奏する。
The piezoelectric sensor 19 detects stress changes in the elastic wall 1 due to expansion and contraction of the elastic wall 1 subjected to vibration, and the lead wire 15
The change in the generated voltage is input to the controller 12 via the terminals a and 115b. This embodiment also provides the same effects as the second embodiment.

以上の如く、本発明の液封入防振装置はエンジン振動に
よるエンジンと車体の相対位置変化を検出し、低周波数
域たる制振領域では防振装置の第1の流体室の内圧を高
め、高周波数域たる防振領域では上記流体室の内圧を低
くするように第1の流体室の可動壁をなすベローズを作
動せしめることにより、エンジンの低速回転から高速回
転に至るまでの車体への振動伝達を低減せしめて、車両
の居住性の改善および走行性能の大幅な向tを実現した
ものである。
As described above, the liquid-filled vibration isolator of the present invention detects changes in the relative position of the engine and the vehicle body due to engine vibration, and increases the internal pressure of the first fluid chamber of the vibration isolator in the vibration damping region, which is a low frequency range. In the vibration isolation frequency range, by operating the bellows that forms the movable wall of the first fluid chamber to lower the internal pressure of the fluid chamber, vibrations are transmitted to the vehicle body from low speed rotation to high speed rotation of the engine. This results in improved vehicle comfort and a significant improvement in driving performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の液封入防振装置の全体断面図、第2図な
いし第5図は本発明の第1ないし第4の実施例における
上記防振装置の全体断面図、第6図、第7図仁1゛従来
の防振装置と本発明の防振装置について動バネ定数と減
衰係数の周波数特性を比較した図である。 A・・・・・・第1の流体室 B・・・・・・第2の流体室 1・・・・・・厚内のゴム弾性体壁 2・・・・・・絞り孔 6・・・・・・ゴム弾性体シート 9・・・・・・コイル 1.0・・・・・・バッテリ 11・・・・・・切換スイッチ 12・・・・・・コントローラ 13・・・・・・ベローズ゛ 14・・・・・・アクチュエータ 18・・・・・・導電性ゴム(センサ)19・・・・・
・圧電センサ(センサ)第1図
FIG. 1 is an overall cross-sectional view of a conventional liquid-filled vibration isolator, FIGS. 2 to 5 are overall cross-sectional views of the vibration isolator according to the first to fourth embodiments of the present invention, and FIGS. Figure 7-1 is a diagram comparing the frequency characteristics of the dynamic spring constant and damping coefficient of the conventional vibration isolator and the vibration isolator of the present invention. A: First fluid chamber B: Second fluid chamber 1: Thick rubber elastic wall 2: Throttle hole 6: ... Rubber elastic sheet 9 ... Coil 1.0 ... Battery 11 ... Changeover switch 12 ... Controller 13 ... Bellows 14... Actuator 18... Conductive rubber (sensor) 19...
・Piezoelectric sensor (sensor) Figure 1

Claims (1)

【特許請求の範囲】[Claims] 厚肉のゴム弾性体壁よりなる第1の流体室と、薄肉のゴ
ム弾性体壁よりなる第2の流体室と、両流体室間を連通
せしめる絞シ孔とを備え、上記第1の流体室のゴム弾性
体壁に支持せしめた被支持体の振動により、上記両流体
室の容積が変化して、上記絞シ孔を通って封入液体が流
通する。よりになした液封入防振装置において、上記第
1の流体室の室壁の一部を、永久磁石を一体的に設けた
ベローズで構成して、該ベローズの伸縮により、第1の
流体室の容積を可変とし、かつ上記被支持体の振動によ
る支持体との相対変位を検知するセンサを設け、該セン
サの信号によシ磁界を作用せしめて、上記ベローズを制
振領域では第1の流体室の内圧変化を助長するように、
防振領域では第1の流体室の内圧変化を緩和するように
作動せしめるようになしだことを特徴とする液封入防振
装置。
The first fluid chamber includes a first fluid chamber made of a thick rubber elastic wall, a second fluid chamber made of a thin rubber elastic wall, and a restriction hole that communicates between the two fluid chambers. The volumes of the two fluid chambers change due to the vibration of the supported body supported by the rubber elastic wall of the chamber, and the sealed liquid flows through the throttle hole. In the liquid-filled vibration isolator according to the present invention, a part of the chamber wall of the first fluid chamber is constituted by a bellows integrally provided with a permanent magnet, and the expansion and contraction of the bellows causes the first fluid chamber to open. A sensor is provided, the volume of which is variable, and which detects the relative displacement between the supported body and the supporting body due to vibration, and a magnetic field is applied to the signal of the sensor to cause the bellows to move into the first position in the vibration damping area. To encourage changes in the internal pressure of the fluid chamber,
A liquid-filled vibration isolator characterized in that the liquid-filled vibration isolator is actuated in the vibration isolator region to alleviate changes in the internal pressure of the first fluid chamber.
JP11095682A 1982-06-28 1982-06-28 Liquid-enclosing vibration-proof device Pending JPS591829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11095682A JPS591829A (en) 1982-06-28 1982-06-28 Liquid-enclosing vibration-proof device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11095682A JPS591829A (en) 1982-06-28 1982-06-28 Liquid-enclosing vibration-proof device

Publications (1)

Publication Number Publication Date
JPS591829A true JPS591829A (en) 1984-01-07

Family

ID=14548786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11095682A Pending JPS591829A (en) 1982-06-28 1982-06-28 Liquid-enclosing vibration-proof device

Country Status (1)

Country Link
JP (1) JPS591829A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0163162A2 (en) * 1984-05-24 1985-12-04 METZELER Gesellschaft mit beschränkter Haftung Two-chamber engine mounting with hydraulic damping
EP0163817A2 (en) * 1984-06-07 1985-12-11 Audi Ag Hydraulic motor mount
JPS60252835A (en) * 1984-05-28 1985-12-13 Mitsubishi Motors Corp Car body vibration reducing device
FR2570154A1 (en) * 1984-09-11 1986-03-14 Freudenberg Carl DEVICE FOR ELASTICALLY SUPPORTING A VIBRATION BODY
JPS61233238A (en) * 1985-04-08 1986-10-17 Toyo Tire & Rubber Co Ltd Liquid attenuation type vibrationproof supporting device
US4624435A (en) * 1983-04-20 1986-11-25 Tillmann Freudenberg Electro-magnetic vibration-damping mount
JPS61278638A (en) * 1985-05-31 1986-12-09 Nissan Motor Co Ltd Liquid-sealed type vibration insulating body
JPS62242149A (en) * 1986-04-10 1987-10-22 Honda Motor Co Ltd Elastic suspension device
FR2656053A1 (en) * 1989-12-15 1991-06-21 Nissan Motor
US5249782A (en) * 1991-12-06 1993-10-05 Tokai Rubber Industries, Ltd. Elastic mount and method of manufacturing the elastic mount
US5277409A (en) * 1991-12-06 1994-01-11 Tokai Rubber Industries, Ltd. Elastic mount having fluid chamber partially defined by elastically supported oscillating plate
US5333846A (en) * 1991-11-28 1994-08-02 Tokai Rubber Industries, Ltd. Elastic mount having fluid chamber partially defined by oscillating plate actuated by moving coil in annular gap between two yokes connected to permanent magnet, and method of manufacturing the elastic mount
US5344129A (en) * 1991-12-06 1994-09-06 Tokai Rubber Industries, Ltd. Elastic mount having fluid chamber partially defined by oscillating plate actuated by moving coil in annular gap between two yokes connected to permanent magnet
US5344128A (en) * 1991-10-09 1994-09-06 Honda Giken Kogyo Kabushiki Kaisha Self-expanding mount
US5386275A (en) * 1992-09-30 1995-01-31 Tokai Rubber Industries, Ltd. Fluid-filled elastic mount having oscillating plate driven by electromagnetic means including magnet fixed to movable inner yoke member, and annular coil fixed to stationary outer yoke member
WO1998037339A1 (en) * 1997-02-24 1998-08-27 Lord Corporation Magnetorheological fluid seismic damper
WO1998039580A1 (en) * 1997-03-04 1998-09-11 Honeywell Inc. Hybrid isolator and structural control actuator strut
FR2792697A1 (en) 1999-04-23 2000-10-27 Tokai Rubber Ind Ltd DEVICE FOR ACTIVE VIBRATION DAMPING, FILLED WITH A FLUID, COMPRISING A STABILIZING ELEMENT FOR STABILIZING AN OSCILLATING ELEMENT
EP1067309A1 (en) * 1999-07-08 2001-01-10 Peugeot Citroen Automobiles SA Hydroelastic support for the drive unit of an automotive vehicle
US6325364B1 (en) 1999-09-17 2001-12-04 Tokai Rubber Industries, Ltd. Fluid-filled active elastic mount wherein oscillating member is elastically supported by two elastic support members
JP2015178991A (en) * 2014-03-19 2015-10-08 公益財団法人鉄道総合技術研究所 Vehicle state determination device, vehicle state determination program, and load detection device

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4624435A (en) * 1983-04-20 1986-11-25 Tillmann Freudenberg Electro-magnetic vibration-damping mount
US4699348A (en) * 1983-04-20 1987-10-13 Tillmann Freudenberg Electro-magnetic vibration-damping mount
JPH0373741U (en) * 1984-05-24 1991-07-24
EP0163162A2 (en) * 1984-05-24 1985-12-04 METZELER Gesellschaft mit beschränkter Haftung Two-chamber engine mounting with hydraulic damping
JPH0439481Y2 (en) * 1984-05-24 1992-09-16
JPS60252835A (en) * 1984-05-28 1985-12-13 Mitsubishi Motors Corp Car body vibration reducing device
JPH0467055B2 (en) * 1984-05-28 1992-10-27 Mitsubishi Motors Corp
EP0163817A2 (en) * 1984-06-07 1985-12-11 Audi Ag Hydraulic motor mount
FR2570154A1 (en) * 1984-09-11 1986-03-14 Freudenberg Carl DEVICE FOR ELASTICALLY SUPPORTING A VIBRATION BODY
JPS61233238A (en) * 1985-04-08 1986-10-17 Toyo Tire & Rubber Co Ltd Liquid attenuation type vibrationproof supporting device
JPS61278638A (en) * 1985-05-31 1986-12-09 Nissan Motor Co Ltd Liquid-sealed type vibration insulating body
JPS62242149A (en) * 1986-04-10 1987-10-22 Honda Motor Co Ltd Elastic suspension device
FR2656053A1 (en) * 1989-12-15 1991-06-21 Nissan Motor
US5344128A (en) * 1991-10-09 1994-09-06 Honda Giken Kogyo Kabushiki Kaisha Self-expanding mount
US5333846A (en) * 1991-11-28 1994-08-02 Tokai Rubber Industries, Ltd. Elastic mount having fluid chamber partially defined by oscillating plate actuated by moving coil in annular gap between two yokes connected to permanent magnet, and method of manufacturing the elastic mount
US5277409A (en) * 1991-12-06 1994-01-11 Tokai Rubber Industries, Ltd. Elastic mount having fluid chamber partially defined by elastically supported oscillating plate
US5344129A (en) * 1991-12-06 1994-09-06 Tokai Rubber Industries, Ltd. Elastic mount having fluid chamber partially defined by oscillating plate actuated by moving coil in annular gap between two yokes connected to permanent magnet
US5249782A (en) * 1991-12-06 1993-10-05 Tokai Rubber Industries, Ltd. Elastic mount and method of manufacturing the elastic mount
US5386275A (en) * 1992-09-30 1995-01-31 Tokai Rubber Industries, Ltd. Fluid-filled elastic mount having oscillating plate driven by electromagnetic means including magnet fixed to movable inner yoke member, and annular coil fixed to stationary outer yoke member
WO1998037339A1 (en) * 1997-02-24 1998-08-27 Lord Corporation Magnetorheological fluid seismic damper
WO1998039580A1 (en) * 1997-03-04 1998-09-11 Honeywell Inc. Hybrid isolator and structural control actuator strut
US6003849A (en) * 1997-03-04 1999-12-21 Honeywell Inc. Hybrid isolator and structural control actuator strut
FR2792697A1 (en) 1999-04-23 2000-10-27 Tokai Rubber Ind Ltd DEVICE FOR ACTIVE VIBRATION DAMPING, FILLED WITH A FLUID, COMPRISING A STABILIZING ELEMENT FOR STABILIZING AN OSCILLATING ELEMENT
US6276673B1 (en) 1999-04-23 2001-08-21 Tokai Rubber Industries, Ltd. Fluid-filled active vibration damping device having stabilizing member for stabilizing oscillating member
EP1067309A1 (en) * 1999-07-08 2001-01-10 Peugeot Citroen Automobiles SA Hydroelastic support for the drive unit of an automotive vehicle
FR2796113A1 (en) * 1999-07-08 2001-01-12 Peugeot Citroen Automobiles Sa HYDROELASTIC SUPPORT FOR A DRIVE GROUP OF A MOTOR VEHICLE
US6325364B1 (en) 1999-09-17 2001-12-04 Tokai Rubber Industries, Ltd. Fluid-filled active elastic mount wherein oscillating member is elastically supported by two elastic support members
JP2015178991A (en) * 2014-03-19 2015-10-08 公益財団法人鉄道総合技術研究所 Vehicle state determination device, vehicle state determination program, and load detection device

Similar Documents

Publication Publication Date Title
JPS591829A (en) Liquid-enclosing vibration-proof device
US6439556B1 (en) Active decoupler hydraulic mount
US5060919A (en) Damping coefficient control device for vibration damper
JPH01250637A (en) Viscosity variable fluid sealing control type vibrationproofing body
JPH07151181A (en) Changeable hydraulic buffer type supporter
JPS591828A (en) Liquid-enclosing vibration-proof device
JP3688836B2 (en) Vibration isolator
JP2523237Y2 (en) Fluid-filled mounting device
US5571264A (en) Fluid sealed type antivibration rubber device
JP2009144892A (en) Liquid-filled vibration control device
GB2269217A (en) Controlling vibrations
JP2944470B2 (en) Liquid sealing rubber device
JP2001059540A (en) Active mount
JPS6339457Y2 (en)
JP3541871B2 (en) Electronically controlled liquid-filled mount
JP3574206B2 (en) Anti-vibration device
JP3541870B2 (en) Electronically controlled liquid-filled mount
JP2917571B2 (en) Liquid filled vibration isolator
JPH05306728A (en) Liquid-sealed vibration control device
JP2861463B2 (en) Liquid filled vibration isolator
JPH0880751A (en) Electronically controlled engine mount
JP2588575Y2 (en) Liquid-filled mount
JPH0716124Y2 (en) Vibration control body with variable viscosity fluid control
JP4084122B2 (en) Active liquid seal vibration isolator
JPS62127538A (en) Vibration body supporting device