JPS59182903A - Method for adding powder and granule to molten metal - Google Patents
Method for adding powder and granule to molten metalInfo
- Publication number
- JPS59182903A JPS59182903A JP5819283A JP5819283A JPS59182903A JP S59182903 A JPS59182903 A JP S59182903A JP 5819283 A JP5819283 A JP 5819283A JP 5819283 A JP5819283 A JP 5819283A JP S59182903 A JPS59182903 A JP S59182903A
- Authority
- JP
- Japan
- Prior art keywords
- nozzle
- stopper
- steel
- molten steel
- molten metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
- B22D11/11—Treating the molten metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
- B22D11/108—Feeding additives, powders, or the like
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Furnace Charging Or Discharging (AREA)
- Continuous Casting (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は溶融金属中へ粉粒体を添加する方法に関する。[Detailed description of the invention] The present invention relates to a method for adding powder to molten metal.
溶鋼の凝固過程で外部から冷却材を添加することによシ
等軸晶化が促進され、その結果鋼塊、鋳片の内質が向上
することはよく知られており、特に粉粒状の冷却材を用
いるのが有効である。It is well known that adding a coolant externally during the solidification process of molten steel promotes equiaxed crystallization, which improves the internal quality of steel ingots and slabs. It is effective to use wood.
そこで連続鋳造法により溶鋼を冷却、凝固させるに際し
て、粉粒体の冷却材を用いて、これを溶鋼中に添加する
ことが行われるが、その添加方法はタンディツシュノズ
ルを介して流出する溶鋼の中心部に粉粒体の冷却材を落
下させて、巻き込ませることが最も安定かつ確実である
ことが明らかである。Therefore, when cooling and solidifying molten steel using the continuous casting method, a granular coolant is used and added to the molten steel. It is clear that the most stable and reliable method is to drop the granular coolant into the center and wind it up.
このような方法の1つとして特開昭54−94437号
があり、これは第1図(a)に示すようにタンディツシ
ュノズル4直上のストッパ1に中空孔5を設け、この孔
より鋼粒を噴出せしめると共にノズル4上端部での溶鋼
流の吸引作用に依り鋼粒8を溶鋼流にて完全に包含混合
させんとするものである。One such method is JP-A No. 54-94437, in which a hollow hole 5 is provided in the stopper 1 directly above the tundish nozzle 4, as shown in FIG. At the same time, by the suction action of the molten steel flow at the upper end of the nozzle 4, the steel grains 8 are completely included and mixed in the molten steel flow.
然しながらこの方法で溶鋼流による吸引作用を生じさせ
るためには、ストッパ1先端とタンディツシュノズル4
上端との間隔、即ちストッパ開度を非常に狭くする必要
があるが、そのストッパ開度では溶鋼2の流出量は僅か
となる。したがってこの流出量を超えて溶鋼2を流出さ
せる必要がある場合には、ストッパ開度を大きくするた
めに吸引作用が生じず、鋼粒8が噴出しない欠点がある
。However, in order to create a suction effect by the molten steel flow with this method, the tip of the stopper 1 and the tundish nozzle 4 must be
It is necessary to make the distance from the upper end, that is, the stopper opening, very narrow, but at that stopper opening, the amount of molten steel 2 flowing out is small. Therefore, if it is necessary to flow out the molten steel 2 in excess of this flow rate, the stopper opening degree is increased so that no suction action is produced and the steel grains 8 are not ejected.
また、特開昭53−130234号は基本的には上記特
開昭54−94437号と同じようにストッパ中空孔5
より鋼粒8を溶鋼2中に添加するものであるが、鋼粒8
をAr等のキャリアガスにて気送することにより溶鋼流
による吸引作用の不足分を補わんとするものである。こ
の不足分を補うに必要なガス量は相当量に及び、これが
溶鋼流に巻き込まれて気泡となり、鋳片内質を損ねるだ
けでなく、鋳型内で湯面振動を誘起して操業面で支障を
きたす虞れがある。Additionally, JP-A No. 53-130234 basically has a stopper hollow hole 5 similar to the above-mentioned JP-A No. 54-94437.
The steel grains 8 are added to the molten steel 2, but the steel grains 8
The purpose is to compensate for the lack of suction effect caused by the molten steel flow by pneumatically transporting the molten steel with a carrier gas such as Ar. A considerable amount of gas is required to make up for this deficiency, and this gas gets caught up in the molten steel flow and forms bubbles, which not only impairs the internal quality of the slab, but also induces surface vibration in the mold, causing operational problems. There is a risk of causing
本発明は斯かる従来技術の難点を解決すべくなされたも
のであシ、鋳片内質を劣化させることなく、また操業面
で支障をきたすことのない粉粒体の添加方法を提供する
ことを目的とする。The present invention has been made in order to solve the problems of the prior art.It is an object of the present invention to provide a method for adding powder and granules that does not deteriorate the internal quality of the cast slab or cause any problems in terms of operation. With the goal.
本発明に係る溶融金属中への粉粒体の添加方法は、タン
ディツシュノズル上方に位置するストッパに設けた中空
部より粉粒体を溶融金属中に添加する方法において、そ
の先端がノズル上端より下方の0.71RC但しlRは
ノズル上端曲面部の長さ)を超える深さ位置に設定でき
るように1先端を延出させた形状としたストッパを用い
ることを特徴とする。The method of adding powder and granules into molten metal according to the present invention is a method of adding powder and granules into molten metal through a hollow part provided in a stopper located above a tundish nozzle. The stopper is characterized by the use of a stopper having one tip extended so that it can be set at a depth exceeding 0.71RC (where lR is the length of the curved surface portion of the upper end of the nozzle).
以下本発明を具体的に説明する。第1図(a)において
内径が一定である長さ18のストレート部と内径上方に
向けて拡径されている長さらの曲面部とからなる長さf
(=−/8−1/R)のタンディツシュノズル4から
鋼浴中に溶鋼2が流出する場合におけるストレート部で
の溶鋼流速Vは下記il1式で算出できる。The present invention will be specifically explained below. In Fig. 1(a), the length f consists of a straight part of length 18 whose inner diameter is constant and a long curved part whose inner diameter is expanded upward.
(=-/8-1/R) When the molten steel 2 flows out into the steel bath from the tundish nozzle 4, the flow velocity V of the molten steel in the straight section can be calculated using the following formula il1.
但し、g:重力加速度
ζ:損失係数
λ:摩擦係数
dニストレード部のノズル内径
H:タンディツシュ内の鋼浴深さ
I!D:ノズル先端の鋳型(図示せず)内鋼浴中浸漬深
さ
次に鋳型内湯面(大気圧)からの高さ2の位置における
圧力P2はベルターイの定理による下記(2)式から求
められる。However, g: Gravitational acceleration ζ: Loss coefficient λ: Friction coefficient d Nozzle inner diameter of Nistrade part H: Steel bath depth in the tundish I! D: Immersion depth of the nozzle tip in the steel bath inside the mold (not shown) Next, the pressure P2 at a height of 2 from the mold surface (atmospheric pressure) is calculated from the following equation (2) based on Berthail's theorem. .
但し、γ:溶鋼の比重量
Pot V(++ (L) :湯面における圧力、流速
及びノズル内径
PZI VZ :高さ2における圧力及び流速なお溶鋼
流速v2はストレート部では高さZに拘らず一定である
が、曲面部では内径が異なるので下記(3)式に従い変
化する。なお曲面部の断面は1/4円とする。However, γ: Specific weight of molten steel Pot V(++ (L): Pressure at the molten metal surface, flow velocity, and nozzle inner diameter PZI VZ: Pressure and flow velocity at height 2 Note that the molten steel flow velocity v2 is constant regardless of the height Z in the straight part However, since the inner diameter is different in the curved part, it changes according to the following equation (3).The cross section of the curved part is assumed to be 1/4 circle.
V2* 1/4id” =K −f31但
し、K:定数
上記fil〜(3)式に下記数値を代入する。V2* 1/4id" = K - f31 However, K: constant Substitute the following numerical value into the above formula (3).
即ち H=600mm、 1=1000st+++
1 =100m 、 !、=70m+! =9
30m 、 d=60Wmγ=7.2g/国3.
ζ=0.01λ= 0.02 、 g =
980 am/秒1を代入してノズル内圧力分布を算
出した結果を第1図(b)に示す。この図にみられるよ
うにストレート部ではノズル4下端から上方に向うに従
って圧力は低下し、曲面部に入って曲面部の下端より3
0係程度のところで最も低くなり、それより上方になる
につれ圧力は急激に上昇する。ストッパ中空部5に添加
した鋼粒8が溶鋼流の吸引作用、即ち圧力差により溶鋼
中に巻き込まれるためにはストッパ中空部5が大気圧で
あるので、ストッパ1先端位置での圧力を大気圧より低
くする必要がある。That is, H=600mm, 1=1000st+++
1 = 100m, ! ,=70m+! =9
30m, d=60Wmγ=7.2g/country 3.
ζ=0.01λ=0.02, g=
The results of calculating the nozzle internal pressure distribution by substituting 980 am/sec 1 are shown in FIG. 1(b). As seen in this figure, in the straight part, the pressure decreases upward from the lower end of the nozzle 4, and when it enters the curved part, the pressure decreases from the lower end of the nozzle 4.
The pressure is lowest at about 0 coefficient, and rises rapidly as it goes above that level. In order for the steel grains 8 added to the stopper hollow part 5 to be drawn into the molten steel by the suction effect of the molten steel flow, that is, by the pressure difference, the stopper hollow part 5 is at atmospheric pressure, so the pressure at the tip of the stopper 1 is set to atmospheric pressure. need to be lower.
計算によりノズル4内圧力が大気圧と等しくなる位置は
ノズル上端から0.7 ラ の点であり、これはノズル
長さ9曲面部形状、ノズル先端の鋼浴中浸漬深さが異な
っても殆んど変らすfll〜(3)式により一義的に決
定される。従ってストッパ1の先端開口をノズル上端か
ら0.7fRの位置より深い位置に占位せしめることと
すれば、鋼粒8がノズル4内溶鋼流に吸引され巻き込ま
れていくことになる〇
一方、Ar等のガスを用いてストッパ1の中空部5の圧
力を増加せしめることは、該圧力とストツパ1先端開口
での圧力との圧力差が増すので、鋼粒添加量の増加に有
効であると考えられる。前述した特開昭53−1302
34号はこの考えによる。According to calculations, the position where the internal pressure of the nozzle 4 becomes equal to the atmospheric pressure is a point 0.7 degrees from the top of the nozzle, and this is almost the same regardless of the length of the nozzle, the shape of the curved surface, and the immersion depth of the nozzle tip in the steel bath. is uniquely determined by equation (3). Therefore, if the tip opening of the stopper 1 is located at a position deeper than 0.7 fR from the upper end of the nozzle, the steel grains 8 will be sucked into the molten steel flow in the nozzle 4 and become involved. Increasing the pressure in the hollow part 5 of the stopper 1 using a gas such as Ar increases the pressure difference between this pressure and the pressure at the opening at the tip of the stopper 1, and is therefore effective in increasing the amount of steel grains added. Conceivable. The above-mentioned Japanese Patent Application Publication No. 53-1302
No. 34 is based on this idea.
いま、ノズル4内溶鋼流量をQ、ノズル4内溶鋼流速を
Vとするとノズル4内圧力Pは下記(4)式によって表
わされる。Now, when the flow rate of molten steel in the nozzle 4 is Q and the flow rate of molten steel in the nozzle 4 is V, the pressure P in the nozzle 4 is expressed by the following equation (4).
γ
P−一・QIIv ・・・(4)然しなか
ら鋳片内質、操業面からタンディツシュノズルに吹き込
めるガス量は操業条件により異なるが、一般に100
l1分前後である。これを110ff1φの中空部に流
した場合の圧力P(相対圧)は0.006 kg/am
2程度である。この圧力増があるとしてもこれによって
高くすることができるストッパーの先端開口位置は第1
図缶)から読取れるようにごく僅かであシ、これは前述
した如き鋼中で気泡となり、鋳片内質を損ねると共に特
開昭53−130234号が有する難点であるといえる
。つまり、Ar等のガスを吹込む場合にもストッパーの
先端開口位置を0.7 fRよりも深い位置にするとと
が必要である。γ P-1・QIIv (4) However, from the viewpoint of internal quality of slab and operation, the amount of gas that can be blown into the tundish nozzle varies depending on the operating conditions, but is generally 100
It is around 1 minute. When this flows into a hollow part of 110ff1φ, the pressure P (relative pressure) is 0.006 kg/am
It is about 2. Even if there is this pressure increase, the position of the end opening of the stopper that can be raised is the first.
As can be seen from the figure (Figure 1), there are only a few bubbles, which form bubbles in the steel as described above, impairing the internal quality of the slab, and can be said to be a drawback of JP-A-53-130234. In other words, even when blowing a gas such as Ar, it is necessary to set the end opening position of the stopper to a position deeper than 0.7 fR.
而して本発明ではこれを実現できるストッパを用いて粉
粒体を添加する。第2図は本発明方法の実施状態を示す
模式図、第3図はそのストッパ先端近傍の拡大図である
。図中3は連続鋳造用タンディツシュであり、その内部
には図示しない取鍋から供給される溶鋼2が溜っている
。該溶鋼2はストッパ11により流量調節されて、ノズ
ル4を介して鋳型9へ装入される。ストッパ11は第1
図(a)に示した従来のものと異なり、この先端に長さ
150〒程度の細い延出部6を有し、鋼棹βを通流させ
るべき中空部5の内径を10mmとしてあり、延出部6
の外径はノズル4内への挿入に支障−1
がなく、また溶鋼がノズル4の曲面部と延出部6との間
を所要速度で流れ得る値に選定される。その形状もノズ
ル4の曲面部の形状に合せて定めればよい。Accordingly, in the present invention, the granular material is added using a stopper that can realize this. FIG. 2 is a schematic diagram showing the implementation state of the method of the present invention, and FIG. 3 is an enlarged view of the vicinity of the stopper tip. In the figure, numeral 3 denotes a tundish for continuous casting, and molten steel 2 supplied from a ladle (not shown) is stored inside the tundish. The flow rate of the molten steel 2 is adjusted by a stopper 11, and the molten steel 2 is charged into a mold 9 through a nozzle 4. The stopper 11 is the first
Unlike the conventional one shown in Figure (a), this tip has a thin extension 6 with a length of about 150 mm, and the inner diameter of the hollow part 5 through which the steel rod β is to flow is 10 mm. Exit 6
The outer diameter of the nozzle 4 is selected to be such that there is no problem in inserting the nozzle 4 into the nozzle 4, and the molten steel can flow between the curved surface of the nozzle 4 and the extension 6 at the required speed. Its shape may also be determined in accordance with the shape of the curved surface portion of the nozzle 4.
延出部6はストッパ11と一体ものでもよく、或いはス
トッパ11に螺着する分割型のものでもよい。またスト
ッパ11は図示しない支持装置にて鋼粒供給管7を介し
て支持され、鋼粒8を貯留する鋼粒貯留槽(図示せず)
から鋼粒供給管7を経た鋼粒8がストッパー1へ送り込
まれる。The extending portion 6 may be integrated with the stopper 11, or may be a split type that is screwed onto the stopper 11. Further, the stopper 11 is supported by a support device (not shown) via the steel grain supply pipe 7, and is connected to a steel grain storage tank (not shown) that stores the steel grains 8.
Steel grains 8 are sent from the steel grain supply pipe 7 to the stopper 1.
ノズル4はl =76mm、 18=924rnmの全
長1000mmの耐大物であり、鋳型9内溶鋼2中にそ
の下部が100闘浸漬されている。The nozzle 4 is a heavy-duty piece with a total length of 1000 mm with l = 76 mm and 18 = 924 nm, and its lower part is immersed in the molten steel 2 in the mold 9 for 100 hours.
上述のような操業状況でノズル4上端より下方の0.7
1R(= 53M)を超える深さ位置にストッパ−1下
部の延出部6下端が占位するようにストッパ開度を制限
する。これにより本発明の目的は達成できる。0.7 below the upper end of nozzle 4 under the operating conditions described above.
The stopper opening degree is limited so that the lower end of the extension part 6 at the bottom of the stopper 1 is located at a depth exceeding 1R (=53M). Thereby, the object of the present invention can be achieved.
次に本発明方法の実施例につき説明する。まず上述した
本発明方法でノズル4上端より下方100mm(〉0.
71R)の深さ位置に延出部6下端を占位せしめた場合
には、鋼粒8は時間当りに所定量減少して、正常に溶鋼
中に添加されることが確認された。Next, examples of the method of the present invention will be described. First, by the above-described method of the present invention, a distance of 100 mm (>0.
It was confirmed that when the lower end of the extension part 6 was located at a depth of 71R), the steel grains 8 decreased by a predetermined amount over time and were normally added to the molten steel.
そこでストッパー1を少し上げて、ノズル4上端より下
方53 tyt’ (−〇 −71R)程度の深さ位置
に延出部6下端を占位させると鋼粒8は減少しなくなっ
て、供給が止まる。そしてストッパー1の位置をそのま
まとし、鋳込終了後延出部6を観察した ゛ところ、
先端が地金により塞がれていることが判明した。これに
より本発明の有意性が確認できた。Therefore, if the stopper 1 is slightly raised and the lower end of the extension part 6 is positioned at a depth of about 53 tyt' (-71R) below the upper end of the nozzle 4, the steel grains 8 will no longer decrease and the supply will stop. . Then, leaving the stopper 1 in the same position, the extension part 6 was observed after the casting was completed.
It was discovered that the tip was blocked by metal. This confirmed the significance of the present invention.
なお延出部6の長さは、その先端をノズル4上端から0
.71Rを超える深さ位置に占位させる必要からその最
短長さが定められるが、一方、耐用性、強度両面から5
00闘以下にするのが好ましい。そして以上の説明では
鋼の連続鋳造を例にとったが、本発明は他の金属を連続
鋳造する場合、或いは造塊法により鋳造する場合にも適
用でき、まだ使用する粉粒体として銅粉粒、鉄粉粒等の
冷却材以外にも合金鉄、或いは脱酸剤等を用いて良いこ
とは勿論である。また本発明方法はAr等のガス吹込み
の併用を妨げない。The length of the extending portion 6 is such that its tip is 0.00 m from the upper end of the nozzle 4.
.. The shortest length is determined by the need to locate at a depth exceeding 71R, but on the other hand, the shortest length is determined from the viewpoint of both durability and strength.
It is preferable to make it 00 fights or less. In the above explanation, continuous casting of steel was taken as an example, but the present invention can also be applied to continuous casting of other metals or casting by an ingot method, and copper powder is still used as the powder. Of course, in addition to the coolant such as grains or iron powder, ferroalloy or a deoxidizing agent may also be used. Furthermore, the method of the present invention does not preclude the use of gas blowing such as Ar.
以上説明した如く本発明方法に依る場合は粉粒体が大気
圧とノズル4内圧力との圧力差により強制的に溶融金属
流に引込まれ、粉粒体を溶融金属中に安定かつ確実に添
加することができ、良質な鋳片を得ることができる。ま
た溶融金属がストッパ11の細い延出部6とノズル4の
曲面部との間を流れるので、溶融金属の鋳型内装入に長
時間を要して操業に影響を与えることがない等、本発明
は優れた効果を奏する。As explained above, when using the method of the present invention, the powder or granules are forcibly drawn into the molten metal flow due to the pressure difference between atmospheric pressure and the internal pressure of the nozzle 4, thereby stably and reliably adding the powder or granules into the molten metal. It is possible to obtain high-quality slabs. In addition, since the molten metal flows between the narrow extension 6 of the stopper 11 and the curved surface of the nozzle 4, the present invention does not require a long time to introduce the molten metal into the mold, which does not affect the operation. has excellent effects.
第1図(a)は従来法の実施状態を示す模式図、第1図
(b)はそのノズル内圧力図、第2図は本発明の実施状
態を示す模式図、第3図はその部分拡大図である。
1.11・・・ストッパ 2・・・溶鋼 3・・・タン
ディシュ 4・・・ノズル 5・・・中空部 6・・・
延出部8・・・鋼粒
特許出願人 住友金属工業株式会社
代理人弁理士 河 野 登 夫Fig. 1(a) is a schematic diagram showing the implementation state of the conventional method, Fig. 1(b) is a diagram of the pressure inside the nozzle, Fig. 2 is a schematic diagram showing the implementation state of the present invention, and Fig. 3 is the part thereof. This is an enlarged view. 1.11... Stopper 2... Molten steel 3... Tundish 4... Nozzle 5... Hollow part 6...
Extended portion 8...Steel grain patent applicant Noboru Kono, patent attorney representing Sumitomo Metal Industries, Ltd.
Claims (1)
けた中空部より粉粒体を溶融金属中に添加する方法にお
いて、その先端がノズル上端より下方の0.71R(但
しlRはノズル上端曲面部の長さ)を超える深さ位置に
設定できるように、先端を延出させた形状としたストッ
パを用いることを特徴とする溶融金属中への粉粒体の添
加方法。1. In the method of adding powder to molten metal through a hollow part provided in a stopper located above a tundish nozzle, the tip thereof is 0.71R below the upper end of the nozzle (where 1R is the length of the curved part of the upper end of the nozzle). A method for adding powder to molten metal, characterized by using a stopper with an extended tip so that the stopper can be set at a depth exceeding .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5819283A JPS59182903A (en) | 1983-04-01 | 1983-04-01 | Method for adding powder and granule to molten metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5819283A JPS59182903A (en) | 1983-04-01 | 1983-04-01 | Method for adding powder and granule to molten metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59182903A true JPS59182903A (en) | 1984-10-17 |
JPH0128805B2 JPH0128805B2 (en) | 1989-06-06 |
Family
ID=13077152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5819283A Granted JPS59182903A (en) | 1983-04-01 | 1983-04-01 | Method for adding powder and granule to molten metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59182903A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10780492B2 (en) * | 2015-09-29 | 2020-09-22 | Thyssenkrupp Steel Europe Ag | Device and method for continuously producing a metallic workpiece in strip form |
-
1983
- 1983-04-01 JP JP5819283A patent/JPS59182903A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10780492B2 (en) * | 2015-09-29 | 2020-09-22 | Thyssenkrupp Steel Europe Ag | Device and method for continuously producing a metallic workpiece in strip form |
Also Published As
Publication number | Publication date |
---|---|
JPH0128805B2 (en) | 1989-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59182903A (en) | Method for adding powder and granule to molten metal | |
JP2004001057A (en) | Dipping nozzle for continuous casting of thin slab | |
TWI673122B (en) | Continuous casting method of steel and method for manufacturing thin steel sheet | |
JPS5924902B2 (en) | Continuous casting nozzle | |
JP3579568B2 (en) | Stopper rod for continuous casting | |
JP5130490B2 (en) | Immersion nozzle | |
JPH0199761A (en) | Method for continuously casting aluminum killed steel | |
JP3984476B2 (en) | Continuous casting method of cast slab with few bubble defects and manufactured slab | |
JP2991881B2 (en) | Immersion nozzle for continuous casting | |
JP3595464B2 (en) | Immersion nozzle for continuous casting and continuous casting method for steel | |
JP4301029B2 (en) | Continuous casting method of high Ti content steel | |
JPS58151948A (en) | Continuous casting method | |
JPH09314294A (en) | Immersion nozzle for continuous casting | |
JPH01299742A (en) | Method for continuously casting bloom or billet by calcium treatment | |
JP7389335B2 (en) | Method for producing thin slabs | |
JPH06114513A (en) | Wire containing metallic additive for continuous casting | |
JPH1110292A (en) | Long nozzle for continuous casting | |
JP7068628B2 (en) | Casting method | |
JP2788674B2 (en) | Method of adding low boiling metal elements to molten steel | |
JP2008043979A (en) | Continuous casting method for low aluminum steel | |
JPH0341884Y2 (en) | ||
JP3262936B2 (en) | Operating method for high clean steel casting. | |
CN117737344A (en) | Large-specification continuous casting round billet core feeding method | |
JPH0494850A (en) | Submerged nozzle | |
JPH06226403A (en) | Method for continuously casting low aluminum steel |