JPS59182690A - Sampling system of composite color television signal - Google Patents

Sampling system of composite color television signal

Info

Publication number
JPS59182690A
JPS59182690A JP58055067A JP5506783A JPS59182690A JP S59182690 A JPS59182690 A JP S59182690A JP 58055067 A JP58055067 A JP 58055067A JP 5506783 A JP5506783 A JP 5506783A JP S59182690 A JPS59182690 A JP S59182690A
Authority
JP
Japan
Prior art keywords
signal
frequency
sampling
color
composite color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58055067A
Other languages
Japanese (ja)
Inventor
Norihiko Fukinuki
吹抜 敬彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58055067A priority Critical patent/JPS59182690A/en
Publication of JPS59182690A publication Critical patent/JPS59182690A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Color Television Systems (AREA)

Abstract

PURPOSE:To attain the sampling of a composite color TV signal and to improve the system performance attended with digitization by sampling the composite color TV signal so that the phase of a subcarrier is made alternate with that of a preceding scanning line at each prescribed time and also at each scanning line. CONSTITUTION:After R, G, B inputs from an image pickup camera are converted into a luminance signal Y, color difference signals I, Q by a matrix converting circuit 3 of a color encoder 1, a chrominance subcarrier fSC is vertical- modulated by a modulation circuit 6 via LPFs 4, 5 as to the color difference signals I, Q and outputted as an NTSC signal. On the other hand, a frequency signal near (2n+1)th fH is generated by a VCO7, a signal having a frequency fH being 1/(2n+1) is obtained by a frequency divider 8, the signal is compared 9 with the phase of the horizontal synchronism signal of the NTSC signal so as to attain phase locking. This is formed into (n+1/2)th fH by a frequency divider 10 so as to drive an A/D converter 11. Then, the luminance signal Y being a band overlapped with the reflected component is eliminated by a fC of the LPF2.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は複合カラーテレビ信号の標本化方式、更に詳し
く言えば、NTSC方式等のカラーテレビ信号のように
、2つの色信号で副搬送波を直交変調し輝信号と周波数
多重化された複合カラーテレビ信号をナイキストレート
以下の標本化周波数で標本化する方式に係る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a sampling method for composite color television signals, and more specifically, to a sampling system for composite color television signals, and more specifically, a method for sampling subcarriers using two color signals such as a color television signal such as the NTSC system. The present invention relates to a method for sampling a composite color television signal that is modulated and frequency-multiplexed with a brightness signal at a sampling frequency that is lower than the Nyquist rate.

〔発明の背景〕[Background of the invention]

一般によく知られているように最高周波数fyの信号を
標本化して伝送するためには、ナイキストの定理によっ
て、21M以上の周波数fsで標本化しなければならな
い。例えば、NTSC方式のカラーテレビ信号は、最高
周波数が4.2’MHzで6るからfs=8.4MHz
以上の標本化する必要がある。
As is generally well known, in order to sample and transmit a signal with the highest frequency fy, it must be sampled at a frequency fs of 21M or more, according to Nyquist's theorem. For example, the highest frequency of an NTSC color television signal is 4.2'MHz, so fs = 8.4MHz.
It is necessary to make more than one sample.

しかし、信号の性質あるいは視覚の性質をうまく利用し
て、ナイキストレート以下の周仮数で標本化する方式が
知られている。例えばNTSC方式の複合カラーテレビ
信号の色副搬送波の周波数fsc (3;579MHZ
 )の約2倍(f s 、= 7.17’8MH2)で
標本化する方式が提案されている(%許公告公報、特公
昭54−12369 1−カラーテレビ信号用符号化複
合化装置」)これはカラーテレビ信号では色副搬送波で
90’位相のずれたところの標本値が補間が可能である
という性質を利用したものである。
However, a method is known that makes good use of the properties of the signal or the properties of vision and performs sampling with a round mantissa that is less than the Nyquist rate. For example, the color subcarrier frequency fsc (3; 579 MHZ) of an NTSC composite color television signal
) (f s , = 7.17'8MH2) has been proposed. This takes advantage of the property that in color television signals, sample values at 90' phase shifts in color subcarriers can be interpolated.

しかしながら、伝送路の伝送速度との整合上、上記特定
の周波数に限定されず、標本化周波数を選びたい場合が
ある。
However, in order to match the transmission speed of the transmission line, there are cases where it is desired to select a sampling frequency without being limited to the above-mentioned specific frequency.

しかし、上記従来知られているfs=2fscとする標
本化周波数では、伝送路の速度との整合をとることがで
きないことがある。
However, with the conventionally known sampling frequency of fs=2fsc, it may not be possible to match the speed of the transmission path.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ナイキストレート以下で、かつ、上記
色副搬送波周波数の2倍という制約なく、さらに補間に
よって、画質を劣化することなく弓状できる複合カラー
テレビ信号の標本化方式を実現することである。
It is an object of the present invention to realize a sampling method for a composite color television signal that is less than the Nyquist rate, is not limited to twice the color subcarrier frequency, and can be curved by interpolation without deteriorating image quality. It is.

〔発明の概要〕 本発明は上記目的を達成するため、複合カラーテレビ信
号を副搬送波の位相が180°より短い時間毎に、かつ
、−走査線毎に前走査線と交互になるように標本化する
ようにしたことを特徴とする。
[Summary of the Invention] In order to achieve the above object, the present invention samples a composite color television signal such that the subcarrier phase is shorter than 180 degrees and alternates with the previous scan line every -scan line. It is characterized by being made to be

好ましくは色副搬送周波数の21〜26程度の標本化す
る。
Preferably, about 21 to 26 color subcarrier frequencies are sampled.

以下、図面を用いて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail using the drawings.

第1図はよく知られた複合カラーテレビジョン(TV)
信号の周波数スペクトルを示す図である。
Figure 1 shows the well-known composite color television (TV)
FIG. 3 is a diagram showing a frequency spectrum of a signal.

水平定食周波数fnの整数倍のところに輝度信号の強い
成分が存在し、この中間、すなわち周波数(n+2 )
f H(nは整数)のところに色信号成分が存在する。
A strong component of the luminance signal exists at an integer multiple of the horizontal set frequency fn, and the intermediate frequency, that is, the frequency (n+2)
A color signal component exists at fH (n is an integer).

その中心は色副搬送波周波数fsc55 であり、−×fH=(227+−!−)fHのところ2 に存在する。Its center is the color subcarrier frequency fsc55 , −×fH=(227+-!-)2 at fH exists in

サテ、イマ、’a本化周ti数fs = (m+L) 
fn(mは整数)で標本化すると、そのときの周波数ス
ペクトルは第2図のようになる。なお、第2図において
、輝度信号の高周波成分は色信号成分に較べ極めて低い
レベルにあるので省略している。
Sate, now, 'a book conversion cycle ti number fs = (m+L)
When sampling with fn (m is an integer), the frequency spectrum at that time becomes as shown in FIG. In FIG. 2, the high frequency components of the luminance signal are omitted because they are at a much lower level than the color signal components.

このような標本化周波数で標本化すれば、標本化によシ
生じた信号の周波数スペクトル成分(図において白抜き
の部分]のうち、輝度信号成分は1 (m+−1)fFlのところにあシ、また、色信号成分
はm//fHのところにある。なお、m’ 、m“は整
数で、mと真なる数である。
If sampling is performed at such a sampling frequency, the luminance signal component will be located at 1 (m+-1)fFl among the frequency spectrum components (white area in the figure) of the signal generated by sampling. Also, the color signal component is located at m//fH. Note that m' and m'' are integers that are true to m.

第2図から分るように、ミクロに見れば強い信号成分は
周波数上で重ならない。但し、マクロに見れば、第3図
に示すように、周波数fc(標本化した場合の最小周波
数〕より高い周波数領域で、信号が重なっている。
As can be seen from Figure 2, from a microscopic perspective, strong signal components do not overlap in frequency. However, from a macro perspective, as shown in FIG. 3, the signals overlap in a frequency region higher than the frequency fc (minimum frequency when sampled).

この結果、ミクロに見て、櫛形フィルタで信号を分離す
れば、もとの信号成分のみを取出すことができる。ここ
で重要なことは、上記標本イ料周波数f8は特に色信号
鍜送阪周阪afIlcの2倍付近であることは要求され
ないことである。すなわち、図示するように、周波数2
fscよシかなシ高くても、あるいはかなシ低くても良
い。
As a result, from a microscopic perspective, if the signals are separated using a comb filter, only the original signal components can be extracted. What is important here is that the sample color frequency f8 is not particularly required to be around twice the color signal frequency aflc. That is, as shown in the figure, frequency 2
fsc may be higher or lower.

なお、上記輝度信号の高周波成分は、成分が小さければ
、必ずしも除去する必要はないが、画質上は前もってあ
らかじめ除去しておいた方が望ましい。
Note that the high frequency component of the luminance signal does not necessarily need to be removed as long as the component is small, but in terms of image quality, it is desirable to remove it in advance.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によって説明する。 Hereinafter, the present invention will be explained by examples.

第4図は本発明による標本化方式を実施した、カラーテ
レビジョン信号の送信部の構成を示すブロック図である
FIG. 4 is a block diagram showing the configuration of a color television signal transmitter that implements the sampling method according to the present invention.

第4図において1は低域p波器2の連断周波数を除いて
全く通常のいわゆるカラーエンコーダである。すなわち
、撮像カメラからのR,o、B入力をマトリクス変換回
路3で輝度信号Y1色差信号I、Q信号に変換した後、
色差信号I、Qについては低域P波器4,5を経て、変
調回路6によシ芭副搬送78 f g cを直角変調し
、NTSC信号として出力する。
In FIG. 4, reference numeral 1 is a so-called color encoder which is completely normal except for the continuous frequency of the low-pass p-wave generator 2. That is, after converting the R, o, and B inputs from the imaging camera into luminance signals Y1 and color difference signals I and Q signals in the matrix conversion circuit 3,
The color difference signals I and Q pass through low-band P wave generators 4 and 5, and are quadrature-modulated on a subcarrier 78fgc by a modulation circuit 6, and are output as NTSC signals.

一方、電圧制御発振器7では、(2n十iJf□付近の
周波数信号と発生し、分周器8により1/(2n+1)
の周波数fHを持つ信号を得、これとNTSC信号の水
平同期信号の位相とを位相比較器9で比較して位相を引
込む。これを分周器1oで1/2の周波数、すなわち、
(n+l/2)fn k得てA/D変換11を駆動する
On the other hand, the voltage controlled oscillator 7 generates a frequency signal around (2n+iJf□), and the frequency divider 8 generates a frequency signal of 1/(2n+1).
A signal having a frequency fH is obtained, and this signal is compared with the phase of the horizontal synchronizing signal of the NTSC signal by a phase comparator 9 to extract the phase. This is divided into 1/2 frequency by frequency divider 1o, that is,
(n+l/2) fn k is obtained and the A/D conversion 11 is driven.

さて、ここで特に説明を要するのは、低域p波器2であ
る。通常、このF波器のam1周波数は4、2 M H
Zに設定される。しかし、@2図、第3図で説明したよ
うに、10以上の輝度信号Y成分は除去することが望ま
しい。
Now, what particularly requires explanation here is the low-frequency p-wave device 2. Normally, the am1 frequency of this F-wave device is 4.2 MH
Set to Z. However, as explained in Figures @2 and 3, it is desirable to remove 10 or more Y components of the luminance signal.

したがって、低域P波器2の遮断周波数を、4、2 M
 HZではなく、fcにすれば、上記の条件を満足し、
折返し成分と重なる帯域の輝度信号Yを取除くことがで
きる。こうすれば、直接的に標本化周波数fs =(n
+、Ifscで標本化することかで゛きる。後述する一
般的な方法によれば、2fs工標本化し、A/D変換す
る必要があるが、この実施例の場合にはf、でよいので
、回路構成上好ましい。
Therefore, the cutoff frequency of the low-pass P wave generator 2 is set to 4.2 M
If you use fc instead of HZ, the above conditions will be satisfied,
It is possible to remove the luminance signal Y in the band that overlaps with the folded component. In this way, the sampling frequency fs = (n
+, You can sample it using Ifsc. According to the general method described later, it is necessary to perform 2fs sampling and A/D conversion, but in this embodiment, f is sufficient, which is preferable in terms of circuit configuration.

なお、これI′i熾像管のM、像力の劣るカメラの出力
でも同様のことが可能である。
Incidentally, the same thing can be done with the output of a camera having an inferior image power, M of the I'i picture tube.

第5図は本発明による標本化方式を実施する送信部の他
の実施例の構成を示す。なお、図面ではカラーエンコー
ダ及び電圧制御発振器7の制御回路の構成は第1図と同
一であるので省略している。
FIG. 5 shows the configuration of another embodiment of a transmitter implementing the sampling method according to the present invention. In the drawing, the configurations of the color encoder and the control circuit of the voltage controlled oscillator 7 are the same as in FIG. 1, and are therefore omitted.

本実施例ではカラーエンコーダ1の出力であるカラーテ
レビジョン信号をアナログ・ディジタル変換器11で標
本化周波数fsの2倍の周波数2fs =(2n+1)
fu  で標本化し、ディジタル信号に変換し、図示の
1ライン遅延素子12゜13、加算回路14、高域通過
フィルタ15からなる@型フィルタを介して戸波を行な
い、これを1つおきにスイッチ16で再標本化して、標
本化周波数f、の標本値係列信号を得るものである。
In this embodiment, the color television signal which is the output of the color encoder 1 is converted to a frequency 2fs which is twice the sampling frequency fs by the analog-to-digital converter 11 = (2n+1)
fu, convert it into a digital signal, and pass it through a @-type filter consisting of a one-line delay element 12, 13, an adder 14, and a high-pass filter 15 as shown in the figure. The sample value coefficient signal of the sampling frequency f is obtained by resampling at the sampling frequency f.

なお、本実施例における@型フィルタの構成、動作につ
いては周波数の関係は異なるが構成が全く同じ方法が@
型フィルタとして公昶である(たとえば文献1(吹抜敬
彦著、画1家のディジタル信号処理、昭オロ56年日刊
工業新聞社)、文献2(石黒辰雄ほか、32Mb/S頁
接符号化(H〇−DPCM)カラーテレビ伝送方式、電
子通信学会技報C375−69、昭オω50年7月)な
ど)ので詳細な説明は省略する。
Regarding the configuration and operation of the @ type filter in this example, the frequency relationship is different, but the configuration is exactly the same.
It is known as a type filter (for example, Reference 1 (Takahiko Fukinuki, Digital Signal Processing for Artists, 1970, Nikkan Kogyo Shimbun), Reference 2 (Tatsuo Ishiguro et al., 32 Mb/S page tangential coding (H 〇-DPCM) color television transmission system, Institute of Electronics and Communication Engineers technical report C375-69, July 1984), etc.), so detailed explanation will be omitted.

なお、この方法はアナログ的にも行なえることがよく知
られている。
Note that it is well known that this method can also be performed in an analog manner.

なお、復調側では再びもとの信号を再現する必要がある
。すなわち、標本化によって生じた成分を取除くことが
必要である。これには、第2図から明らかなように、第
5図に示す櫛型フィルタによればよい。なお、これの具
体的方法については前記文献に詳しい。
Note that it is necessary to reproduce the original signal again on the demodulation side. That is, it is necessary to remove components caused by sampling. As is clear from FIG. 2, this can be achieved by using the comb filter shown in FIG. Note that the specific method for this is detailed in the above-mentioned literature.

本発明は上記実施例に限定されるものではなく、たとえ
ば次の変形は本発明の範囲に含まれる。
The present invention is not limited to the above embodiments, and for example, the following modifications are included within the scope of the present invention.

(D  従来からある2fscに近い標本化周波数の場
合に、本発明の第1の実施例に示す方法、すなわち、輝
度信号Yをあらかじめアナログ的に帯域制限する方法全
適用すること。
(D) In the case of a conventional sampling frequency close to 2fsc, the method shown in the first embodiment of the present invention, that is, the method of band-limiting the luminance signal Y in advance in an analog manner, is fully applied.

(if)  R,G、Hの各成分を弗らかしめ帯域制限
する上記(1)の方法。
(if) The method described in (1) above, in which each of the R, G, and H components is band-limited by tightening.

01D  ディジタル的なカラーエンコーダにおいて上
記(i)、 (ii>と等WJな操作をディジタル演算
にょシ行なうこと。
01D In a digital color encoder, perform WJ operations such as (i) and (ii> above) using digital calculations.

〔発明の効果〕〔Effect of the invention〕

本発明によれば下記のことが可能になり、複合カラーT
V信号の標本化、ディジタル化を伴うシステムの性能向
上、機能向上に資するところ大である。
According to the present invention, the following becomes possible, and composite color T
This greatly contributes to improving the performance and functionality of systems that involve sampling and digitizing V signals.

(1)従来あった[色副搬送波周波数fscのほぼ2倍
の標本化周波による標本イーのみでなく、2倍より大き
な、たとえば2.4倍の標本化周波数によっても、サブ
ナイキスト標本化が可能となる。従って、システム構成
の自由度が増す。
(1) Sub-Nyquist sampling is possible not only with the sampling frequency that is approximately twice the color subcarrier frequency fsc, but also with a sampling frequency that is greater than twice the color subcarrier frequency fsc, for example, 2.4 times. becomes. Therefore, the degree of freedom in system configuration increases.

(11)特に実施例で述べた「いわゆるカラーエンコー
ダで輝度信号成分の帯域制限する」方法によれば、櫛型
フィルタが不要であり、かつA/’D変換器の動作を標
本化周波数のままで行なうことができるため、回路構成
が簡単になる。
(11) In particular, according to the method of "limiting the band of the luminance signal component using a so-called color encoder" described in the embodiment, a comb filter is not required, and the operation of the A/'D converter remains at the sampling frequency. The circuit configuration can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、NTSC複合カラーTV信号の周波数スペク
トルを示す図、第2図はサブナイキスト標本化をこれに
適用した場合のミクロな関係を示す本発°明の説明のだ
めのスペクトル図、第3図は同じくマクロな説明を行う
ためのスペクトル図、第4図は本発明の第1の実施例に
おけるブロック構成因、第5図は本発明の第2の実施例
におけるブロック構成図を示す。 1・・・いわゆるカラーエンコーダ、2・・・低域戸波
器、笛1図 着 3 図 嘉 4 図 遁 5 図
Fig. 1 is a diagram showing the frequency spectrum of an NTSC composite color TV signal, Fig. 2 is a spectral diagram for explaining the present invention showing the micro-relationships when sub-Nyquist sampling is applied to it, and Fig. 3 is a diagram showing the frequency spectrum of an NTSC composite color TV signal. The figure also shows a spectrum diagram for macroscopic explanation, FIG. 4 shows block components in the first embodiment of the invention, and FIG. 5 shows a block diagram in the second embodiment of the invention. 1...So-called color encoder, 2...Low frequency door wave device, 1 piece of flute 3 Figure 4 Figure 5 Figure

Claims (1)

【特許請求の範囲】 1、複合カラーテレビジョン信号を副搬送波の位相が1
80°よシ短い時間毎に、かつ−走査線毎に前走量線と
交互になるように標本化することを特徴とする複合カラ
ーテレビジョン信号の標本化方式。 2、第1項記載の標本化方式において、標本化周波数が
副搬送波周波数の2.1〜2.6倍の範囲に設定された
ことを特徴とする複合カラーテレビジョン信号の標本化
方式。 3、輝度信号成分の周波数成分を制御した後周波数多重
化された複合カラーテレビジョン信号に対し、走査線毎
に標本化画素が前及び現走査線上で交互になるように標
本化することを特徴とする複合カラーテレビジョン信号
の標本化方式。
[Claims] 1. A composite color television signal whose subcarrier phase is 1.
1. A method for sampling a composite color television signal, characterized in that sampling is performed at intervals as short as 80° and alternately with previous scanning lines for each scanning line. 2. A sampling method for a composite color television signal according to item 1, wherein the sampling frequency is set in a range of 2.1 to 2.6 times the subcarrier frequency. 3. After controlling the frequency component of the luminance signal component, the frequency-multiplexed composite color television signal is sampled in such a way that sampling pixels alternate on the previous and current scanning lines for each scanning line. A sampling method for composite color television signals.
JP58055067A 1983-04-01 1983-04-01 Sampling system of composite color television signal Pending JPS59182690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58055067A JPS59182690A (en) 1983-04-01 1983-04-01 Sampling system of composite color television signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58055067A JPS59182690A (en) 1983-04-01 1983-04-01 Sampling system of composite color television signal

Publications (1)

Publication Number Publication Date
JPS59182690A true JPS59182690A (en) 1984-10-17

Family

ID=12988344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58055067A Pending JPS59182690A (en) 1983-04-01 1983-04-01 Sampling system of composite color television signal

Country Status (1)

Country Link
JP (1) JPS59182690A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48108659U (en) * 1972-03-21 1973-12-15
JPS5354059U (en) * 1976-10-12 1978-05-09

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48108659U (en) * 1972-03-21 1973-12-15
JPS5354059U (en) * 1976-10-12 1978-05-09

Similar Documents

Publication Publication Date Title
EP0690621B1 (en) Sample rate converter and sample rate conversion method
KR100247371B1 (en) Color television camera apparatus and color television signal generating method
JPS6390987A (en) Moving detecting circuit
US5561463A (en) Video signal coding using sub-band coding and phase-segregated coding techniques
JPS63242091A (en) Signal separation circuit
KR0144738B1 (en) Adaptive y/c separation apparatus for tv signals
US5161006A (en) Method for separating chrominance and luminance components of a television signal
JPS6345154B2 (en)
JPH0846999A (en) Digital device and method for decoding video signal
KR100217795B1 (en) Progressive scan television system using luminance low frequencies from previous field
JPS59182690A (en) Sampling system of composite color television signal
US4849808A (en) System for filtering color television signals utilizing comb filtering of liminance with variable combing level at low frequencies and filtering of chrominance by comb filtering time multiplexed color difference signals
US6184939B1 (en) Apparatus for processing video signals and employing phase-locked loop
US5510847A (en) TV signal decoding apparatus using luminance and color signal selection
JPH02108390A (en) Luminance signal and chrominance signal separating circuit for pal color television signal
JP2788733B2 (en) Color television signal processing method and circuit
JP2732919B2 (en) Color signal interpolation circuit for PAL color television signals
EP0471424B1 (en) Extended composite television system
JP2566026B2 (en) Television signal transmission system
JP2612892B2 (en) Image transmission system
JPH02114790A (en) Video chrominance signal transmission reception system and transmitter-receiver
JPH07226956A (en) Luminance signal/chrominance signal separation circuit
EP0271846A2 (en) System and circuitry for television signal processing
JPS60160788A (en) Television signal processing device
JPS63220686A (en) Video signal processor