JPS59182591A - Photo feedback type semiconductor laser device - Google Patents

Photo feedback type semiconductor laser device

Info

Publication number
JPS59182591A
JPS59182591A JP5757783A JP5757783A JPS59182591A JP S59182591 A JPS59182591 A JP S59182591A JP 5757783 A JP5757783 A JP 5757783A JP 5757783 A JP5757783 A JP 5757783A JP S59182591 A JPS59182591 A JP S59182591A
Authority
JP
Japan
Prior art keywords
semiconductor laser
light
laser
center
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5757783A
Other languages
Japanese (ja)
Inventor
Katsuyuki Fujito
藤戸 克行
Toshihiro Fujita
俊弘 藤田
Satoshi Ishizuka
石塚 訓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5757783A priority Critical patent/JPS59182591A/en
Publication of JPS59182591A publication Critical patent/JPS59182591A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent the effect by reflection noises on a laser by contriving to make the vertical mode of the laser single by a method wherein the center of the position of laser oscillation and the center of the position of reflected light are put in proximity without coincidence, in the feedback of the laser emitted light. CONSTITUTION:The emitted light 6 from the active layer 5 of a semiconductor laser chip 1 is made parallel by means of a collimating lens 2, reflected by a reflection optical element 3 such as a mirror and a diffraction grating, turned to a converged light 7 by means of the collimator 2, and then fed back to the resonance end surface 9 of the laser chip 1. The semiconductor laser device is brought to a strong vertical single mode by converging a reflected light region 11 to an oscillation region 10 at this surface 9, and thus putting the luminous center and the reflected light center in arrangement in the neighborhood without coincidence. The emitted light 8 from the other end of the laser chip 1 is introduced to an optical fiber 4 and then made as the light source for optical communication, and accordingly the effect of reflection noises on the laser is prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信や光ティスフ、又は各種の光センサー
等の光源として用いられる半導体レーザ装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor laser device used as a light source for optical communications, optical sensors, various optical sensors, and the like.

従来例の構成とその問題点 半導体レーザを光通信用光源として用いるに際し、例え
ば半導体レーザとファイバとを結合する場合、半導体レ
ーザからの出射光の一部がファイバ端面からの反射によ
り半導体レーザへ帰還することが半導体レーザの発振特
性の不安定性や雑音増加をひき起こす原因と考えられて
いる。そのため現在は半導体レーザへ戻り光がy=還す
ることを防止する目的でアイソレータが使用されている
Conventional configuration and its problems When using a semiconductor laser as a light source for optical communication, for example, when coupling a semiconductor laser and a fiber, a part of the emitted light from the semiconductor laser returns to the semiconductor laser by reflection from the fiber end face. This is considered to be the cause of instability of the oscillation characteristics of the semiconductor laser and an increase in noise. Therefore, isolators are currently used to prevent the light from returning to the semiconductor laser.

すなわち光通信の分野では半導体レーザへの戻り光は不
用なものと考えられている。また半導体レーザの曲の利
用分野として光ディスクを考えた場合、やはり光ティス
フ面からの反射光が半導体レーザへ帰還された時、雑音
増加となることが指摘されている。ただし、戻シ光を積
極的に自己結合効果として利用する方式があるが、この
ような方式でも半導体レーザへの戻り光が不安定なため
、半導体レーザの発振特性も不安定でありS/N比が悪
く実用域に達していない。
That is, in the field of optical communications, the light returned to the semiconductor laser is considered unnecessary. Furthermore, when considering optical discs as a field of use for semiconductor laser music, it has been pointed out that noise increases when reflected light from the optical disk surface is fed back to the semiconductor laser. However, there is a method that actively uses the returned light as a self-coupling effect, but even with this method, the returned light to the semiconductor laser is unstable, so the oscillation characteristics of the semiconductor laser are also unstable, and the S/N is low. The ratio is poor and has not reached the practical level.

以上のように従来では半導体レーザから出射したレーザ
光が戻り光として半導体レーザへ帰還すると、発振特性
の不安定化をひき起こ踵また雑音も増加してしまうと考
えられ、戻り光を有効に制御したシ利用する方法は明確
にされていない。
As mentioned above, conventionally, when the laser light emitted from the semiconductor laser returns to the semiconductor laser as return light, it is thought that the oscillation characteristics become unstable and the noise increases, so the return light is effectively controlled. It is not clear how to use it.

発明の目的 本発明は、半導体レーザからの出射光の一部を戻り光と
して半導体レーザに帰還した時、半導体レーザの安定な
縦モートの単一化を図ると共“に半導体レーザへの反射
雑音の影響を受けないような光帰還型半導体レーザを提
供することを目的とする0 発明の構成 本発明は、半導体レーザからの出射光の少なくとも一部
を、反射光学素子により反射光として半導体レーザに集
束させて帰還するとともに、前記レーザの発光位置中心
と、反射光位置中心勿一致させる事なく近接させる事に
よシ半導体レーザの縦モードの単一化と反射再注入光に
よる反射雑音の抑圧を図り、かつ半導体レーザの出射端
と反射光学素子の光路長を半導体レーザの固有共振器の
光路長のほぼ整数倍とする事によシ単−縦モードの安定
化を図る事により、安定な単−縦モード発振をし、かつ
低雑音で発振する半導体レーザ装置を提供するものであ
る。
Purpose of the Invention The present invention aims to unify a stable longitudinal moat of the semiconductor laser when a part of the emitted light from the semiconductor laser is returned to the semiconductor laser as return light, and to reduce reflection noise to the semiconductor laser. SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical feedback type semiconductor laser which is not affected by the effects of In addition to focusing and returning light, the center of the light emission position of the laser and the center of the position of the reflected light are brought close to each other without having to coincide with each other, thereby unifying the longitudinal mode of the semiconductor laser and suppressing reflection noise due to the reflected reinjected light. In addition, by making the optical path length of the output end of the semiconductor laser and the reflective optical element approximately an integral multiple of the optical path length of the natural resonator of the semiconductor laser, the single-longitudinal mode is stabilized. - To provide a semiconductor laser device that oscillates in a longitudinal mode and oscillates with low noise.

実施例の説明 第1図に本発明による光帰還型半導体し〜ザ装置の一実
施り1jを示す。1は半導体レーザのチップを示すもの
であり、レーザ内の活性層6を模式的に表わしている。
DESCRIPTION OF THE EMBODIMENTS FIG. 1 shows an embodiment 1j of an optical feedback type semiconductor device according to the present invention. Reference numeral 1 indicates a semiconductor laser chip, and schematically represents an active layer 6 within the laser.

レーザの右側への出射光6はコリメートレンズ2で平行
にされ、ミ□ラー2回折格子等の反射光学素子3により
反射され再びコリメートレンズ2VC入り、集束された
光7となり、半導体レーザチップ1の共振器端面9上で
、半導体レーザテップ1の発光中心の近傍に反射光の中
心がくるよう設定される。
The emitted light 6 to the right side of the laser is made parallel by the collimating lens 2, reflected by the reflection optical element 3 such as a mirror 2 diffraction grating, enters the collimating lens 2VC again, becomes a focused light 7, and is focused on the semiconductor laser chip 1. The center of the reflected light is set to be near the emission center of the semiconductor laser tip 1 on the resonator end face 9 .

この共振器端面9上での発光中心と反射光中心の位置関
係を第2図に示す。第2図は共振器端面を、半導体レー
ザテップ1からの出射光の出射“方向から見た図面であ
り、共振器端面9は通常へき開面よシなる。発光領域1
0を実斜線で、反射光沖心11を点斜線で示す。このよ
うに反射光を集束させつつ、発光中心と反射光中心を一
致させず近傍に配する事により、半導体レーザは強い縦
単一モード性を示し、かつ雑音の少ないレーザ光となる
。また、いわゆる反射雑音も抑圧される。(部和67年
度電子通信学会光・電波部門全国大会予稿集266「半
導体レーザの反射光帰還位置依存性」)。
The positional relationship between the light emission center and the reflected light center on the resonator end face 9 is shown in FIG. FIG. 2 is a drawing of the resonator end face viewed from the direction of the emission of light from the semiconductor laser tip 1, and the resonator end face 9 is normally parallel to the cleavage plane.Light emitting region 1
0 is shown with solid diagonal lines, and the reflected light offshore center 11 is shown with dotted diagonal lines. By converging the reflected light in this manner and arranging the emission center and the reflected light center close to each other without making them coincide, the semiconductor laser exhibits a strong longitudinal single mode property and becomes a laser beam with less noise. Also, so-called reflection noise is suppressed. (Proceedings of the 1967 National Conference of the Institute of Electronics and Communication Engineers, Optical and Radio Division, Proceedings 266, “Reflected light return position dependence of semiconductor lasers”).

第1図に戻り、このような構成の半導体し〜すの他端か
らの出射光8を光ファイバ4に導いて光通信月光源とす
る事ができる。この時、半導体レーザの発振条件を考え
ると、反射光学素子のない時の半導体レーザの発振波長
をλ、共振器長をり。
Returning to FIG. 1, the emitted light 8 from the other end of the semiconductor device having such a structure can be guided to the optical fiber 4 to be used as an optical communication moonlight source. At this time, considering the oscillation conditions of the semiconductor laser, the oscillation wavelength of the semiconductor laser without a reflective optical element is λ, and the resonator length is λ.

屈折率をηとすると、縦モード間隔△/1は△λ1;λ
2/ (2n −L )        ・旧−−−(
*)となる。反射光学素子のある場合には、半導体レー
ザの共振器端面と反射光学素子間の距離をL′とすると
、この外部共振器による縦モード間隔Δノ。
When the refractive index is η, the longitudinal mode spacing △/1 is △λ1;λ
2/ (2n -L) ・Old---(
*). When there is a reflective optical element, if the distance between the resonator end face of the semiconductor laser and the reflective optical element is L', the longitudinal mode interval due to this external resonator is Δno.

は Δぺ、−λ/(2L’)       ・・・・・・・
・(2)となる。この関係を第3図に示す。第3図は、
半導体レーザの固有縦モード間隔△λ1と外部共振器の
縦モード間隔△λ2が非常に近接している時でかつ波長
λ。の所で両者が一致した場合を示す。横軸が波長であ
る。実線が半導体レーザの固有モード、点線が外部共振
モードを示す。この時には半導体レーザは波長λ。で強
い単一モートで発振する事になる。
is Δpe, -λ/(2L')...
・(2) becomes. This relationship is shown in FIG. Figure 3 shows
When the natural longitudinal mode spacing Δλ1 of the semiconductor laser and the longitudinal mode spacing Δλ2 of the external cavity are very close to each other and the wavelength λ. Indicates the case where both match. The horizontal axis is the wavelength. The solid line shows the eigenmode of the semiconductor laser, and the dotted line shows the external resonance mode. At this time, the semiconductor laser has a wavelength of λ. This results in oscillation with a strong single moat.

この2つのモードが重なる波長間隔は△A1と△λ2の
最小公倍数となり、Δλ1と△λ2がほぼ等しければこ
のモードの重なる波長間隔は犬きくなる。そのため、こ
のような半導体レーザの発振波長は非常にシングルモー
□ド性が強くなる0また、そのためには、半導体レーザ
の実効共振器長(nxL )とほぼ等しい外部共振器間
隔L′とすれば良い。ここで、半導体レーザの屈折率n
は3〜4程度であり、共振器長りは0.2〜0.4mm
であるため、外部共振器長は0.6〜1.6胴程度が必
要どなる。
The wavelength interval at which these two modes overlap is the least common multiple of ΔA1 and Δλ2, and if Δλ1 and Δλ2 are approximately equal, the wavelength interval at which these two modes overlap becomes narrower. Therefore, the oscillation wavelength of such a semiconductor laser has a very strong single-mode property.0 Also, to achieve this, if the external cavity spacing L' is approximately equal to the effective cavity length (nxL) of the semiconductor laser, then good. Here, the refractive index n of the semiconductor laser is
is about 3 to 4, and the resonator length is 0.2 to 0.4 mm.
Therefore, the external resonator length needs to be about 0.6 to 1.6 cylinders.

本発明の第2の実施案を第4図に示す。なお、第1図と
共通する要素に同−萱号を付す。この方法では外部反射
光学素子として球面ミラー12を用いる。半導体レーザ
の出射光軸と、この球面ミラーの光軸とを少しずらせる
事により、反射光13は半導体レーザの共振器端面9上
で、発光中心と少しずれた位置に集光する事になる。こ
の方法では、前に述べたレンズとミラーを使う方式に比
べて′ミラーとレンズが一体化された構成となるため、
半導体レーザから反射光学素子までの距離を小さくでき
る事が特長である。またこの球面反射ミラーの半径は、
この系が結像系であるため、光路長のr程度となるので
、はぼ0.3〜0.7 mmm変度なる。また収差を補
正するためには球面でなく非球面が望ましいが、球面の
場合でも大きな支障(fユない0 また、本発明によれば、例えば元通信用光源として使用
した場合には、ファイバ端からの反射によシ生じる。い
わゆる反射雑音の抑圧効果もある。
A second embodiment of the present invention is shown in FIG. Note that elements common to those in FIG. 1 are given the same number. In this method, a spherical mirror 12 is used as an external reflective optical element. By slightly shifting the output optical axis of the semiconductor laser and the optical axis of this spherical mirror, the reflected light 13 is focused on the resonator end face 9 of the semiconductor laser at a position slightly shifted from the emission center. . In this method, compared to the method using lenses and mirrors mentioned earlier, the mirror and lens are integrated, so
The feature is that the distance from the semiconductor laser to the reflective optical element can be shortened. Also, the radius of this spherical reflective mirror is
Since this system is an imaging system, the optical path length is approximately r, so the variation is approximately 0.3 to 0.7 mm. In addition, in order to correct aberrations, it is preferable to use an aspherical surface rather than a spherical surface, but even a spherical surface poses a major problem (f y u ). It also has the effect of suppressing so-called reflection noise.

また、光ティスフ用光源として使用した場合にもディス
、りからの反射光による半導体レーザの特性不安定性も
減少する。
In addition, when used as a light source for photonics, the instability of semiconductor laser characteristics due to light reflected from the disk is also reduced.

発明の効果 本発明によれは、半導体レーザ縦モードの強い単一性が
安定して得られ、かつ反射雑音の請願もなく、かつ反射
光による影響の少ない、半導体レーザ装置が得られる。
Effects of the Invention According to the present invention, it is possible to obtain a semiconductor laser device in which strong unity of the semiconductor laser longitudinal mode is stably obtained, there is no reflection noise, and the influence of reflected light is small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の光帰還型半導体レーザ装置
の構成図、第2図は第1図における半導体レーサテノプ
の端面における発光領域と反射領域を示す図、第3図は
第1図1f(おける出力光の縦モートを示す図、第4図
は本発明の異なる実施例の光螺還型半導体レーザ装置の
構成図てろる。 1・・・・・・半導体レーサチノプ、2・・・・・コリ
メートレンズ、3・・・・・反射光学素子、4・・・・
・・・光ファイバ、5・・・・・・活性層、6・・・・
・・出射光、7・・・・・・集束光、8・・・・・・出
射光。
FIG. 1 is a block diagram of an optical feedback semiconductor laser device according to an embodiment of the present invention, FIG. 2 is a diagram showing a light emitting region and a reflecting region at the end face of the semiconductor laser tenop in FIG. 1, and FIG. 3 is a diagram showing the same as in FIG. 1. FIG. 4 is a diagram showing the configuration of an optical spiral semiconductor laser device according to a different embodiment of the present invention. 1... Semiconductor laser tinop, 2... ... Collimating lens, 3... Reflective optical element, 4...
...Optical fiber, 5...Active layer, 6...
... Outgoing light, 7... Focused light, 8... Outgoing light.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体レーザと、前記半導体レーザからの出射レ
ーザ光の少なくとも一部を前記半導体レーザの共振器端
面に、集束して反射させる反射光学素子を有し、前記半
導体レーザの発光位置中心と、前記反射光学素子からの
反射光位置中心を一致させる事なく近接させ、かつ前記
半導体レーザと反射光学素子間の光路長を前記半導体レ
ーザの固有共振器の光路長のほぼ整数倍とした事を特徴
とする光帰還型半導体レーザ装置。
(1) comprising a semiconductor laser and a reflective optical element that focuses and reflects at least a portion of the laser light emitted from the semiconductor laser onto a resonator end face of the semiconductor laser, the center of the light emission position of the semiconductor laser; The center of the position of the reflected light from the reflective optical element is arranged close to each other without coinciding with each other, and the optical path length between the semiconductor laser and the reflective optical element is approximately an integral multiple of the optical path length of the natural resonator of the semiconductor laser. Optical feedback semiconductor laser device.
(2)反射光学素子として半球面型の反射ミラーを用い
る事を特徴とする特許請求の範囲第1項記載の光帰還型
半導体レーザ装置。
(2) The optical feedback semiconductor laser device according to claim 1, characterized in that a hemispherical reflecting mirror is used as the reflecting optical element.
JP5757783A 1983-03-31 1983-03-31 Photo feedback type semiconductor laser device Pending JPS59182591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5757783A JPS59182591A (en) 1983-03-31 1983-03-31 Photo feedback type semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5757783A JPS59182591A (en) 1983-03-31 1983-03-31 Photo feedback type semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS59182591A true JPS59182591A (en) 1984-10-17

Family

ID=13059702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5757783A Pending JPS59182591A (en) 1983-03-31 1983-03-31 Photo feedback type semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS59182591A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274090A (en) * 1988-07-22 1990-03-14 Amp Inc Reflection coupled structure of laser diode and optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274090A (en) * 1988-07-22 1990-03-14 Amp Inc Reflection coupled structure of laser diode and optical fiber

Similar Documents

Publication Publication Date Title
US6208679B1 (en) High-power multi-wavelength external cavity laser
US5659644A (en) Fiber light source with multimode fiber coupler
US5163058A (en) Semiconductor laser pump source
JPH01502619A (en) Optical wavelength division multiplexer
JP2002267861A (en) Optical waveguide, optical module, optical fiber laser device
CA2329089C (en) Fiber grating feedback stabilization of broad area laser diode
US20060165144A1 (en) Semiconductor laser device
US5289479A (en) Laser light beam generating apparatus
US20040022281A1 (en) Wavelength tunable laser with diffractive optical element
US7609744B2 (en) Laser resonator comprising an internal beam splitter
JP2021034531A (en) Laser module and fiber laser device
JP4590660B2 (en) Optical pickup device
JPS62285488A (en) Semiconductor laser
JPS59182591A (en) Photo feedback type semiconductor laser device
US6563983B2 (en) Laser diode module
JPH0855357A (en) Semiconductor laser device
JPS60246688A (en) Optical feedback type semiconductor laser device
JP3031976B2 (en) Semiconductor laser device
JP2006073549A (en) External resonator-type wavelength variable optical source
JPS58111391A (en) semiconductor laser equipment
US20230299558A1 (en) Freeform collimator lens for angled facet laser devices
JPS62149185A (en) semiconductor laser equipment
JPS63164036A (en) Optical head
JPH023522Y2 (en)
JPH0764021A (en) Optical coupler and optical fiber amplifier