JPS59182512A - Cryostat - Google Patents

Cryostat

Info

Publication number
JPS59182512A
JPS59182512A JP58055026A JP5502683A JPS59182512A JP S59182512 A JPS59182512 A JP S59182512A JP 58055026 A JP58055026 A JP 58055026A JP 5502683 A JP5502683 A JP 5502683A JP S59182512 A JPS59182512 A JP S59182512A
Authority
JP
Japan
Prior art keywords
liquid helium
container
bobbin
coil
reinforced plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58055026A
Other languages
Japanese (ja)
Inventor
Kenzo Kadotani
門谷 建蔵
Matao Nagai
永井 又男
Yoshishige Fukushi
慶滋 福士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58055026A priority Critical patent/JPS59182512A/en
Publication of JPS59182512A publication Critical patent/JPS59182512A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Measuring Magnetic Variables (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To obtain a container wall for liquid helium which has sufficient rigididity and minimize the permeation of helium by a method wherein an inside container for liquid helium and a coil bobbin are commonly composed of a solid fiber reinforced plastic body. CONSTITUTION:A cylindrical bobbin 5 is made of fiber reinforced plastic. A superconductive wire 6 is wound around the cylindrical bobbin 5 in a solenoid shape to form a coil proper. Auxiliary coils for magnetic field correction are formed by winding superconductive wires 9 on annular bobbins 8 and provided to both sides of the coil proper. An outside container 1 for liquid helium is connected airtightly to both ends of the fiber reinforced plastic bobbin 5 so as to make the bobbin 5 serve as an inside container for liquid helium as well. With this constitution, the container wall for liquid helium which has sufficient rigidity while minimizing the permeation of helium can be obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はクライオスタットに係り、例えば核磁気共鳴現
象(NMR)’に利用したコンピュータ画像処理診断装
置(CT )などのように極ぬて均一度の高い静磁場を
得るための超電導ソレノイドコイルを収容しているクラ
イオスタットに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a cryostat, and relates to a cryostat with extremely high uniformity, such as a computer image processing diagnostic system (CT) used for nuclear magnetic resonance (NMR). It relates to a cryostat containing a superconducting solenoid coil for obtaining a high static magnetic field.

〔発明の背景〕[Background of the invention]

一般にNMR−CTなどに用いる超電導ソレノイドコイ
ルは、極めて均一度の高い磁場が出せることが必要であ
る。七のたぬには、コイル本体のボビンは剛性の太きい
、つ捷り厚肉の円筒がいることになる。このようなボビ
ンの外周に超電導線を精確なピッチで巻付けてコイル本
体を形成しバインド層ヶかぶせる。コイル本体の両側に
は、別に用意した一対の補助コイルを配置するが、この
補助コイルは、当初は軸方向にすらすことができるよう
にしておき、全体を別製の試験用クライオスタットに入
れて、コイル本体と補助コイルに通電して、磁場の均一
度ケ計測しつつ補助コイルの最適位置をきめる。その後
、一度室温に戻して、ボビンと補助コイルのボビン’に
固定する。
Generally, superconducting solenoid coils used in NMR-CT and the like need to be able to generate an extremely highly uniform magnetic field. In the Seven Tanu, the bobbin of the coil body is thick and rigid, and has a thick-walled cylinder. Superconducting wire is wound around the outer periphery of such a bobbin at a precise pitch to form a coil body, and then covered with a binding layer. A pair of separately prepared auxiliary coils is placed on both sides of the coil body, but the auxiliary coils were initially made so that they could slide in the axial direction, and the whole was placed in a separately manufactured cryostat for testing. Then, the coil body and the auxiliary coil are energized, and the optimum position of the auxiliary coil is determined while measuring the uniformity of the magnetic field. After that, let it return to room temperature and fix it to the bobbin and the bobbin of the auxiliary coil.

ここで円筒状ボビン全金属でつくると、材賀がステンV
ス鋼の場合は弾性率が大きい(約20,000kg/m
m’  )ので、比較的薄くてよいが、浴接や機械加工
により局部的に磁化するので、磁場の均一度か補助コイ
ルでに補正できぬほどに乱されて好ましくない。そこで
、一般にNMR−CTJ=I=1では、アルミ合金のボ
ビンが採用される。アルミ合金は電導性が良いので、外
部の交流磁場、例えはNMR−CTでは計測用の高周波
コイルと傾斜磁場発生用のパルスコイルのつくる磁場に
よりうずftl流を生じ、磁場の均一度を乱すと共に、
熱が出て液体ヘリウムの蒸発量ケ多くする。それゆえ、
円筒状ボビンとしては非金属であることが好ましい。ま
た、従来は液体ヘリウム容器の外側容器と共に、内側の
円筒状容器も別に用意し、円筒ボビンの周囲に形成し磁
場の均一度補正をすませたコイル會、これらの容器がつ
くる液体ヘリウム容器内に収容している。この場合の内
側容器はヘリウムの透過がなければよいので薄くてもよ
い。しかし、コイルi液体ヘリウム内に支持するのに、
内(till u器とコイルボビンの間にスペーサ?挿
入して行なうとすると、コイルの重量?支えつるだけの
厚さが必要となる。
If the cylindrical bobbin is made of all metal, the material will be stainless V.
In the case of steel, the elastic modulus is large (approximately 20,000 kg/m
m'), so it can be relatively thin, but it is not desirable because it is locally magnetized by bath contact or machining, and the uniformity of the magnetic field is disturbed to the extent that it cannot be corrected by the auxiliary coil. Therefore, generally when NMR-CTJ=I=1, an aluminum alloy bobbin is used. Since aluminum alloy has good electrical conductivity, an external alternating magnetic field, for example, in NMR-CT, a magnetic field created by a high frequency coil for measurement and a pulse coil for generating a gradient magnetic field generates eddy ftl flow, which disturbs the uniformity of the magnetic field and causes ,
Heat is generated and the amount of liquid helium evaporates increases. therefore,
The cylindrical bobbin is preferably made of non-metal. In addition, conventionally, an inner cylindrical container was prepared separately along with the outer container of the liquid helium container, and a coil was formed around the cylindrical bobbin to correct the uniformity of the magnetic field. It is accommodated. In this case, the inner container may be thin as long as helium does not pass therethrough. However, to support the coil i in liquid helium,
If you insert a spacer between the tiller and the coil bobbin, it will need to be thick enough to support the weight of the coil.

〔発明9)目的〕 本発明は上述の点に鑑みな窟れたもので、その目的とす
るところは、構造を簡略化して液体ヘリウム容器壁とし
ても十分な剛性があり、かつ、ヘリウムの透過の極めて
少ないクライオスタットを提供するにある。
[Invention 9) Purpose] The present invention was developed in view of the above-mentioned points, and its purpose is to simplify the structure so that it has sufficient rigidity as a wall of a liquid helium container, and to prevent the permeation of helium. There are very few cryostats on offer.

〔発明の概要〕[Summary of the invention]

本発明は液体ヘリウム内側容器とコイルボビン全一体の
繊維強化プラスチック製のもので兼用することにより、
所期の目的を達成するようになしたものである。
In the present invention, the inner liquid helium container and the coil bobbin are entirely made of fiber-reinforced plastic.
It was designed to achieve the intended purpose.

〔発明の実施ψ1]〕 以下、図面の実施例に基づいて本発明を説明1−る。[Practice of the invention ψ1]] The present invention will be explained below based on the embodiments shown in the drawings.

図は本発明の一実施例になるクライオスタットを示すも
のである。読図において、IJj:液体ヘリウム3を収
容するための外側容器、2は真空容器で、外側容器1と
真空容器2の間には積層真壁熱絶縁層4全おき、外部か
ら液体ヘリウム容器に侵入する熱を極めで小さくおさえ
ている。本実施例では円筒状ボビン5ケ繊維強化プラス
チックとし、この円筒状ボビン5の周囲に、超電導線6
奮ノVノイド状に巻付けてコイル本体を形成している。
The figure shows a cryostat that is an embodiment of the present invention. In the figure reading, IJj: an outer container for containing liquid helium 3, 2 is a vacuum container, and between the outer container 1 and the vacuum container 2 there is a laminated solid-walled thermal insulation layer 4, so that the liquid helium enters the liquid helium container from the outside. It keeps the heat to an extremely low level. In this embodiment, five cylindrical bobbins are made of fiber-reinforced plastic, and a superconducting wire 6 is placed around the cylindrical bobbin 5.
The coil body is formed by winding it in a V-nod shape.

7はコイル本体が′電磁力により動くの葡おさえるバイ
ンド層である。コイル本体の両側には、リング状ボビン
8に超電導線9を巻伺けて形成した、磁場補正用の補助
コイルをもうけている。そして、繊維強化プラスチック
製のボビン50両端部に液体ヘリウムの外側容器1を気
密に接合して、ボビ1  ン5に液体ヘリウム内側容器
金部ねさせている。
7 is a binding layer that prevents the coil body from moving due to electromagnetic force. On both sides of the coil body, there are provided auxiliary coils for magnetic field correction, which are formed by winding a superconducting wire 9 around a ring-shaped bobbin 8. The outer container 1 for liquid helium is hermetically joined to both ends of a bobbin 50 made of fiber-reinforced plastic, and the bobbin 5 is made to rest on the metal part of the inner container for liquid helium.

このような本実施例の構成とすることにより、構造が簡
略化して全体的な原価低減?実現でき、また、コイルボ
ビンはそれ自体で十分な剛性?もつように厚肉につくら
れるので、液体ヘリウムの容器壁としても十分な剛性が
あり、更に、ヘリウムの透過も極めて小さくすることが
できる。
The structure of this embodiment simplifies the structure and reduces the overall cost. Is it possible to achieve this, and is the coil bobbin itself sufficiently rigid? Since it is made thick enough to hold water, it has sufficient rigidity to serve as a container wall for liquid helium, and furthermore, it is possible to minimize the permeation of helium.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明のクライオスタットによれば、コイ
ルボビン全繊維強化プラスチック製とすると共に、この
コイルボビンの両端部に液体ヘリウム容器の外側容器を
接合したものであるから、構造が簡略化すると共に、液
体ヘリウム容器壁としても十分な構成があり、かつ、ヘ
リウム透過の一極ぬて少ない此徨りライオスタットヲ得
ることができる。
According to the cryostat of the present invention described above, the coil bobbin is made entirely of fiber-reinforced plastic, and the outer container of the liquid helium container is joined to both ends of the coil bobbin, so that the structure is simplified and the liquid helium It is possible to obtain a stray lyostat which has a sufficient structure as a container wall and has extremely low helium permeation.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明のクライオスタンドの一実施例r月〈ず断面
図である。
The figure is a cross-sectional view of an embodiment of the cryostand of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、 円筒状のコイルボビンの外周に巻回して形成され
る超電導ソレノイドコイルと、該超電導ソノメイドコイ
ルを収容し、かつ、超電導ソンノイドコイル?液体ヘリ
ウムで極低温に冷却する液体ヘリウム容器と、該液体ヘ
リウム容器全所熱部ケ介して榎う真壁容器と?備えたク
ライオスタンドにおいて、前記コイルボビンkl&維強
化プラスチック製とすると共に、このコイルボビンの端
部に前記液体ヘリウム容器の外側容器を接合し、繊維強
化プラスチツク製コイルボビンが液体ヘリウム容器の内
側容器壁を兼用するようにしたことを特徴とづ゛るクラ
イオスタット。
1. A superconducting solenoid coil formed by winding around the outer periphery of a cylindrical coil bobbin, and a superconducting solenoid coil that accommodates the superconducting solenoid coil, and a superconducting solenoid coil? A liquid helium container that is cooled to an extremely low temperature with liquid helium, and a Makabe container that pumps water through a heating section throughout the liquid helium container? In the cryostand equipped with the coil bobbin, the coil bobbin is made of fiber-reinforced plastic, the outer container of the liquid helium container is joined to the end of the coil bobbin, and the fiber-reinforced plastic coil bobbin also serves as the inner container wall of the liquid helium container. A cryostat is characterized by the following features:
JP58055026A 1983-04-01 1983-04-01 Cryostat Pending JPS59182512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58055026A JPS59182512A (en) 1983-04-01 1983-04-01 Cryostat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58055026A JPS59182512A (en) 1983-04-01 1983-04-01 Cryostat

Publications (1)

Publication Number Publication Date
JPS59182512A true JPS59182512A (en) 1984-10-17

Family

ID=12987151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58055026A Pending JPS59182512A (en) 1983-04-01 1983-04-01 Cryostat

Country Status (1)

Country Link
JP (1) JPS59182512A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004287A1 (en) * 1992-03-06 1995-02-09 Daikin Industries, Ltd. Magnetic sensor and magnetic detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004287A1 (en) * 1992-03-06 1995-02-09 Daikin Industries, Ltd. Magnetic sensor and magnetic detector
US5666052A (en) * 1992-03-06 1997-09-09 Daikin Industries, Ltd. Magnetic sensor having a superconducting quantum interference device and a pickup coil wound on a tubular resinous bobbin with embedded high thermal conductivity material

Similar Documents

Publication Publication Date Title
EP0981057B1 (en) MRI magnet assembly with non-conductive inner wall
JPS6098343A (en) Nuclear magnetic resonance device
US4905316A (en) Magnetic field generating system for magnetic resonance imaging system
JP3940454B2 (en) Magnet assembly
US7498814B1 (en) Magnet assembly for magnetic resonance imaging system
US5179338A (en) Refrigerated superconducting MR magnet with integrated gradient coils
JPH04225503A (en) Active shield type resonance magnet eliminating the need for refrigerating agent
JP4179578B2 (en) Open superconducting magnet and magnetic resonance imaging system using the same
JPS6159709A (en) Magnet unit
JPH07106153A (en) C-shaped superconductive magnet
JPH01243503A (en) Static magnetic field magnet for magnetic resonance imaging device
US5225782A (en) Eddy current free MRI magnet with integrated gradient coils
US5939962A (en) Split type magnetic field generating apparatus for MRI
US7112966B2 (en) Magnetic resonance imaging apparatus
GB2299673A (en) MRI magnet with flared opening
JPS59182512A (en) Cryostat
JP4866213B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus
US5635888A (en) Super-conducting magnets
JP2000037366A (en) Superconductive magnet device
JPS59159506A (en) Cryostat
JPS59182511A (en) Cryostat
US6657527B2 (en) Apparatus and method for fabricating magnet support structure
EP0626587A1 (en) A shimming system for a C-shaped superconducting magnet
JPH047807A (en) Low-temperature container for superconductive magnet
JPH03250705A (en) Superconducting magnet