JPS59181827A - High frequency switching circuit - Google Patents

High frequency switching circuit

Info

Publication number
JPS59181827A
JPS59181827A JP58055703A JP5570383A JPS59181827A JP S59181827 A JPS59181827 A JP S59181827A JP 58055703 A JP58055703 A JP 58055703A JP 5570383 A JP5570383 A JP 5570383A JP S59181827 A JPS59181827 A JP S59181827A
Authority
JP
Japan
Prior art keywords
high frequency
circuit
coil
control current
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58055703A
Other languages
Japanese (ja)
Other versions
JPH0336340B2 (en
Inventor
Hiroyuki Matsuura
裕之 松浦
Kenji Fujino
健治 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP58055703A priority Critical patent/JPS59181827A/en
Publication of JPS59181827A publication Critical patent/JPS59181827A/en
Publication of JPH0336340B2 publication Critical patent/JPH0336340B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/74Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of diodes

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To operate the circuit at a board frequency band without requiring circuit space by coupling densely the primary circuit of which a transmission/ receiving coil is connected and the secondary circuit to which a control current is applied by means of a transformer. CONSTITUTION:When the control current Ic reachs 0 at the secondary circuit at the transmission mode, the primary coil L1 acts like a high frequency choke with high impedance, and when a high frequency power output from a transmitter is applied to a high frequency input terminal 12, only the path of an input/ output terminal 14 for transmission/receiving coil is turned on. When the control current Ic is a positive current I0 at the secondary circuit in the receiving mode, the impedance of the primary coil L1 is made very low in terms of high frequency and only the path of the input/output terminal 14 and a detecting signal output terminal 15 is turned on. Thus, no circuit space is required and the circuit is operated at a wide frequency. Then, the high frequency switching circuit with less loss is realized by a simple circuit.

Description

【発明の詳細な説明】 本発明はパルスNMR装置などで単一のコイルを使用し
て高周波の送受信を行なう場合に必要々高周波スイッチ
ング回路の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a high frequency switching circuit that is necessary when transmitting and receiving high frequency waves using a single coil in a pulsed NMR device or the like.

核磁気共鳴(NMR)は、原子核の磁気的性質を用いて
、化学的1情報を得る方法である。つ”まり、静、j 磁場中の原子核を、高周波エネルギーで励起すると、共
鳴現象によって発生する共鳴信号(以下NMR信号と呼
ぶ)からその原子の密度や、1わシとの結合状態を知る
ことができる。この原理を用いたN1.iR装置は、解
剖学的情報と機能的情報を与える診断装置として最近注
目されているものである。
Nuclear magnetic resonance (NMR) is a method of obtaining chemical information using the magnetic properties of atomic nuclei. In other words, when an atomic nucleus in a static magnetic field is excited with high-frequency energy, the density of the atom and its bonding state with 1 can be determined from the resonance signal (hereinafter referred to as NMR signal) generated by the resonance phenomenon. The N1.iR device using this principle has recently attracted attention as a diagnostic device that provides anatomical and functional information.

パルスNMR装置などで、単一のコイルを使用して高周
波の送受信を行なう場合に第1図に示すような高周波ス
イッチング回路1が必要となる。すなわち送信モードの
ときには高周波スイツテング回路1は高周波接続回路2
と送受信コイル3との間をオンとしく図の状態)、送受
信コイル5からは第2図(A)K示すようなパルス状の
送信出力を発生する。送信出力発生後受信モードとなる
と高周波スイッチング回路1は送受信コイル6を高周波
受信回路4とを接続するように切換えられ、第2図(B
)に示すような微小な検出出力が高周波受信回路4に加
えられる。
When transmitting and receiving high frequency waves using a single coil in a pulse NMR apparatus or the like, a high frequency switching circuit 1 as shown in FIG. 1 is required. That is, in the transmission mode, the high frequency switching circuit 1 is connected to the high frequency connecting circuit 2.
The transmitting/receiving coil 3 is turned on (the state shown in the figure), and the transmitting/receiving coil 5 generates a pulse-like transmitting output as shown in FIGS. 2(A) and 2(K). When the receiving mode is entered after the transmission output is generated, the high frequency switching circuit 1 is switched to connect the transmitting/receiving coil 6 with the high frequency receiving circuit 4, as shown in FIG.
) is applied to the high frequency receiving circuit 4.

上記のような高周波スイッチング回路の従来例として4
分の1波長(λ/4)線路を用いたものを第3図に示す
。このような構成の回路において送信機からの高周波パ
ワー出力が入力端子5に加わると、り゛イオードD1.
 D2. D3. D4はオンとなる。したがって4分
の1波長線路の性質から、点Aから出力端子乙の方を見
たときのインピーダンスはぼは無限大となり、点Aから
コイル3を見たときのインピーダンスは有限になる。こ
の結果マツチングをとれば、送信機からの送信パワーの
大半は送受信コイル3に加えられる。受信モードでは送
受4にコイル3からの検出出力は微小信号なのでダイオ
ードの順方向電圧よりも小さく、ダイオードD1〜D4
はオフとなる。この結果送受信コイル3からの検出出力
は出力端子6を介して受信回路に送られる。
As a conventional example of the high frequency switching circuit as mentioned above, 4
Fig. 3 shows an example using a 1/4 wavelength (λ/4) line. In a circuit with such a configuration, when the high frequency power output from the transmitter is applied to the input terminal 5, the diode D1.
D2. D3. D4 is turned on. Therefore, due to the properties of the quarter-wavelength line, the impedance when looking from point A toward the output terminal B is infinite, and the impedance when looking from point A to the coil 3 is finite. As a result, if matching is achieved, most of the transmission power from the transmitter is applied to the transmitter/receiver coil 3. In the reception mode, the detection output from the coil 3 to the transmitter/receiver 4 is a minute signal, so it is smaller than the forward voltage of the diode,
is off. As a result, the detection output from the transmitting/receiving coil 3 is sent to the receiving circuit via the output terminal 6.

上記のような回路の場合には周波数が低くなるにつれて
4分の1波長(λ/4)線路が長くなυ広い回路スペー
スが必要になるという欠点がある。また単一の周波数に
対してのみ正常動作し、周波数が変化すると動作不良と
なるなどの欠点がある。
In the case of the above-mentioned circuit, there is a drawback that as the frequency becomes lower, the quarter wavelength (λ/4) line becomes longer and a larger circuit space is required. Another drawback is that it operates normally only at a single frequency and malfunctions when the frequency changes.

この他、種々の形式の高周波スイッチング回路があるが
、高周波送信パワーや誘起電圧の損失の少ガいことが要
求されている。
In addition, there are various types of high frequency switching circuits, but they are required to have low high frequency transmission power and low loss of induced voltage.

本発明は上記の問題点を解消するためにムされたもので
、回路スペースを必要とせず広い周波数帯で動作し、損
失の少ない高周波スイッチング回路を実現することを目
的とする。
The present invention has been devised to solve the above-mentioned problems, and an object of the present invention is to realize a high-frequency switching circuit that does not require circuit space, operates in a wide frequency band, and has low loss.

本発明によれば、送受信コイルが接続する1次側回路と
制御電流が印加される2次側回路とをトランスで密結合
し、2次コイルの両端に関連して2つのダイオードを接
続し、制御電流でこのダイオードをオンオフして前記2
次コイルを高周波的に短終まだは開放するととKより1
次側回路をオンまたはオフするとともに、高周波チョー
クで前記2次コイルをコモンから高周波的に絶縁し、か
つ誘起電流防止手段によシ前記制御電流による誘起?W
流が前記1次コイルに発生しないようにすることにより
上記の目的を達成できる。
According to the present invention, the primary side circuit to which the transmitting/receiving coil is connected and the secondary side circuit to which the control current is applied are closely coupled by a transformer, and two diodes are connected in relation to both ends of the secondary coil, Turn on and off this diode with a control current to
If the next coil is opened for a short period at high frequency, K will be 1
In addition to turning on or off the next circuit, the secondary coil is insulated from the common by a high frequency choke, and the induced current prevention means is used to prevent the secondary coil from being induced by the control current. W
The above object can be achieved by preventing current from occurring in the primary coil.

以下図面にもとづいて本発明を説明する。The present invention will be explained below based on the drawings.

第4図は本発明に係る高周波スイッチング回路の一実施
例を示す回路構成図である。高周波スイッチング回路1
1において、12は送信機からの高周波送信出力が加え
られる高周波入力端子、Di、D2はこの高周波入力端
子12にそれぞれその一端が接続するとともに互に逆並
列接続するダイオード、14はこの逆並列接続ダイオー
ドDi、 D2の他端に接続する送受信コイル用の入出
力端子、16は高周波スイッチング回路の要部、T1は
その一次コイルL1の一端が前記逆並列ダイオードDi
、 D2の他端に接続する密結合のトランス、D3.D
4けこのトランスT1の前記1次コイルL1の他端がそ
の一端に接続するとともにその他端がコモンに接続する
逆並列接続ダイオード、15はこの逆並列ダイオードの
前記一端が接続し、検出信号を受信回路へ出力する検出
信号出力端子、13は制御電流工が加えられる制御入力
端子、L5はこの制御入力端子13にその一端が接続す
るインダクタンスまたは高周波チョークλD5.D6は
この高周波チョークL5の他端にその一端(ここではア
ノード側)が接続するダイオード1L3. L4はその
一端がこのダイオードD5. D6の他端(ここではカ
ソード側)にそれぞれ接続しその他端がコモンに接続す
るインダクタンスまたは高周波チョーク、C1,C2は
その一端が前記ダイオードD5. D6の前記他端にそ
れぞれ接続しその他端が前記トランスT1の2次コイル
L2の両端にそれぞれ接続して誘起電流防止手段を形成
する、高周波に対して低インピーダンスのキャパシタで
ある。
FIG. 4 is a circuit configuration diagram showing an embodiment of the high frequency switching circuit according to the present invention. High frequency switching circuit 1
1, 12 is a high frequency input terminal to which the high frequency transmission output from the transmitter is applied; Di and D2 are diodes each having one end connected to this high frequency input terminal 12 and connected in antiparallel to each other; 14 is this antiparallel connection. The input/output terminal for the transmitting/receiving coil connected to the other end of the diode Di and D2, 16 is a main part of the high frequency switching circuit, and T1 has one end of the primary coil L1 connected to the anti-parallel diode Di.
, a tightly coupled transformer connected to the other end of D2, D3. D
An antiparallel connected diode 15 to which the other end of the primary coil L1 of the four-point transformer T1 is connected to one end and the other end is connected to a common, and 15 is connected to the one end of the antiparallel diode to receive a detection signal. 13 is a control input terminal to which a control current is applied; L5 is an inductance or high-frequency choke λD5.L5 whose one end is connected to the control input terminal 13; D6 is a diode 1L3.D6 whose one end (here, the anode side) is connected to the other end of the high frequency choke L5. L4 has one end connected to this diode D5. Inductances or high frequency chokes, C1 and C2, each connected to the other end (cathode side in this case) of D6 and the other end connected to a common, have one end connected to the diode D5. These capacitors are connected to the other ends of the transformer T1, and the other ends thereof are connected to both ends of the secondary coil L2 of the transformer T1 to form induced current prevention means, and have low impedance with respect to high frequencies.

上記のような構成の回路の動作を以下に説明する。送信
モードで2次側回路如おいて、制御電流工。
The operation of the circuit configured as above will be explained below. Connect the control current to the secondary circuit in transmission mode.

が0となると、ダイオードD5. D6はオフとなる。becomes 0, the diode D5. D6 is turned off.

このとき1次側回路において送信機からの高周波パワー
出力が高周波入力端子12に加えられると、ダイオード
D1. D2はオンとなる。一方トランスT1の2次コ
イルL2を含む2次側回路において、高周波チョークL
3. L4は高周波で高インピーダンスを示すので、2
次コイルL2の両端は高周波的にはオプン状態となり、
1次コイルL1は高インピーダンスの高周波チョークと
して働く。この結果1次側回路において、高周波入力端
子12と検出信号出力端子15の間の径路はオフ、高周
波入力端子12と送受信コイル用入出力端子14との間
の径路はオンとなシ、送信回路からの高周波パワー出力
はほぼ全て送受信コイルへ供給される。受信モードで制
御電流工が工(正の電流)となると工は高周波テヨC0
〇 −りL5→高周波チョークL3→コモンの径路でダイオ
ードD5をオンとし、高周波チョークL5→高周波テミ
ークL4→コモンの径路でダイオードD6をオンにする
。この結果トランスT1の2次コイルL2けその両端が
キャパシタC1,C2を介して高周波的にショートした
状態となり、1次コイルL1のインピーダンスを高周波
的に極めて低い値に低下させることができ、この状態で
送受信コイルからの微小検出信号が入出力端子14に加
えられると、高周波入力端子12への径路はダイオード
Di、 D3によってプロツクサレ、オン状態となって
いる検出信号出力端子15への径路を経て受信回路へ出
力される。なおこのとき逆並列接続されたダイオードI
)3. D4は微小検出信号に対してオフとなる。この
ように第4図の高周波スイッチング回路のオンオフは、
制御電流をオンオフすることで制御することができる。
At this time, when the high frequency power output from the transmitter is applied to the high frequency input terminal 12 in the primary circuit, the diode D1. D2 is turned on. On the other hand, in the secondary circuit including the secondary coil L2 of the transformer T1, the high frequency choke L
3. Since L4 exhibits high impedance at high frequencies, 2
Both ends of the next coil L2 are in an open state in terms of high frequency,
The primary coil L1 acts as a high impedance high frequency choke. As a result, in the primary circuit, the path between the high frequency input terminal 12 and the detection signal output terminal 15 is off, the path between the high frequency input terminal 12 and the transmitting/receiving coil input/output terminal 14 is not on, and the transmitting circuit Almost all of the high frequency power output from the is supplied to the transmitting and receiving coils. When the control current becomes negative (positive current) in reception mode, the current becomes high frequency TEYO C0.
The diode D5 is turned on through the path of ○-ri L5 → high frequency choke L3 → common, and the diode D6 is turned on through the path of high frequency choke L5 → high frequency choke L4 → common. As a result, both ends of the secondary coil L2 of the transformer T1 become short-circuited at high frequencies via the capacitors C1 and C2, and the impedance of the primary coil L1 can be reduced to an extremely low value at high frequencies. When a minute detection signal from the transmitting/receiving coil is applied to the input/output terminal 14, the path to the high frequency input terminal 12 is processed by the diodes Di and D3, and the signal is received via the path to the detection signal output terminal 15 which is in the on state. Output to the circuit. At this time, the diode I connected in antiparallel
)3. D4 is turned off in response to a small detection signal. In this way, the on/off of the high frequency switching circuit in Figure 4 is as follows:
It can be controlled by turning the control current on and off.

この場合に2次コイルL2には制御電流工は流れないの
で、制御電流工のオンオンrCよってトランスT1の1
次コイルL1に誘起電流が発生し、検出信号の誤差とな
ることはない。また2次側回路全体は高周波チョークL
3. L4. L5によってコモンから高周波的に浮い
ているので、トランスT1の1次コイルL1と密結合し
ている2次コイルL2の間の浮遊容量により検出信号出
力端子15からの検出信号出力が小さくなってしまうこ
ともない。
In this case, since the control current does not flow through the secondary coil L2, the ON/OFF rC of the control current causes the transformer T1 to turn 1.
No induced current is generated in the next coil L1 and causes an error in the detection signal. In addition, the entire secondary circuit is equipped with a high frequency choke L.
3. L4. Since it is floating in high frequency from the common by L5, the detection signal output from the detection signal output terminal 15 becomes small due to the stray capacitance between the primary coil L1 of the transformer T1 and the closely coupled secondary coil L2. Not at all.

なお、ダイオードD5. D6の極性を逆向きにして負
の制御電流工を用いることもできる。
Note that the diode D5. A negative control current generator can also be used by reversing the polarity of D6.

1だ、ダイオードD5. D6および高周波チョークL
3. L4として特性の揃ったものを使用すれば、2次
コイルL2に制御電流は流れないので、キャパシタC1
,C2を省略するととができる。
1, diode D5. D6 and high frequency choke L
3. If a capacitor with uniform characteristics is used as L4, no control current will flow through the secondary coil L2, so the capacitor C1
, C2 can be omitted.

第5図は本発明の第2の実施例を示す要部回路る2つの
2次コイルL12. Li2を有するトランス、L5は
その一端が前記2次コイルL13の一端に接続する高周
波チョーク、D9はその一端(ここではアノード端子)
がこの2次コイルL13の他端に接続するダイオード、
Dloはその一端(ここではアノード端子)が前記高周
波チョークL5の前記一端に接続しその他端が前記ダイ
オードD9の他端と接続するダイオード、D7. D8
はその一端(ここではアノード端子)が前記ダイオード
D9. DIOの前記他端に接続し他端が前記2次コイ
ルL12の両端にそれぞれ接続するダイオード、L14
はその一端が前記ダイオードD8の他端に接続しその他
端がコモンに接続する高周波チョークである。
FIG. 5 shows a main circuit of a second embodiment of the present invention, which includes two secondary coils L12. A transformer having Li2, L5 is a high frequency choke whose one end is connected to one end of the secondary coil L13, and D9 is one end (anode terminal here).
is a diode connected to the other end of this secondary coil L13,
Dlo is a diode, D7. D8
One end (here, the anode terminal) is connected to the diode D9. a diode L14 connected to the other end of DIO and whose other ends are respectively connected to both ends of the secondary coil L12;
is a high frequency choke whose one end is connected to the other end of the diode D8 and the other end is connected to common.

上記のような構成の高周波スイッチング回路の動作を次
に述べる。送信モードで2次側回路において制御電流工
が00ときはダイオムドD7〜DIQはオフとな92次
コイルL12. Li2の両端はオープンとなシ第4図
の場合と同様に1次側回路の1次コイルLllけ高周波
チョークとして動作する。受信モードで制御電流工。が
工。(正の電流)となると、ダイオードD7〜DiOは
オンとなり、2次コイルL12. Li2の両端はショ
ートされた状態となシ、第4図の場合と同様1次コイル
Lllは高周波的に極めて低インピーダンスとなる。2
次コイルL12゜Li2には同一制御電流が流されかつ
その発生する磁束が互いにキャンセルする方向となるよ
うに接続されているので、第4図の場合と同様制御電流
Iのオンオンによ91次コイルに電流は誘起しないとい
う利点がある。すなわち、2つの2次コイルL12. 
Li2を用いることにより誘起電流防止手段を形成して
いる。また2次側回路全体が高周波テミークL14. 
L5によって高周波的にコモンから浮いているので、ト
ランスT2の1次コイル2次コイル間の浮遊容量による
悪影響がない点も第4図の場合と同様である。
The operation of the high frequency switching circuit configured as described above will be described next. In the transmission mode, when the control current is 00 in the secondary circuit, the diodes D7 to DIQ are off and the 92nd coil L12. Since both ends of Li2 are open, the primary coil Lll of the primary side circuit operates as a high frequency choke, as in the case of FIG. Control current engineer in receiving mode. Gaku. (positive current), diodes D7 to DiO are turned on, and secondary coils L12. Both ends of Li2 are short-circuited, and the primary coil Lll has an extremely low impedance at high frequencies, as in the case of FIG. 2
The same control current is passed through the secondary coil L12°Li2, and the magnetic fluxes generated by the secondary coil L12°Li2 are connected in such a way that they cancel each other out.As in the case of FIG. It has the advantage that no current is induced. That is, two secondary coils L12.
The induced current prevention means is formed by using Li2. In addition, the entire secondary circuit is a high frequency Temeek L14.
Since it is floated from the common in terms of high frequency by L5, there is no adverse effect due to stray capacitance between the primary coil and the secondary coil of the transformer T2, which is the same as in the case of FIG. 4.

以上述べたように本発明によれば、回路スペースを必要
とせず、広い周波数帯で動作し、損失の少ない高周波ス
イッチング回路を簡単な構成で実現できる。
As described above, according to the present invention, a high frequency switching circuit that does not require circuit space, operates in a wide frequency band, and has low loss can be realized with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は高周波スイッチングの原理を示す原理
説明図、第3図は高周波スイッチング回路の従来例を示
す回路構成図、第4図は本発明の第1の実施例を示す回
路構成図、第5図は本発明の第2の実施例を示す要部回
路図である。 1.11・・・高周波スイッチング回路、工・・・制御
電流、TI、T2・・トランス、L2. L12. L
L3・・・2次コイル、D5〜D10・・・ダイオード
、L3〜L5. LL4・・・高周波チョーク、LL、
 Lll・・・1次コイル、CL、 C2・・・キャパ
シタ。
1 and 2 are principle explanatory diagrams showing the principle of high frequency switching, FIG. 3 is a circuit configuration diagram showing a conventional example of a high frequency switching circuit, and FIG. 4 is a circuit configuration showing the first embodiment of the present invention. 5 are principal part circuit diagrams showing a second embodiment of the present invention. 1.11...High frequency switching circuit, Engineering...Control current, TI, T2...Transformer, L2. L12. L
L3... Secondary coil, D5-D10... Diode, L3-L5. LL4...High frequency choke, LL,
Lll...Primary coil, CL, C2...Capacitor.

Claims (3)

【特許請求の範囲】[Claims] (1)1次コイル22次コイルとを密結合するトランス
と、このトランスの前記2次コイルの両端子に関連して
それぞれその一端が接続するとともにその他端同志が接
続し、制御電流によシ前記2次コイルを少くとも高周波
的に短絡または開放にする2つのダイオードと、前記2
次コイルのコモンからの高周波インピーダンスを高くす
る高周波チョークと、前記制御電流による誘起電流が前
記1次コイルに生じないようにする誘起電流防止手段と
を備えたことを特徴とする高周波スイッチング回路。
(1) A transformer tightly coupling a primary coil and a secondary coil, one end of which is connected to both terminals of the secondary coil of this transformer, and the other ends are connected to each other, and the control current is connected to the transformer. two diodes that short-circuit or open the secondary coil at least at high frequencies;
A high-frequency switching circuit comprising: a high-frequency choke that increases high-frequency impedance from a common of a secondary coil; and induced current prevention means that prevents induced current caused by the control current from occurring in the primary coil.
(2)誘起電流防止手段としてキャノ(シタを2次コイ
ル端子とダイオード間に接続した特許請求の範囲第1項
の高周波スイッチング回路。
(2) The high frequency switching circuit according to claim 1, wherein a capacitor is connected between the secondary coil terminal and the diode as an induced current prevention means.
(3)  誘起電流防止手段として制御電流によりトラ
ンスの2次コイルに発生する磁束を打消すような磁束を
前記制御電流によって発生する第2の2次コイルを前記
トランス内に有する特許請求の範囲第1項の高周波スイ
ッチング回路。
(3) As an induced current prevention means, a second secondary coil is provided in the transformer, which generates a magnetic flux by the control current that cancels the magnetic flux generated in the secondary coil of the transformer by the control current. High frequency switching circuit in item 1.
JP58055703A 1983-03-31 1983-03-31 High frequency switching circuit Granted JPS59181827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58055703A JPS59181827A (en) 1983-03-31 1983-03-31 High frequency switching circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58055703A JPS59181827A (en) 1983-03-31 1983-03-31 High frequency switching circuit

Publications (2)

Publication Number Publication Date
JPS59181827A true JPS59181827A (en) 1984-10-16
JPH0336340B2 JPH0336340B2 (en) 1991-05-31

Family

ID=13006243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58055703A Granted JPS59181827A (en) 1983-03-31 1983-03-31 High frequency switching circuit

Country Status (1)

Country Link
JP (1) JPS59181827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128943A (en) * 2006-11-24 2008-06-05 Hitachi Ltd Nuclear magnetic resonance probe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925803U (en) * 1972-06-06 1974-03-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925803U (en) * 1972-06-06 1974-03-05

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128943A (en) * 2006-11-24 2008-06-05 Hitachi Ltd Nuclear magnetic resonance probe

Also Published As

Publication number Publication date
JPH0336340B2 (en) 1991-05-31

Similar Documents

Publication Publication Date Title
US4802080A (en) Power transfer circuit including a sympathetic resonator
US4262328A (en) DC-to-DC converter
US4803447A (en) Three terminal remotely controlled SPDT antenna switch
US4945317A (en) Matching circuit
JPWO2017145880A1 (en) Circuit switching device and switch drive circuit
JP2859584B2 (en) Centralized parameter balun
US3146409A (en) Multiple coupler employing resonant effects to isolate the load circuits from each other
JPS59181827A (en) High frequency switching circuit
EP0098066B1 (en) A data transmission system
CA2391339C (en) Emat transmit/receive switch
US3613068A (en) Device for coupling a transducer to a transmitter and receiver (u)
US3414872A (en) Magnetic transmission listen switch for sonar
US3992674A (en) Balanced dual output mixer circuit
JPH07213057A (en) Insulated element for transmission of signal
JPS61260744A (en) Driving system for pulse transformer
US2197937A (en) Noise reduction system
JPS62231145A (en) Generating and detecting device of high frequency magnetic field
JPH10288385A (en) Data communication device for air conditioner
JPS6363443A (en) Receiving probe for nmr
JPS60112302A (en) Mixer device
JPH0212736Y2 (en)
JPS59161938A (en) Transmitting and receiving device
JPS5924201Y2 (en) power circuit
JPS59161939A (en) Transmitting and receiving device
JPS60250739A (en) Console unit for remote control