JPS59181680A - Current source circuit - Google Patents

Current source circuit

Info

Publication number
JPS59181680A
JPS59181680A JP58056053A JP5605383A JPS59181680A JP S59181680 A JPS59181680 A JP S59181680A JP 58056053 A JP58056053 A JP 58056053A JP 5605383 A JP5605383 A JP 5605383A JP S59181680 A JPS59181680 A JP S59181680A
Authority
JP
Japan
Prior art keywords
optical coupling
current
control
coupling element
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58056053A
Other languages
Japanese (ja)
Other versions
JPH0224390B2 (en
Inventor
Katsumi Nagano
克己 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58056053A priority Critical patent/JPS59181680A/en
Priority to US06/592,808 priority patent/US4652764A/en
Priority to DE3448087A priority patent/DE3448087C2/de
Priority to DE19843411303 priority patent/DE3411303A1/en
Publication of JPS59181680A publication Critical patent/JPS59181680A/en
Priority to US07/000,900 priority patent/US4752693A/en
Publication of JPH0224390B2 publication Critical patent/JPH0224390B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • H03K17/795Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled controlling bipolar transistors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/801Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections
    • H04B10/802Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections for isolation, e.g. using optocouplers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To obtain a current source circuit wherein an input current is linearly proportional to an output current, by controlling a current flowing to a photoelectric conversion element in an optical coupling element, and connecting the optical coupling elements so that the current, which is proportional to the current flowing the element, flows into a photoelectric conversion element of an output optical coupling element. CONSTITUTION:In a current source circuit, a control system, which determines a current value, is formed by an input current source Iin, a control transistor Q1, and a first optical coupling element PC1. In this control system, a feedback loop comprising the control transistor Q1 and the first optical coupling element PC1 performs control so that a collector current IC1 of a transistor 3 of the first optical coupling element PC1 becomes equal toan input current Iin from the input current source Iin. An input current IF2 to a second optical coupling element PC2 is the same current as an input current IF1to the first optical coupling element PC1. Therefore, when the characteristics of the first and second optical coupling elements PC1 and PC2 are equal, an output current Iout agrees with the input current Iin from the input current source Iin.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は電流源回路に係り、特に■i電光変換素子光電
変換素子との対からなる光電相互変換複合素子を使用し
て制御系から電気的に絶縁された電流源回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a current source circuit, and in particular, it uses a photoelectric interconversion composite element consisting of a pair of an electric-optical conversion element and a photoelectric conversion element to generate electrical signals from a control system. The present invention relates to a current source circuit insulated to a current source circuit.

〔発明の技術的背景〕[Technical background of the invention]

光電相互間の変換を行なう複合素子は、フォトカプラ、
オプティカルカプラなどと称されているが、これらの複
合素子(以下総括的な名称として光結合素子と言う)は
基本的には電流・電流変換素子であり、制御系から電気
的に絶縁された電流源回路の使用に適している。上記光
結合素子の等価回路は第1図(A)あるいは第1図(B
)に示すようなものであり、発光ダイオード1に流れる
電流I、を光に変換(電光変換)シ、それをフォトダイ
オード2で検出し、トランジスタ3で増幅して出力電流
I。を得る(光電変換)、または光をフォトトランジス
タ4で検出して電iI。に変換する。なお、上記光結合
素子として最近はレーザー光を用いるものがある。光結
合素子の電流伝達特性を示すものとして次式が知られて
いる。
Composite elements that perform photoelectric conversion are photocouplers,
Although they are called optical couplers, these composite devices (hereinafter collectively referred to as optical coupling devices) are basically current-to-current conversion devices, and convert current electrically insulated from the control system. Suitable for use in power source circuits. The equivalent circuit of the above optical coupling device is shown in Figure 1 (A) or Figure 1 (B).
), the current I flowing through the light emitting diode 1 is converted into light (electro-optical conversion), which is detected by the photodiode 2 and amplified by the transistor 3 to produce an output current I. (photoelectric conversion), or detect the light with the phototransistor 4 and convert it to an electric current (photoelectric conversion). Convert to Note that, recently, there are devices that use laser light as the above-mentioned optical coupling device. The following equation is known to represent the current transfer characteristics of an optical coupling device.

但し、■。F I、は前述した出力電流および入力N流
、Kは比例係数、IF/は上記比例係数を測定したとき
の入力電流(基準入力電流)、指数nは対数にょるI、
−I。特性の傾きである。
However, ■. F I is the aforementioned output current and input N current, K is the proportional coefficient, IF/ is the input current when measuring the above proportional coefficient (reference input current), index n is logarithm I,
-I. It is the slope of the characteristic.

ここで、光結合素子単体の市販品のうち3例について、
その人出方電流特性(工F−IC特性)を第2図(〜乃
至第2図(Qに示す。これらの特性から分るように、指
数nは一定とはならず、小電流領域(IF< S rn
A)でnが約2となり、大電流領域(IF〉] OmA
 )ではnが約1となる。換言すれば、光結合素子の電
流伝達比は、小電流領域では非直線、大電流領域でFi
直線となり、全体として非直線になる。
Here, regarding three examples of commercially available optical coupling devices alone,
The outflow current characteristics (F-IC characteristics) are shown in Figure 2 (~ to Figure 2 (Q).As can be seen from these characteristics, the index n is not constant and varies in the small current region ( IF<Srn
In A), n is approximately 2, and the large current region (IF〉] OmA
), n is approximately 1. In other words, the current transfer ratio of the optocoupler is nonlinear in the small current region and Fi in the large current region.
It becomes a straight line, and the whole becomes a non-straight line.

〔背景技術の問題点〕[Problems with background technology]

したがって、従来の光結合素子は、リニア回路に使用す
る場合には上記電流伝達比の非直線性が問題になる。
Therefore, when conventional optical coupling elements are used in linear circuits, the nonlinearity of the current transfer ratio becomes a problem.

〔発明の目的〕[Purpose of the invention]

本発明は上記の事情に鑑みてなされたもので、入力電流
と出力電流とが直線的に比例する電流の回路を提供する
ものであ′る。
The present invention has been made in view of the above circumstances, and provides a current circuit in which input current and output current are linearly proportional.

〔発明の概要〕[Summary of the invention]

即ち、本発明の電流源回路は、制御用光結合素子の光電
変換素子に流れる電流が入力電流源からの入力電流の全
部または一部に等しくなるように上記光結合素子の電光
変換素子に流れる電流を制御し、上記制御用光結合素子
の電光変換素子に流れる′電流に比例した電流を出力用
光結合素子の電光変換素子に流すように上記光結合素子
相互を接続することを特徴とするものである。
That is, in the current source circuit of the present invention, the current flowing through the photoelectric conversion element of the optical coupling element for control is such that the current flowing through the photoelectric conversion element of the optical coupling element for control is equal to all or part of the input current from the input current source. The opto-coupling elements are connected to each other so that the current is controlled and a current proportional to the current flowing through the electro-optic conversion element of the control opto-coupler is passed through the electro-optic conversion element of the output opto-coupler. It is something.

これ吟よって、出力電流は入力電流に直線的に比例する
ようになり、人出カ間が電気的に分離されたリニア回路
の実現が可能になる。
As a result of this, the output current becomes linearly proportional to the input current, making it possible to realize a linear circuit in which the outputs are electrically isolated.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の一実施例を詳細に説明す
る。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第3図において、Qlば゛覗流郁]抑用のNPN形トラ
ンジスタであり、そのコレクタは第1銭位端(たとえば
+Vc亀位電位接続されている。Pclは第1の光結合
素子、PC2は第2のう“C結合素子であり、それぞれ
の入力側の発光ダイオニド1が直列に接続されている。
In FIG. 3, Ql is an NPN type transistor with a negative current, and its collector is connected to the first terminal (for example, +Vc potential). Pcl is the first optical coupling element, PC2 is a second C-coupled element, and the light emitting diodes 1 on the input side of each are connected in series.

これらの発光グイオ−ド1は、前記トランジスタQlの
エミッタと第2電位端(−、VE1d位)との間に過電
流保護用の抵抗Rを直列に介して接続されている。1だ
、前記+vc亀位電位前記制御用トランジスタQ1のベ
ースとの間に入力゛電流源”inが接続され、上記ベー
スと−VE K位端との間に前記第]の光結合素子PC
Iの出力側のトランジスタ3が接続されている。そして
、前記第2の光結合素子PC2の出力側のトランジスタ
3から出力’ft a 4゜UTが取り出されるように
かっている。
These light emitting diodes 1 are connected in series through a resistor R for overcurrent protection between the emitter of the transistor Ql and a second potential end (-, about VE1d). 1, an input current source "in" is connected between the +vc potential and the base of the control transistor Q1, and the]th photocoupler PC is connected between the base and the -VEK potential.
Transistor 3 on the output side of I is connected. The output 'ft a 4° UT is taken out from the transistor 3 on the output side of the second optical coupling element PC2.

上記電流源回路においては、入力゛電流源”+1制Xl
用トランソスタQ1および第1の光結合素子PCIは、
電流値を決める制御系を形成しており、この制御系にお
いて制御用トランジスタQ1および第1の光結合素子P
自からなる帰還ループは第1の光結合素子P自のトラン
ジスタ3のコレクタ電流I が入力電流源工inからの
入力電流1 工、nに等しく々るように制御する。第2の光結合素子
PC20入力電流IF2は上記第1の光結合素子PC1
の入力電流IF1と同じ電流であるから、これらの第コ
、第2の光結合素子P C1t P C2の特性が一致
していれば、第2の光結合素子PC2のコレクタ電流■
c2つまり出力帆随工。LITは入力電流源工、nから
の入力電流”inに一致する。
In the above current source circuit, the input "current source" + 1 control Xl
The transformer Q1 and the first optical coupling element PCI are
A control system that determines the current value is formed, and in this control system, the control transistor Q1 and the first optical coupling element P
The feedback loop consisting of the first optical coupling element P controls the collector current I of the transistor 3 of the first optocoupler P to be equal to the input current 1,n from the input current source in. The input current IF2 of the second optical coupling element PC20 is the same as that of the first optical coupling element PC1.
Since the current is the same as the input current IF1 of the second photocoupler PC2, if the characteristics of the second photocoupler PC1tPC2 are the same, the collector current of the second photocoupler PC2 is
c2 i.e. output sail fitting. LIT corresponds to the input current "in" from the input current source, n.

仄に、上記′砒υ元源回路の動作について定量的に説明
する。ある基準人力′電流■、′において、第1、第2
の光結合素子Pct r PC2の電流伝達特性をそれ
ぞれ測定した場合の比例係数をに1.に2、指数をJl
t r nzとすれば、第1.第2の光結合素子PC1
,P、C2の゛電流伝達特性はそれぞれ次式で示される
First, the operation of the above-mentioned source circuit will be explained quantitatively. At a certain standard human power 'current ■,', the first and second
The proportional coefficient when measuring the current transfer characteristics of the optical coupling element Pct r PC2 is 1. 2, the index is Jl
If t r nz, then the first. Second optical coupling element PC1
, P, and C2 are expressed by the following equations.

■F1−■F2であるので、上式(2) + (3)か
らが成立する。制御用トランジスタQ1のベース電流が
無視できるものとすると、 ’in −工C1 ■OUT −■C2 であるので、前式(4)から次式が求まる。
Since ■F1 - ■F2, the above equation (2) + (3) holds true. Assuming that the base current of the control transistor Q1 can be ignored, the following equation can be obtained from the previous equation (4).

nつ ここで、第]、第2の光結合素子PCB+PC2の特性
が一致していれば、 と=1  、  K1=に2 1 でちるので、 l0UT −Ii n       ””””゛(6)
となり、出力電流I。U、は入力型a 11 nに一致
する。
Here, if the characteristics of the second optical coupling element PCB+PC2 match, and = 1, and K1= is multiplied by 2 1, so l0UT -Ii n """"゛(6)
Therefore, the output current I. U, matches the input type a 11 n.

次に、前式(5)で示される入出力特性について誤差解
析を行なう。指数の比は Δn = −< 1 1 である。出力電流■。IJTの近似式はとなる。上式(
7)における指数が と仮定すれば、 が成立する。結局、出力電流は丘式(8)ヲ前式(7)
に代入して となる。ここで、比例係数が であるので、 となる。一方、電流の伝達比Fは の如く求lる。上式αηから入力電流工i。が小さくな
るほど電流伝達比Fは1から負方向への誤差分が増大す
ることが分る。即ち、上式α優において、 Δに=Δn=0.1 に1 = 1 として) I 、 = ] O−’ At 1O−2A、 10−
’AT 10’−’An における電流伝達比の誤差のΔFをそれぞれ計算すると ΔF=−2.3%、−4.6係、−6,9俤、−92係
となり、換言すれば出力電流■。LITの誤差分も増大
する。
Next, an error analysis will be performed on the input/output characteristics shown by the above equation (5). The ratio of the indices is Δn = −< 1 1 . Output current■. The approximate formula for IJT is as follows. The above formula (
If we assume that the index in 7) is , then the following holds true. In the end, the output current is the Oka equation (8) and the previous equation (7).
Substituting into gives the result. Here, since the proportionality coefficient is , it becomes . On the other hand, the current transfer ratio F is calculated as follows. From the above formula αη, input current factor i. It can be seen that as the current transfer ratio F becomes smaller, the error amount from 1 in the negative direction increases. That is, in the above formula α, Δ = Δn = 0.1 and 1 = 1) I, =] O-' At 1O-2A, 10-
Calculating the error ΔF of the current transfer ratio at 'AT 10'-'An, ΔF=-2.3%, -4.6 factor, -6,9 degree, -92 factor, in other words, the output current ■ . The error in LIT also increases.

第4図は、第3図の電流源回路による効果を実測するた
めの実1験回路を示しており、制(ジ(1用トランジス
タQ1として28C372、第1.第2の光結合素子P
C1,PC2としてTLP 504 A、抵抗Rとして
50Ω、+vc電位端と−vE電位端との間に10Vの
第1電源V。、1を接続し、第2の光結合素子PC2の
出力側のトランジスタ4にはltj: mf、計Aを直
列に介して]OVの第2電源V。62を接続している。
FIG. 4 shows an experimental circuit for actually measuring the effect of the current source circuit shown in FIG.
TLP 504 A is used as C1 and PC2, 50Ω is used as the resistor R, and a first power supply V of 10V is used between the +vc potential end and the -vE potential end. . 62 is connected.

この回路において、入力WE 流I inを0、1 m
Aから50mAまで変化させた場合の電流特性の実測値
を第5図に実線で示し、F−1のときの理想特性を点線
で示した。このグラフから、O,1mA〜50mAの全
範囲で良い直線性が得られていることが分る。つまり、
前述した光結合素子単体の特性で生じている小電流領域
での傾きの変化が、上記回路では十分に補正されている
。また、削成α■で予測されたように、入力電流■、n
が小さくηるほど出力電流I。UTの誤差が増大する点
についても実が1]結果も同様の傾向を示している。
In this circuit, the input WE current I in is 0, 1 m
The actual measured values of the current characteristics when changing from A to 50 mA are shown in solid lines in FIG. 5, and the ideal characteristics at F-1 are shown in dotted lines. From this graph, it can be seen that good linearity is obtained over the entire range of O, 1 mA to 50 mA. In other words,
The above-mentioned circuit sufficiently corrects the change in slope in the small current region, which occurs due to the characteristics of the optical coupling element alone. Also, as predicted by the reduction α■, the input current ■, n
The smaller η becomes, the output current I. Regarding the increase in the UT error, the results also show a similar tendency.

なお、」1記実施例は、21固の光結合素子PCI。Note that the first embodiment is a 21-unit photocoupler PCI.

PO2の一次側同志を直列接続して入力電流’inにほ
ぼ】対1で比例した出力電流工。UTを得ているが、こ
れに限らず本発明は種々の変形実施が可能である。即ち
、第6図に示す電流弥回路は、第1.第2の光結a巣子
PC1,PO2の発光ダイオード1同志をそれぞれ保護
抵抗R1,R2を介して並列接続したものであり、第6
図中前記第3図と同一部分には同一符号を付している。
Connect the primary sides of PO2 in series to create an output current proportional to the input current 'in'. Although UT is obtained, the present invention is not limited to this and various modifications can be implemented. That is, the current flow circuit shown in FIG. The light emitting diodes 1 of the second photoconductors PC1 and PO2 are connected in parallel via protective resistors R1 and R2, respectively.
In the figure, the same parts as in FIG. 3 are designated by the same reference numerals.

上記2個の発光ダイオードPCI + PO2の順方向
電圧降下VF1.vF2がそれぞれ等しいものとすれば
、  ”となる。ここで、J+R2は抵抗R1* R2
の抵抗呟であり、 R1−R2・・・・・・・・α3 とすれば I  −I   ・・・・・・・・・0→FI    
  F2 となり、fsfJ述した1■列型の第3図の回路におけ
ると同様な動作が行なわれる。そして、削成(2)。
Forward voltage drop VF1. of the two light emitting diodes PCI+PO2. If vF2 are equal, then ``.Here, J+R2 is the resistance R1*R2
It is the resistance of
F2, and the same operation as in the 1-column type circuit of FIG. 3 described above for fsfJ is performed. Then, delete (2).

り3)で示しfcが鑞伝達特性の指数がn 1−12 
” ] の領域で上記並列型の第6図の回路を動作させれば、削
成(2)で示されるIF2/工F1の比、つ1り抵抗比
R1/R2で入力YE流工i。と出力゛電流工。。、と
の比を決めることができる。
3) where fc is the index of the solder transfer characteristic n 1-12
” If the above-mentioned parallel type circuit of FIG. 6 is operated in the region of , the input YE flow i will be obtained at the ratio of IF2/F1 shown in (2) and the resistance ratio R1/R2. The ratio between the output power and the output current can be determined.

第7区に示す電流源回路は、軸性の等しい3個以上の光
結合素子P C1+ P C2H・・P Cnlの人力
8111同志を直列接続し、第2乃至第mの光結合系子
PC21’・’P Crnの負出力側から出力% it
 I OUT 2〜’OUTm を取り出すようにして
おり1.’(!3図中と同一部分には同一符号を示して
いる。上記負出力電流■。UTi(i−2〜m)は削成
(4)と同様に旦 となり、それぞれ(Ktyn+)と(K、、n、)との
パーラメータの比で決まる。
The current source circuit shown in Section 7 connects in series three or more optical coupling elements PC1+PC2H...PCNl with equal axis, and connects the second to m-th optical coupling elements PC21'・Output % it from the negative output side of 'P Crn
I am trying to take out I OUT 2 to 'OUTm. 1. '(!3 The same parts as in Fig. K,,n,) is determined by the parameter ratio.

第8図の電流源回路は、任意の電流伝達比を得るように
、それぞれの特性が等しいに個のブC結合素子PC,−
pc、、とt個の光結合素子P CI’〜PCtlとの
各入力端を直列に接続し、k個の光結合素子PC,−p
c、の各出力側を並列接続してfii制御用制御用トラ
ンジスタースと−V8厖位端との間に接続し、を個の光
結合素子PC1’〜pct′の名出力側を並列接続して
出力電流I。U、を取り出すようにしたものである。し
たがって、各光結合素子PC1〜pc  pc1’〜P
C/の出力1則のコレツに1 夕竜流ICはそれぞれ等しく、入力電流■1n、出力電
流工。UTとの間の関係は次式で示される。
The current source circuit shown in FIG. 8 includes a number of coupling elements PC, -, each having the same characteristics, so as to obtain an arbitrary current transfer ratio.
The input terminals of pc, , and t optical coupling elements P CI' to PCtl are connected in series, and k optical coupling elements PC, -p are connected in series.
The output sides of c, are connected in parallel between the fii control transistor and the -V8 potential terminal, and the output sides of the photocoupler PC1' to pct' are connected in parallel. output current I. It is designed to take out U. Therefore, each optical coupling element PC1~pc pc1'~P
The output current of C/1 is 1. The Yuryu style ICs are each equal, the input current is 1n, and the output current is 1n. The relationship between UT and UT is expressed by the following equation.

1  =kIo   ・・・・・・・・αQn ’ou7=AI。   ・・・・・・・・・助また、電
流伝達比は どなり、光結合素子の催]@1系使用個ikと出力系使
用個Btとの組み合わせで決まり、この組み合わせによ
り任意の1a流伝達比を実現できる。
1 =kIo...αQn'ou7=AI.・・・・・・・・・In addition, the current transfer ratio is determined by the combination of the optical coupling element used] @1 system used unit ik and the output system used unit Bt, and this combination allows arbitrary 1a current transmission ratio can be achieved.

第9図に示す電流源回路は1、bθ1t1剌御用トラン
ジスタQ1のペースに出力端が接続された演υ:増幅器
5が具備された点が、第3図に示された電流分回路と異
なる点である。そして、増幅器5の反転入力端(→は接
地されており、非反転端(ト)は入力噸冗源工、。K傍
続されている。
The current source circuit shown in FIG. 9 differs from the current dividing circuit shown in FIG. 3 in that it is equipped with an amplifier 5 whose output end is connected to the output terminal of the transistor Q1 for controlling bθ1t1. It is. The inverting input terminal (→) of the amplifier 5 is grounded, and the non-inverting terminal (T) is connected to the input voltage source.

かか、る構成においては、演算1%9幅器5の非反転入
力端(ト)の電位が接地′■i位になるように動作する
。また、’1−II b”C,源I・ とじて:l−1
(抗(例えば抵抗匝R8を用いた場合にはIE鑞源工、
。の′耐流1直は■oc/Rs)で定まることになり、
その制御は容易になる。
In such a configuration, the operation is performed such that the potential at the non-inverting input terminal (G) of the arithmetic 1%9 width unit 5 becomes the ground level 'i'. In addition, '1-II b''C, source I, closing: l-1
(Resistance (for example, when using resistance box R8,
. The 'current resistance of 1 shift is determined by ■oc/Rs),
Its control becomes easier.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明の電流源回路によれば、入力制御
系と出力系との間を絶縁して入力’R流に面DJ的に比
ρ0し、所望の゛屯面伝岸11−を一?rする出力′底
流を得ることカニできるので、人出方間が電気的に分離
された各種のリニア回路を実現することかできる。
As described above, according to the current source circuit of the present invention, the input control system and the output system are insulated, and the surface DJ ratio ρ0 is adjusted to the input 'R flow, and the desired ゛tun surface propagation bank 11- is obtained. one? Since it is possible to obtain an output 'undercurrent', it is possible to realize various linear circuits in which the output circuits are electrically separated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)および第1図<13)は光結合素子の等価
回路図、第2図(A)乃至第2図(6月はそれぞれ光結
合素子の入出力電流特性を示す図、第3図は本発明の電
流源回路の一実施例を示す回路図、第4図は第3図の回
路による特性を確認するために供した実験回路の回路図
、第5図は第4図の回路による特性の実6111データ
を示す図、第6図乃至第9図はそれぞれ本発明の池の実
施に1を示す回路図である。 ■in・・・人力[jCOff: ’JX、■〕自+P
C2’・−PC,、,1)Ck。 PCt・・・)t、結合素子、1・・・発光ダイオード
、3・・・トランジスタ、4・・・フォトトランソスタ
、Q・・・i電流;)用介弓)用トランジスタ。 出ム:白人代理人  フ1)埋土 灼 江 武 彦第7
図 (A) 1F+   国 苓IF    薔IC 第2図 (A)        (B) (C) 第3図 第4図 out 第5図 1σ x10 →11n(A) 第6図 第7図 第8図 第9図
Fig. 1 (A) and Fig. 1 < 13) are equivalent circuit diagrams of the optocoupler, and Fig. 2 (A) to Fig. 2 (June is a diagram showing the input/output current characteristics of the optocoupler, respectively). Figure 3 is a circuit diagram showing one embodiment of the current source circuit of the present invention, Figure 4 is a circuit diagram of an experimental circuit used to confirm the characteristics of the circuit in Figure 3, and Figure 5 is a circuit diagram of an experimental circuit shown in Figure 4. Figures 6 to 9 are circuit diagrams showing 6111 data of actual characteristics of circuits, respectively, showing the implementation of the pond of the present invention. +P
C2'・-PC, , 1) Ck. PCt...)t, coupling element, 1...light emitting diode, 3...transistor, 4...phototransistor, Q...i current; Output: White agent F1) Buried earth Takehiko Takehiko No. 7
Figure (A) 1F+ Kokuri IF Bara IC Figure 2 (A) (B) (C) Figure 3 Figure 4 out Figure 5 1σ x10 →11n (A) Figure 6 Figure 7 Figure 8 Figure 9 figure

Claims (4)

【特許請求の範囲】[Claims] (1)入力m IIrL源と、制御用光結合素子と、出
力用光結合素子と、前記制御用光結合素子の光1孔変換
素子に流れる電流が前記人力′a電流源らの入力’j(
4流工t1の全部または一部に等しくなるように上記光
結合素子の電光変換素子に流れ−る電流をfti制御す
る底流制御回路と、前記制御用光結合素子の71E党変
換素子に流れる電流に比例した底流を前記出力用光結合
素子の?!電光変換素子流すように上記光結合素子相互
を接続する接続回路とを具備し、出力用光結合素子の光
電変換素子から前記入力端子工inに比例する出力電流
■。UTを得るようにしたことを特徴とする電流源回路
(1) Input m The current flowing through the IIrL source, the control optical coupling element, the output optical coupling element, and the optical one-hole conversion element of the control optical coupling element is input to the human power 'a current source 'j (
an undercurrent control circuit that controls the current flowing through the electro-optical conversion element of the optical coupling element so as to be equal to all or a part of t1, and a current flowing through the 71E conversion element of the control optical coupling element; The undercurrent proportional to ? of the output optical coupling element? ! and a connection circuit that connects the optical coupling elements to each other so that an electrical current flows from the photoelectric conversion element of the output optical coupling element to the output current proportional to the input terminal power. A current source circuit characterized in that it obtains UT.
(2)前記制御用光結合素子は1個であり、前記出力用
光結合素子は1個乃至複数個であり、前記電流制御回路
は前記入力端l5Ii、源と制御用光結合素子の光電変
換素子との接続点に電流制御用トランジスタのペースを
接続し、このトランジスタのエミッタ電流の全部を上記
制御用光結合素子の電光変換素子に供給するものであり
、前記接続回路は上記制御用光結合素子の電光変換素子
に直列に前記出力用光結合素子の電光変換素子を接続す
ることを特徴とする特許求の範囲第1項記載の電流源回
路。
(2) The number of the control optical coupling elements is one, the number of the output optical coupling elements is one or more, and the current control circuit includes photoelectric conversion between the input terminal l5Ii, the source and the control optical coupling element. A pace of a current control transistor is connected to the connection point with the element, and the entire emitter current of this transistor is supplied to the electro-optical conversion element of the control optical coupling element, and the connection circuit is connected to the control optical coupling element. The current source circuit according to claim 1, characterized in that the electro-optical conversion element of the output optical coupling element is connected in series with the electro-optical conversion element of the element.
(3)前記制御用光結合素子および出力用光結合素子は
それぞれ1個であり、前記m;電流制御回路前記入力電
流源と制御用光結合素子の光電変換素子との接続点に電
流制御用トランジスタのペースを接続し、このトランジ
スタのエミッタ電流の一部を上記制御用光結合素子の電
光変換素子に供給するものであり、前記接続回路は上記
制御用光結合素子の電光変換素子に並列に前記出力用光
結合素子の電光変換素子を接続することを特徴とする前
記特許請求の範囲外1項記載の電流源回路。
(3) There is one optical coupling element for control and one optical coupling element for output, and the m; current control circuit is used for current control at the connection point between the input current source and the photoelectric conversion element of the optical coupling element for control. The transistor pace is connected, and a part of the emitter current of this transistor is supplied to the electro-optical conversion element of the control optical coupling element, and the connection circuit is connected in parallel to the electro-optic conversion element of the control optical coupling element. The current source circuit according to claim 1, wherein an electro-optical conversion element of the output optical coupling element is connected.
(4)前記制御用光結合素子および出力用元結合素子は
それぞれ複数個であり、前記電流制御回路は前記投数の
制御用光結合素子の光電変換素子それぞれを並列接続し
、この複数の光電変換素子と前記入力電流源との接続点
に電流制御用トランジスタのペースを接続し、このトラ
ンジスタのエミッタ電流の全部を上記複数の制作))月
光結合素子の電光変換素子に直列に供給するものてあり
、前記接続回路は上記複叡の制御用光結合素子の電光変
換素子に直列に前記投数の出力用光結合素子の電光変換
素子を接続すること(il−特徴とする前記特許請求の
範囲第1項記載の電流源回路。
(4) There are a plurality of control optical coupling elements and output element coupling elements, and the current control circuit connects each of the photoelectric conversion elements of the plurality of control optical coupling elements in parallel. Connect a pace of a current control transistor to the connection point between the conversion element and the input current source, and supply all of the emitter current of this transistor in series to the electro-optical conversion element of the above-mentioned plurality of moonlight coupling elements. and the connection circuit connects the electro-optical conversion elements of the output optical coupling elements of the number of throws in series with the electro-optic conversion elements of the control optical coupling elements of the plurality of circuits (il-the scope of the above claims characterized in that The current source circuit according to item 1.
JP58056053A 1983-03-31 1983-03-31 Current source circuit Granted JPS59181680A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58056053A JPS59181680A (en) 1983-03-31 1983-03-31 Current source circuit
US06/592,808 US4652764A (en) 1983-03-31 1984-03-23 Current source circuit with a photo coupler
DE3448087A DE3448087C2 (en) 1983-03-31 1984-03-27
DE19843411303 DE3411303A1 (en) 1983-03-31 1984-03-27 SWITCHING WITH PHOTOELECTRONIC COUPLER OR OPTO COUPLER
US07/000,900 US4752693A (en) 1983-03-31 1987-01-06 Circuit with a photo coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58056053A JPS59181680A (en) 1983-03-31 1983-03-31 Current source circuit

Publications (2)

Publication Number Publication Date
JPS59181680A true JPS59181680A (en) 1984-10-16
JPH0224390B2 JPH0224390B2 (en) 1990-05-29

Family

ID=13016336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58056053A Granted JPS59181680A (en) 1983-03-31 1983-03-31 Current source circuit

Country Status (1)

Country Link
JP (1) JPS59181680A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231155U (en) * 1988-08-19 1990-02-27
US5106644A (en) * 1990-05-25 1992-04-21 Procter & Gamble Company Food products containing reduced calorie, fiber containing fat substitute
US5215757A (en) * 1991-03-22 1993-06-01 The Procter & Gamble Company Encapsulated materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4984571A (en) * 1972-12-19 1974-08-14
JPS52141585A (en) * 1976-05-20 1977-11-25 Matsushita Electric Ind Co Ltd Variable resistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4984571A (en) * 1972-12-19 1974-08-14
JPS52141585A (en) * 1976-05-20 1977-11-25 Matsushita Electric Ind Co Ltd Variable resistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231155U (en) * 1988-08-19 1990-02-27
US5106644A (en) * 1990-05-25 1992-04-21 Procter & Gamble Company Food products containing reduced calorie, fiber containing fat substitute
US5215757A (en) * 1991-03-22 1993-06-01 The Procter & Gamble Company Encapsulated materials
US5599555A (en) * 1991-03-22 1997-02-04 The Procter & Gamble Company Encapsulated cometic compositions

Also Published As

Publication number Publication date
JPH0224390B2 (en) 1990-05-29

Similar Documents

Publication Publication Date Title
JPS59181680A (en) Current source circuit
EP0108325B1 (en) Device to measure temperature
US4309653A (en) Elimination of line impedance error in a three-wire probe interface
JPS63304121A (en) Circuit apparatus for measuring luminous intensity
JPS5928866B2 (en) Instantaneous power measurement circuit
SU714370A1 (en) Stabilized electric power supply source
SU596975A1 (en) Electro-optic computer
JPS58182562A (en) Temperature compensating circuit of light emitting diode for analog measuring light source
JPS636806B2 (en)
SU911368A1 (en) Device for measuring resistance increment
SU974280A1 (en) Remote converter of resistannce increment to current ratio
JPS54126565A (en) Resistance-electric signal converter
DE2109735A1 (en) Device for measuring light absorption
SU1320759A1 (en) Bridge-type measuring device
SU881898A2 (en) Device for simulating semiconductor element
SU813281A1 (en) Converter of arbitrary-shape voltage rms values to consta voltage values
JPS6319802Y2 (en)
SU718804A1 (en) Arrangement for measuring resistances of resistors forming closed circuit
SU1012287A1 (en) Optoelectronic multiplier
SU1320669A1 (en) Device for checking difference of temperatures
RU2009537C1 (en) Protected constant voltage regulator
SU1571516A1 (en) Apparatus for non-contact transmission of constant voltages and currents in high-voltage conductor
JPS5816073Y2 (en) Resistance/electrical signal converter
SU744652A1 (en) Optronic function generator
Dobkin et al. New Op Amp Ideas