JPS59181449A - Two-step deflector for electron microscopes - Google Patents

Two-step deflector for electron microscopes

Info

Publication number
JPS59181449A
JPS59181449A JP5655783A JP5655783A JPS59181449A JP S59181449 A JPS59181449 A JP S59181449A JP 5655783 A JP5655783 A JP 5655783A JP 5655783 A JP5655783 A JP 5655783A JP S59181449 A JPS59181449 A JP S59181449A
Authority
JP
Japan
Prior art keywords
objective lens
current
fed
sample
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5655783A
Other languages
Japanese (ja)
Inventor
Teruyasu Honma
本間 照康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP5655783A priority Critical patent/JPS59181449A/en
Publication of JPS59181449A publication Critical patent/JPS59181449A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

PURPOSE:To eliminate any change in the irradiating point of an electron beam to a sample in time of height and positional displacement in the sample or a variation in magnification as well as to make an accurate dark sight image observable, by installing a device capable of varying a ratio of a current or voltage to be fed to both of two-step deflectors according to the exciting strength of an objective lens. CONSTITUTION:A current for securing a necessary deflecting angle in a deflecting angle setting circuit 5 is set and fed to a shunt control circuit 6. This transferred current from the shunt control circuit 6 is halved into two parts with a fixed rate, and its one side is fed to a first deflecting coil 1 via an amplifier 7 while the other side is fed to a second deflecting coil 2 via an amplifier 8. The current value of an objective lens exciting power source 9 is designed to be variable for focusing. Signals in regard to the current value from this objective lens' power source 9 is fed to the shunt control circuit 6 and makes a shunt ratio of the current to be fed to both first and second deflecting coils 1 and 2 variable according to the value. With this constitution, even if the objective lens is varied whatsoever, such a two-step deflector as leaving the irradiating position of electron beams on a sample unchanged can be brought to fruition.

Description

【発明の詳細な説明】 本発明は透過電子顕微鏡等に使用づる2段偏向装回に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a two-stage deflection arrangement for use in transmission electron microscopes and the like.

例えば、透過電子顕微鏡においては試料の明視野像のみ
でなく、所望の暗視野像の観察がしばしば必要どなる。
For example, in a transmission electron microscope, it is often necessary to observe not only a bright field image of a sample but also a desired dark field image.

該11n視野像の観察に1糸しCは照射電子線を光軸に
対し、所定角度θ(ぼ1斜覆る必要がある。この電子線
を傾斜して照射づ−るために従来h)ら2段偏向系が使
用されている。第1図は2段ft+a向系の概略を説明
する図であり、1は第1の偏向−」イル、2は第2の偏
向コイルで、夫々X、Yのコイルを有しており、電子線
を任意な方向に偏向可能である。円偏向コイルは図示し
ないが分流器を介して直流電源に接続されている。3は
対物レンズで、この対物レンズの磁界内部に試料4が配
置され゛(いる。電子線照射系で発生した電子線は第1
の偏向コイル1によりθ1だ(づ偏向され、第2の偏向
コイルにより逆方向に02だり偏向され、光軸とOの角
度で試1′3+ /l上に照射される。この場合、電子
線の試料照射位置を変えることなく試(′3Iへの照用
角を変化する必要があり、第1偏向コイル1と第2偏向
コイル2の励磁強度(コイル巻数と励磁電流の槓)Jl
、J2の比は次に説明づるように試料と両コイルとの幾
何学的な関係で決定されている。
To observe the 11n field image, it is necessary to irradiate the electron beam at a predetermined angle θ (approximately 1) with respect to the optical axis. A two-stage deflection system is used. FIG. 1 is a diagram explaining the outline of a two-stage ft+a direction system, in which 1 is a first deflection coil, 2 is a second deflection coil, each having X and Y coils. The line can be deflected in any direction. The circular deflection coil is connected to a DC power source via a current shunt (not shown). 3 is an objective lens, and a sample 4 is placed inside the magnetic field of this objective lens.The electron beam generated in the electron beam irradiation system is
The electron beam is deflected by the deflection coil 1 of test without changing the sample irradiation position ('3I) It is necessary to change the irradiation angle to
, J2 is determined by the geometric relationship between the sample and both coils, as explained below.

即ノう、9第1偏向]イル1と第2偏向コイル2の間隔
を21、第2偏向コイルと試おlとの間隔を9.2、第
1偏向コイルと試才■との間隔を2、第1偏向コイル及
び゛第2偏向コイルによる偏向角を大々θ7.θ2とし
た場合、電子線の試別照川魚が変化しないためには Ω71θ1−Ω、’;:0=Q2 (θ2−01)・(
1)が(−K ffiされねばならイ〒い。該式j、す
(之1+Q、2)θ、−久。θ2−Ω、0゜、−、Q 
2./久−θ、/θ2     ・・・・ (2〉が1
7られる。、電子線の偏向角Yσ0.,02は第1、第
2の偏向コイルの励磁強tlfJ+ 、 1.J2に比
例しているので上記(2)式は ’12/Q、=J+ /J2 =const 、   
−−・(3)どなる。
The distance between the coil 1 and the second deflection coil 2 is 21, the distance between the second deflection coil and the sample is 9.2, and the distance between the first deflection coil and the sample is 21. 2. The deflection angle by the first deflection coil and the second deflection coil is approximately θ7. In the case of θ2, in order for the electron beam trial Terukawa fish not to change, Ω71θ1−Ω,';:0=Q2 (θ2−01)・(
1) must be (-Kffi. The formula j, (1+Q, 2) θ, -k. θ2-Ω, 0°, -, Q
2. /ku-θ, /θ2... (2>is 1
7. , the deflection angle of the electron beam Yσ0. , 02 is the excitation strength tlfJ+ of the first and second deflection coils, 1. Since it is proportional to J2, the above equation (2) is '12/Q, = J+ /J2 = const,
--・(3) Yell.

而して、従来は両偏向コイルの励磁強度J+。Therefore, conventionally, the excitation intensity of both deflection coils was J+.

J2の比を上記Q2 /I2に固定して使用しているが
、近時の様に対物レンズが強励磁される場合、試別は必
然的に対物レンズの前方磁界の中に買かれるlごめ該対
物レンズの影響をすくむからず受(づることになる。即
Jう、試別が対物[ノンズの磁界の中に置かれる場合、
2段1−内系にJ、って偏向された電子線は該対物レン
ズの6?i方磁界によって更に偏向を受(プ、従って最
終的な試料照射角度Oは該対物レンズの偏向も含めた1
)のとなる。而して、対物1ノンズは試別が高さ方向に
変位した場合や倍率可変のどき線像のフォーカス合せの
ため可変され、それ故、対物レンズの試1′81前方磁
界の強度が変化して、該磁界による偏向角度が変り試料
への照射位置が変化Jることになる。つJ:す、従来の
2段偏向装置胃においてはフォーカス合tJ−のため対
物レンズの励磁強度を可変した場合、該変化に従って試
お1十の電子線スポッ]〜が変位していたわ(−Jで、
精密な暗視野像の観察に支障を来たし−Cいる。
The J2 ratio is fixed at the above Q2 /I2, but when the objective lens is strongly excited as is the case these days, the sample is inevitably drawn into the front magnetic field of the objective lens. Therefore, if the specimen is placed in the magnetic field of the objective lens,
The electron beam deflected J to the second stage 1-internal system is 6? of the objective lens. The sample is further deflected by the i-direction magnetic field (therefore, the final sample irradiation angle O is 1 including the deflection of the objective lens.
). Therefore, the objective 1 lens is changed when the sample is displaced in the height direction or for focusing the dotted line image with variable magnification, and therefore the intensity of the magnetic field in front of the objective lens 1'81 changes. As a result, the deflection angle due to the magnetic field changes, and the irradiation position on the sample changes. In a conventional two-stage deflection device, when the excitation intensity of the objective lens was varied for focusing tJ-, the ten electron beam spots were displaced according to the change. -J,
It interferes with the observation of precise dark-field images.

本発明は上記点に鑑みてなされたもので“、対物レンズ
の励磁強度の変化に関係なしに常に固定点に電子線を照
射し得る2段偏向装置を提供することを目的にづるもの
て゛ある。
The present invention has been made in view of the above points, and its object is to provide a two-stage deflection device that can always irradiate a fixed point with an electron beam regardless of changes in the excitation intensity of the objective lens. .

本発明の構成は対物レンズの磁弄内に配首された試料の
上方に2段の電子線偏向器を設置し、該2段の偏向器に
所定比率の電流又は電圧を供給しC試別」−に所定角度
で電子線を照射するようになした装置において、前記対
物レンズの励磁強度に応じて前記両偏向器へ供給する電
流又は電JTの比率を可変する手段を備えている電子顕
微鏡等用の2段偏向装置に特徴がある。
The structure of the present invention is to install a two-stage electron beam deflector above a sample arranged in a magnet of an objective lens, and to supply current or voltage at a predetermined ratio to the two-stage deflector for C testing. An electron microscope configured to irradiate an electron beam at a predetermined angle to a target lens, the apparatus comprising means for varying the ratio of current or electric JT supplied to both deflectors in accordance with the excitation intensity of the objective lens. It is characterized by a two-stage deflection device for etc.

以下図面に基づき本発明を説明lする。The present invention will be explained below based on the drawings.

第2図は対物レンズの励磁強a、つまり励磁電流を変化
させた時、前記(3)式の2段偏向条(’1を’rlA
 5’f−づる第1偏向」イルど第2偏向コイルどの励
磁強K)比率の関係を示したものである。同図において
、横軸Toは対物レンズの励磁電流を縦軸は第1偏向コ
イルの励磁強W J +に対づ−る第2偏向コイルの励
磁強度、J 2の比J2/Jlを表わづらのである。同
図から解るように対物レンズの励磁電流の変化に対して
第2、第1偏向=1イルの励磁強度比J 2 / J 
+は2次曲線に近似した変化を示している。そこで、こ
のJ、うな関係を予め測定しCおき、対物レンズのフォ
ーカス合ぜの場合、その電流値に応じて第1偏向]イル
1へ流す電流と第2偏向=lイル2へ流す電流どの比率
を]ント[J−ルずれば、電子線偏向器の変位のない2
段偏向系が得られることになる。
Figure 2 shows that when the excitation strength a of the objective lens, that is, the excitation current, is changed, the two-stage deflection line ('1 is changed to 'rlA') of the equation (3) is changed.
5'F shows the relationship between the excitation strength (K) ratio of the first deflection coil and the second deflection coil. In the figure, the horizontal axis To represents the excitation current of the objective lens, and the vertical axis represents the ratio J2/Jl of the excitation strength J2 of the second deflection coil to the excitation strength WJ+ of the first deflection coil. It's Zurano. As can be seen from the figure, the excitation intensity ratio J 2 / J of the second and first deflections = 1 il with respect to the change in the excitation current of the objective lens.
+ indicates a change approximating a quadratic curve. Therefore, this relationship between J and U is measured in advance and C is set. When focusing the objective lens, depending on the current value, the current to be passed to the first deflection] and the current to be passed to the second deflection = the current to be passed to the second deflection are determined. If the ratio is shifted by [J-], there will be no displacement of the electron beam deflector.
A step deflection system will be obtained.

= 4− 第3図(。1上記原1jl’iに基づく本発明の一実施
例のブロック図であり、第1図と同符月は同一の構成部
材を示している。5は偏向角度設定回路であり、必要な
偏向角を(qるための電流が設定され、分流制御回路6
にjスられる。該分流制御回路は送られて来た電流を一
定の化率で2つに分(ツ、その一方を増幅器7を介して
第1の偏向コイル1に、又他方を増幅器8を介して第2
の偏向=1イル2に供給する。9は対物レンズの励磁電
源であり、その電流値はフォーカス合ぜのため可変にな
っている。
= 4- Fig. 3 (.1 is a block diagram of an embodiment of the present invention based on the above original 1jl'i, and the same symbols and months as in Fig. 1 indicate the same constituent members. 5 is a deflection angle setting The current is set to determine the required deflection angle (q), and the shunt control circuit 6
I can't stand it. The shunt control circuit divides the sent current into two parts at a constant conversion rate (one of which is sent to the first deflection coil 1 via the amplifier 7, and the other is sent to the second deflection coil via the amplifier 8).
Deflection of = 1 supply to il 2. 9 is an excitation power source for the objective lens, and its current value is variable for focusing.

該対物レンズの電源hs +らの電流値に関する信号は
萌配分流制御回路6に送られ、イの値に応じて前記第1
、第2偏向コイルへ供給する電流の分流比率を可変する
。即ち、第2図に示すような関係がある場合、その曲線
をある関数で近似し、又は複数の折れ線で近似し、対物
レンズ電流値で定まる分流比率になるように制御回路6
をコン1〜ロールする。これにより、対物レンズをどの
ように可変しても試料土にd3ける電子線の照射位置の
変化しない2段偏向装置が実現できる。
A signal regarding the current value of the objective lens power supply hs + is sent to the sprout distribution flow control circuit 6, and the first
, the dividing ratio of the current supplied to the second deflection coil is varied. That is, when there is a relationship as shown in FIG. 2, the control circuit 6 approximates the curve with a certain function or a plurality of polygonal lines so that the shunt ratio is determined by the objective lens current value.
Roll from control 1 to . This makes it possible to realize a two-stage deflection device in which the irradiation position of the electron beam on the sample soil does not change no matter how the objective lens is varied.

尚、上記は本発明の一実施例であり、実用に際しでは色
々な変更が可能である。例え(ま、電子線偏向器として
1〜ロイダルコイルを使用した場合を示したが、このよ
うな=」イルのみならず静電偏向器を使用する場合でも
同様な効果が1′:1られる。又、第3図の実施例でパ
は対物レンズの励磁電源9J、り制御回路6に18号を
)メリ分流比率を変えているが、=+ンビ7−夕を用い
て各部を制御するような装閘で′は該−1ンビコータに
より前記分流制御回路6を制御りるようにづることもで
きる。更に、前記実施例は対物レンズの励磁強Yαどじ
で電流値を用いたが、対物レンズの磁界強度を直接測定
できる場合には該磁界強度を用いる方が良い。更に又、
上記は透過電子顕微鏡の++1視野像vA寮に応用する
場合であるが、該透過電子顕微鏡において走査像の観察
を行t、cうような場合にも同様に利用できる。
Note that the above is one embodiment of the present invention, and various changes can be made in practical use. For example, we have shown the case where a loidal coil is used as the electron beam deflector, but the same effect 1':1 can be obtained not only when using such an electron beam deflector but also when using an electrostatic deflector. In the embodiment shown in Fig. 3, the excitation power source for the objective lens is 9J, and the control circuit 6 is connected to No. 18). In the lock, the branch control circuit 6 can be controlled by the -1 bicoater. Further, in the above embodiment, the current value was used depending on the excitation strength Yα of the objective lens, but if the magnetic field strength of the objective lens can be directly measured, it is better to use the magnetic field strength. Furthermore,
Although the above description is applied to the ++1 field image vA dormitory of a transmission electron microscope, it can be similarly applied to cases where scanning images are observed using the transmission electron microscope.

この場合、前記電源5に代えて走査用の電源が使用され
る。
In this case, a scanning power source is used instead of the power source 5.

以上説明したような構成とな氾ぽ汀意の対物レンズ励磁
弾痕において常に2段偏向条件が満足されるため、試お
1の高さ位置変位や倍率変化に際し、電子線の試お]照
射点が変わることがなくなり、精密な暗視野像の観察が
可能となる。
Since the two-stage deflection condition is always satisfied in the excitation bullet hole of the objective lens with the configuration as explained above, when the height position is changed or the magnification is changed in the first trial, the electron beam trial] irradiation point will not change, making it possible to observe precise dark-field images.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の2段偏向系の概略を説明する図、第2図
は本発明の詳細な説明するための図、第3図(J本発明
の一実施例のブロック線図である。 1:第1偏向コイル 2:第2偏向コイル 3:対物レンズ /′I:試斜 5試別向角度設定回路 6:分流制御回路 7.8:増幅器 9:対物レンズ励磁電源 区 恢 」 (’J 塚
FIG. 1 is a diagram for explaining the outline of a conventional two-stage deflection system, FIG. 2 is a diagram for explaining the present invention in detail, and FIG. 3 is a block diagram of an embodiment of the present invention. 1: First deflection coil 2: Second deflection coil 3: Objective lens /' J Tsuka

Claims (1)

【特許請求の範囲】[Claims] 対物レンズ゛の磁界内に配置された試料の上方に2段の
電子線偏向器を設置し、該2段の偏向器に所定比率の電
流又は電バを供給して試わl」−に所定角度で電子線を
照射づ−るJ、うになした装置において、前記対物レン
ズの励磁強度に応じて前記両偏向器へ供給づる電流又は
電圧の比率を可変でる手段を備えていることを特徴と覆
る電子顕微鏡等用の2段偏向装置。
A two-stage electron beam deflector is installed above the sample placed within the magnetic field of the objective lens. The apparatus for irradiating an electron beam at an angle is characterized by comprising means for varying the ratio of current or voltage supplied to both deflectors in accordance with the excitation intensity of the objective lens. Two-stage deflection device for covering electron microscopes, etc.
JP5655783A 1983-03-31 1983-03-31 Two-step deflector for electron microscopes Pending JPS59181449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5655783A JPS59181449A (en) 1983-03-31 1983-03-31 Two-step deflector for electron microscopes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5655783A JPS59181449A (en) 1983-03-31 1983-03-31 Two-step deflector for electron microscopes

Publications (1)

Publication Number Publication Date
JPS59181449A true JPS59181449A (en) 1984-10-15

Family

ID=13030412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5655783A Pending JPS59181449A (en) 1983-03-31 1983-03-31 Two-step deflector for electron microscopes

Country Status (1)

Country Link
JP (1) JPS59181449A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133656A (en) * 1985-12-06 1987-06-16 Jeol Ltd Electron ray device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968654A (en) * 1972-11-06 1974-07-03
JPS5630656A (en) * 1979-08-21 1981-03-27 Anritsu Corp Digital signal sn measuring apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968654A (en) * 1972-11-06 1974-07-03
JPS5630656A (en) * 1979-08-21 1981-03-27 Anritsu Corp Digital signal sn measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133656A (en) * 1985-12-06 1987-06-16 Jeol Ltd Electron ray device

Similar Documents

Publication Publication Date Title
US6822233B2 (en) Method and apparatus for scanning transmission electron microscopy
Guyon et al. Sub-micron resolution selected area electron channeling patterns
US8405045B2 (en) Particle beam device with deflection system
DE69406739T2 (en) Electron beam device
US3702398A (en) Electron beam apparatus
DE112017007776B4 (en) charged particle beam device
EP0883891B1 (en) Method of operating a particle-optical apparatus
JP2003520408A (en) Columns for charged particle beam devices
US4393310A (en) Method of and device for adjusting a shaped-electron-beam working device
DE102011106433B4 (en) Integrated magnetic field compensation for use with scanning and transmission electron microscopes, vibration isolation system and methods for imaging, testing and / or processing a sample
DE3032818A1 (en) X-RAY SCREEN ELECTRON MICROSCOPE WITH AUTOMATIC BEAM CORRECTION
JPS59181449A (en) Two-step deflector for electron microscopes
US6717144B2 (en) Scanning electron microscope system
JP2006040809A (en) Focused ion beam device and method for irradiating focused ion beam
EP3379236B1 (en) Scanning transmission electron microscope
US5650628A (en) Simultaneous deflections in charged-particle beams
GB1465518A (en) Scanning charged particle microprobe apparatus
JPH02284340A (en) Variable focus composite electromagnetic lens
CN112309813A (en) System and method for beam position visualization
JPH1092355A (en) Charged particle microscope
US4775790A (en) Transmission electron microscope
JP7361213B2 (en) Charged particle beam device, control method for charged particle beam device
AT524841B1 (en) Method and device for compensating for disturbance variables when positioning a sample carrier
US20240258065A1 (en) Method of operating a particle beam system and computer program product
JPS63116349A (en) Scanning tunnel microscope with scanning electron microscope