JPS59181447A - Shaft slip compensator for electromagnetic lens - Google Patents

Shaft slip compensator for electromagnetic lens

Info

Publication number
JPS59181447A
JPS59181447A JP5656083A JP5656083A JPS59181447A JP S59181447 A JPS59181447 A JP S59181447A JP 5656083 A JP5656083 A JP 5656083A JP 5656083 A JP5656083 A JP 5656083A JP S59181447 A JPS59181447 A JP S59181447A
Authority
JP
Japan
Prior art keywords
magnetic field
optical axis
coils
axis
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5656083A
Other languages
Japanese (ja)
Inventor
Seiichi Suzuki
清一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP5656083A priority Critical patent/JPS59181447A/en
Publication of JPS59181447A publication Critical patent/JPS59181447A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement

Abstract

PURPOSE:To make the position of a lens magnetic field itself shiftable and adadjustable in an easy manner, by installing a device to feed a magnetic field generating coil with an exciting current so as to cause light in the direction of a compensating magnetic field formed by the magnetic field generating coil to be paralleled with an optical axis and reversely opposed with each other. CONSTITUTION:A sample 5 being held by a sample holder 4 is set up on a main surface 3 of an objective lens magnetic field, while eight ringlike compensating magnetic field generating coils 6 are installed in a symmetrical position with an optical axis 2 on top of the main surface 3. Coils being opposed with each other among these coils 6 are connected in series, and since a sense of winding in these coils is reversed, components in parallel with a Z-axis on the optical axis Z become opposed with each other in direction. Therefore, an exciting current for these coils being set up like this is adjusted to what it should be, whereby a peak of the lens magnetic field comes possible to be brought onto the optical axis.

Description

【発明の詳細な説明】 木ざt明は透過電子顕微鏡等に使用される電磁レンズに
組込んで大きな効果の得られるレンズ磁場補正装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lens magnetic field correction device that can be incorporated into an electromagnetic lens used in a transmission electron microscope or the like to obtain a large effect.

電子顕微鏡のように多数の電磁レンズを使用する電子線
装置においでは、各電磁レンズの光軸を一致させること
が必要どなる。この輔合せは各レンズの配置を□械的に
移動調整して行なうことが理想的であるが、そのだめの
機構が複雑、大形化してしまうため、電気的な軸合せ手
段として、電子線に対ザる偏向手段が使用されることが
多い。
In an electron beam device such as an electron microscope that uses a large number of electromagnetic lenses, it is necessary to align the optical axes of each electromagnetic lens. Ideally, this alignment would be done by mechanically moving and adjusting the arrangement of each lens, but the mechanism would be complicated and large, so electron beams are used as an electrical axis alignment method. Deflection means are often used.

しかし乍ら、このような偏向手段を用いて軸合せを行う
と、電子顕微鏡の場合には、対物レンズの電圧軸、電流
軸と称される軸がレンズ系の光軸と一致しなくなる現象
が生じる。電圧軸とは、電子線の加速電圧を周期的に変
動させたどぎに蛍光板上に結像する顕微鏡像が回転しな
がら伸縮する中心をいい、電流軸とは、対物レンズの励
磁電流を周期的に変化さけたときに蛍光板上の顕微鏡像
が回転しながら伸縮する中心をいう。これら電圧軸。
However, when alignment is performed using such a deflection means, in the case of an electron microscope, a phenomenon occurs in which the axes called the voltage axis and current axis of the objective lens do not coincide with the optical axis of the lens system. arise. The voltage axis refers to the center at which the microscope image formed on the fluorescent screen expands and contracts as it rotates when the accelerating voltage of the electron beam is periodically varied, and the current axis refers to the center at which the excitation current of the objective lens is periodically varied. This is the center at which the microscope image on the fluorescent screen expands and contracts while rotating when the target changes. These voltage axes.

電流軸を中心として伸縮する顕微鏡像の変動量は軸から
離れるにつれて大きくなるため、これらの軸がレンズ系
の軸と一致していないと、質の良い顕微鏡像が1qられ
ない。これは、レンズ光学系の軸は蛍光板の中心と一致
しているため、この中心を顕微鏡像の変動の最も少い電
圧軸や電流軸と一致させておかないと、蛍光板上に表示
される電子顕微鏡像が電流変動と電圧変動の影響を大ぎ
く受()ることになるためである。実際の電子顕微鏡に
おI−Jる電圧や電流の安定度LJ、 10−6程度と
極めで高いが、高倍率像で分解能がij■題とされるよ
うな像観察においては、この軸ずれ現象は像にボケを!
jえる原因となって好ましくない。しかし乍ら、偏向手
段を用いた軸合せ操作に」、つては、電圧軸や電流軸を
レンズ系の+tl+と精確に一致させることは原理的に
不可能であった。
Since the amount of variation in a microscope image that expands and contracts around the current axis increases as it moves away from the axis, if these axes do not coincide with the axis of the lens system, a high quality microscope image cannot be obtained. This is because the axis of the lens optical system coincides with the center of the fluorescent screen, so if this center is not aligned with the voltage and current axes, which have the least variation in the microscope image, the electrons displayed on the fluorescent screen will This is because the microscopic image is greatly affected by current fluctuations and voltage fluctuations. The stability of voltage and current LJ in an actual electron microscope is extremely high at about 10-6, but in image observation where resolution is an issue with high magnification images, this axis deviation is The phenomenon is that the image is blurred!
This is not desirable as it may cause you to get angry. However, in principle, it is impossible to precisely align the voltage axis and the current axis with +tl+ of the lens system when performing an alignment operation using a deflection means.

本発明はこのような点に鑑み、λ」物レンズの機械的移
動機構や電子線偏向装置Nを用いた軸合けの代わりに、
磁場補正手段を設けてレンズ磁場自体の位置を移動調整
することを目的どするもので、レンズ主面又はその近傍
で且つレンズ光軸に関して対称な位[dに配回された複
数の磁場発生コイルと、光軸を挾んで向い合う前記磁場
発生コイルによって形成される補正磁場の方向が光軸に
平行で互いに逆向きになるように前記磁場発生コイルに
励磁電流を供給する手段を備えたことを特徴と覆る。
In view of these points, the present invention provides alignment using a mechanical movement mechanism of a λ'' object lens or an electron beam deflection device N.
The purpose of this device is to move and adjust the position of the lens magnetic field itself by providing a magnetic field correction means, which includes a plurality of magnetic field generating coils arranged at positions [d] on or near the main surface of the lens and symmetrically with respect to the optical axis of the lens. and means for supplying excitation current to the magnetic field generating coils so that the directions of the correction magnetic fields formed by the magnetic field generating coils facing each other across the optical axis are parallel to the optical axis and opposite to each other. Features and covers.

一般に電磁レンズによって形成されるl!l揚のうち、
レンズ磁場に寄与するのは光軸Z方向の磁場成分B7で
あるが、この3zの強度分布は、Zを7軸の座標、rを
7軸からの距前、θを7軸のまわりの方位角とづる円柱
座標系(r、θ、2)を用いて次の」、うに表わされる
Generally formed by an electromagnetic lens! Of the fried
It is the magnetic field component B7 in the optical axis Z direction that contributes to the lens magnetic field, and the intensity distribution of this 3z is as follows: Z is the coordinate of the 7th axis, r is the distance from the 7th axis, and θ is the azimuth around the 7th axis. Using a cylindrical coordinate system (r, θ, 2) with angles, it can be expressed as follows.

ここで、φ1.φ2.φ3はレンズ磁極片の形状によっ
て定まる関数、δ1.δ2.δ3はレンズ磁極片の形状
や材わlの均一性によって定まる定数である。上式の右
辺第1行目は軸対称な磁場成分を表わし、第2行目は軸
ずれ成分、第3行目以下は2次や3次の非点成分に対応
する。2次の非点に関しては、現在非点補正装置による
補正が行なわれていて問題はなく、3次以上の非点に関
しては影響が小さいために殆んど問題とされていない。
Here, φ1. φ2. φ3 is a function determined by the shape of the lens magnetic pole piece, δ1. δ2. δ3 is a constant determined by the shape of the lens pole piece and the uniformity of the material. The first line on the right side of the above equation represents an axis-symmetrical magnetic field component, the second line corresponds to an axis-offset component, and the third and subsequent lines correspond to second-order and third-order astigmatic components. There is no problem with regard to second-order astigmatism, which is currently being corrected by a stigma correction device, and third-order and higher-order astigmatism is hardly considered a problem because its influence is small.

ところが軸ずれに関しては、上述したように偏向手段を
用いても補正することはできず、レンズ磁極片の加工精
度や材質の均一性に左右されることが多かった。上記(
1)式における軸対称成分と軸ずれ成分を取り出してr
の高次の項を省略ここで、θを一定としてBzを書換え
るど、次のようになる。
However, as described above, the axis misalignment cannot be corrected even by using the deflection means, and is often dependent on the processing accuracy of the lens pole piece and the uniformity of the material. the above(
1) Extract the axially symmetrical component and the axially misaligned component in equation
By omitting the higher-order terms and rewriting Bz with θ constant, we get the following.

Bz(T’)=、4−Bl’+CY” この式から、対物1ノンズ内の光軸−にのある位置7又
は最小値を持つ2次曲線を示し、磁極片の形状で定まる
Bzの値と磁極片の加工粘度等で定まるφ1 (z)の
値にJ:つて軸ずれの量が決定されることが解る。この
分布状態は実験によっても確められており、その−例を
第1図に示す。加速電圧200 K Vの電子顕微鏡を
用いた実験例では、前述の2次曲線を表わす式の2次の
項の係数となる[3z″の値は、800ガウス/ mm
 2程度であった。
Bz(T')=, 4-Bl'+CY" From this equation, a quadratic curve with a minimum value or position 7 at the optical axis - in the objective 1 nons is shown, and the value of Bz determined by the shape of the magnetic pole piece. It can be seen that the amount of axis misalignment is determined by the value of φ1 (z) determined by the processing viscosity of the magnetic pole piece, etc. This distribution state has been confirmed by experiments, and an example of this is shown in the first example. In an experimental example using an electron microscope with an accelerating voltage of 200 KV, the value of [3z'', which is the coefficient of the quadratic term in the equation representing the quadratic curve described above, is 800 Gauss/mm.
It was about 2.

第2図は本発明の一実施例装置の略図を示すもので、図
中1は及び2は夫々対物レンズの上磁極片と下研極片を
示す。対物レンズ磁場の主面3には試料ホルダー4に保
持された試料5が設置されており、該主面上の光軸Zと
対称な位置に8個のリング状の補正磁場発生コイル6が
設置されている。第3図はコイル6を光軸方向から眺め
た図である。これらのコイルのうち互いに向い合ったコ
イルは、直列に接続されており、コイルの巻き方向が逆
になっているため、光軸7 j二におけるZ軸に平行な
成分は互に逆向きどなる。このような補正磁場は従来の
偏向装置や非点補正装置において形成される主なfe、
場成分が光軸に対して垂直方向であったのに比較して大
きな相違点である。コイル6の互いに向き合った任意の
一組を励磁すると、これらのコイルを結ぶ方位θにお(
するr方向の磁場分布は次式で表わされる。
FIG. 2 shows a schematic diagram of an apparatus according to an embodiment of the present invention, in which numerals 1 and 2 indicate the upper and lower pole pieces of the objective lens, respectively. A sample 5 held by a sample holder 4 is installed on the main surface 3 of the objective lens magnetic field, and eight ring-shaped correction magnetic field generating coils 6 are installed at positions symmetrical to the optical axis Z on the main surface. has been done. FIG. 3 is a view of the coil 6 viewed from the optical axis direction. The coils that face each other among these coils are connected in series, and the winding directions of the coils are reversed, so that the components parallel to the Z-axis on the optical axis 7j are in opposite directions. Such a correction magnetic field is the main fe formed in conventional deflection devices and astigmatism correction devices.
This is a big difference compared to the case where the field component was perpendicular to the optical axis. When any pair of coils 6 facing each other is excited, the direction θ connecting these coils (
The magnetic field distribution in the r direction is expressed by the following equation.

但し、11 oは真空の透磁率、Iは]イルへの電流値
、N LJI 1イルの巻数、Dは定数を表わし、a及
びl)は夫々第4図に示ツー]イル断面におりる特定個
所の長さを表わす。上式を光軸Zの近傍(「−〇)で展
開すると、定数項及び2自乗項は消え高次の項を省略す
れば次のにう変形され、その磁場分布の状態は第4図の
ようなる。
However, 11 o is the vacuum permeability, I is the current value to the coil, N LJI is the number of turns per coil, D is a constant, and a and l) respectively fall on the cross section of the coil shown in Figure 4. Represents the length of a specific point. When the above equation is expanded in the vicinity of the optical axis Z (“-〇), the constant term and the squared term disappear, and if higher-order terms are omitted, it is transformed as follows, and the state of the magnetic field distribution is as shown in Figure 4. That's how it is.

従って、このように配置されたコイルの励磁電流Iを調
整することに」:って、第1図に示すカーブの傾きを任
意に変えることが出来るので、第4図に示づカーブを第
1図に示すカーブへ加えてレンズ磁場のピークを光軸上
にもってくることが可能どなる。このことは、光軸近傍
でのBrの■r1を打消し、BZ(r)が最大又は最小
となる点を光軸上に移動して、光軸近傍では光【111
口に対して軸対称な磁場を形成することができることを
意味する。
Therefore, by adjusting the excitation current I of the coil arranged in this way, the slope of the curve shown in Fig. 1 can be changed arbitrarily, so the curve shown in Fig. 4 can be changed to In addition to the curve shown in the figure, it is now possible to bring the peak of the lens magnetic field onto the optical axis. This cancels the ■r1 of Br near the optical axis, moves the point where BZ(r) is maximum or minimum onto the optical axis, and the light [111
This means that it is possible to create a magnetic field that is axially symmetrical with respect to the mouth.

このようなh法で対物レンズ磁場の軸合せを行なえば、
従来のように、電圧軸を光軸へ一致させても電流軸が光
軸ど一致させられないといったような現象は皆無となる
If the axis of the objective lens magnetic field is aligned using the h method,
There is no longer a phenomenon in which the current axis cannot be aligned with the optical axis even if the voltage axis is aligned with the optical axis as in the conventional case.

尚、本発明は以上の実施例装置に限定されるものではな
く、磁場補正用コイルの数を4個、12個、又はそれ以
上用いるもことも可能であり、コイルの設置位置が多少
対物レンズの主面から離れても、大ぎな問題とはならな
い。
It should be noted that the present invention is not limited to the above-described embodiments, and it is also possible to use 4, 12, or more magnetic field correction coils, and the installation position of the coils may be slightly different from the objective lens. Even if it deviates from the main aspect, it is not a big problem.

以上のように本発明によれば、原理的に電圧軸と電流軸
を光軸に一致させることが出来るので、透過電子顕微鏡
、或いはその他の電子線装置におりるレンズの輔合せ装
置として用いて大ぎな効果か1qられる。
As described above, according to the present invention, since it is possible in principle to align the voltage axis and the current axis with the optical axis, it can be used as a device for adjusting lenses in transmission electron microscopes or other electron beam devices. It's a big effect, you get 1q.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電磁レンズの機械的な光軸と実際の磁場分布の
曲線を示す略図、第2図及び第3図は本発明装置の構成
を示す略図、第4図は本発明装置による補正磁場の分布
を示す略図である。
Fig. 1 is a schematic diagram showing the mechanical optical axis of the electromagnetic lens and the actual magnetic field distribution curve, Figs. 2 and 3 are schematic diagrams showing the configuration of the device of the present invention, and Fig. 4 is a diagram showing the correction magnetic field by the device of the present invention. FIG.

Claims (1)

【特許請求の範囲】[Claims] レンズ主面又はその近傍で口っ1ノンズ光軸に関して対
称な位置に配置された複数の磁場発生コイルと、光軸を
挾んで向い合う前記磁場発生コイルによって形成される
補正磁場の方向が光tll+に平行で互いに逆向きにな
るように前記磁場発生コイルに励磁電流を供給する手段
を備えたことを特徴とする電磁レンズの軸ずれ補正装置
A plurality of magnetic field generating coils arranged at symmetrical positions with respect to the optical axis on or near the main surface of the lens, and the magnetic field generating coils facing each other with the optical axis in between, form a correction magnetic field in the direction of the optical tll+. 1. An electromagnetic lens axis misalignment correcting device comprising: means for supplying excitation current to the magnetic field generating coil in parallel to and opposite to each other.
JP5656083A 1983-03-31 1983-03-31 Shaft slip compensator for electromagnetic lens Pending JPS59181447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5656083A JPS59181447A (en) 1983-03-31 1983-03-31 Shaft slip compensator for electromagnetic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5656083A JPS59181447A (en) 1983-03-31 1983-03-31 Shaft slip compensator for electromagnetic lens

Publications (1)

Publication Number Publication Date
JPS59181447A true JPS59181447A (en) 1984-10-15

Family

ID=13030499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5656083A Pending JPS59181447A (en) 1983-03-31 1983-03-31 Shaft slip compensator for electromagnetic lens

Country Status (1)

Country Link
JP (1) JPS59181447A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150650A (en) * 1974-10-30 1976-05-04 Hitachi Ltd Denshisensochino hitenshusahoseisochi
JPS54140454A (en) * 1978-04-17 1979-10-31 Philips Nv Electron microscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150650A (en) * 1974-10-30 1976-05-04 Hitachi Ltd Denshisensochino hitenshusahoseisochi
JPS54140454A (en) * 1978-04-17 1979-10-31 Philips Nv Electron microscope

Similar Documents

Publication Publication Date Title
JP3914750B2 (en) Charged particle beam device with aberration correction device
JP2001511303A (en) Correction device for spherical aberration correction in particle-optical apparatus
JPS6257062B2 (en)
US2547994A (en) Electronic microscope
US3952198A (en) Electron lens
US5225676A (en) Electrooptical viewing apparatus capable of switching depth of focus
US2486856A (en) Electron lens
US3225192A (en) Apparatus for producing electron microscope and diffraction images separately and simultaneously on the image plane
US2586559A (en) Multiple element electron lens arrangement
DE3901980C2 (en) Multipole element and method for producing a multipole element
US4384208A (en) Electron lens equipped with three magnetic pole pieces
US3588586A (en) Apparatus for correcting electron beam deflection
JPS59181447A (en) Shaft slip compensator for electromagnetic lens
DE102015220494A1 (en) Tauchspulenaktuator
US2323328A (en) Projection lens for electron microscopes
US3852597A (en) Method and apparatus for observing a low magnification electron microscope image
US2637000A (en) Magnetic electron -lens
US7060985B2 (en) Multipole field-producing apparatus in charged-particle optical system and aberration corrector
US4450357A (en) Electron lens equipped with three magnetic pole pieces
US2438971A (en) Compound electron objective lens
US4520264A (en) Electron microscope
US2469165A (en) Correction device for electron lenses
JPS5953658B2 (en) electronic lens
US2418432A (en) Magnetic electron lens system
US3188465A (en) Two stage electron beam magnification device comprising plural adjustable magnetic lens system