JPS591808A - Dynamic pressure operated hydraulic bearing - Google Patents

Dynamic pressure operated hydraulic bearing

Info

Publication number
JPS591808A
JPS591808A JP57112076A JP11207682A JPS591808A JP S591808 A JPS591808 A JP S591808A JP 57112076 A JP57112076 A JP 57112076A JP 11207682 A JP11207682 A JP 11207682A JP S591808 A JPS591808 A JP S591808A
Authority
JP
Japan
Prior art keywords
dynamic pressure
fluid
shaped groove
rotary table
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57112076A
Other languages
Japanese (ja)
Inventor
Yutaka Ishizuka
豊 石塚
Yuji Hiraoka
平岡 祐二
Harumichi Kageyama
影山 陽道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COPAL EREKUTORA KK
Original Assignee
COPAL EREKUTORA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COPAL EREKUTORA KK filed Critical COPAL EREKUTORA KK
Priority to JP57112076A priority Critical patent/JPS591808A/en
Publication of JPS591808A publication Critical patent/JPS591808A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/08Sliding-contact bearings for exclusively rotary movement for axial load only for supporting the end face of a shaft or other member, e.g. footstep bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To produce a large effect of dynamic pressure by forcedly feeding the fluid which is sucked by the operation of a group of fins on a rotary table into grooves on the external periphery of a shaft member. CONSTITUTION:The air which is sucked from a suction passageway 14 is swirled by the revolution of a group of fins 20 which are formed on the lower face of a rotary table 2, and carried in the direction shown by the arrow. By the operation of the group of fins 20, the fluid is further forcedly sent from the slant part 7 of a funnel-shaped groove 8 and then discharged from an outlet passageway 18 via ?-shaped grooves 22 and 23 on the external periphery of a shaft member 4 and a vertical clearance 9. In other words, the fluid which is sucked from the suction passageway 14 is forced to travel in the direction as shown by the arrow inside the funnel-shaped groove 8 by the group of fins 20. During the further travel of the fluid, a dynamic pressure is produced at the rows 22 and 23 of the ?-shaped grooves which are cut on the external periphery of the shaft 4, and then runs in the direction shown by the arrow.

Description

【発明の詳細な説明】 本願の発明は動圧流体軸受に関するものである。[Detailed description of the invention] The invention of this application relates to a hydrodynamic bearing.

殊に強制的に軸受の溝又は間隙に空気を供給する動圧流
体軸受に関する。
In particular, it relates to dynamic pressure fluid bearings that forcibly supply air to grooves or gaps in the bearing.

従来より多くの種類の動圧流体軸受が存在するが、いず
れも動圧発生機構に流体を供給する方法は消極的であり
1強制的に軸受内に供給する方式は採用されていないの
が現状である。
There have been many types of hydrodynamic bearings in the past, but all of them have passive methods of supplying fluid to the dynamic pressure generation mechanism, and currently no method of forcibly supplying fluid into the bearing has been adopted. It is.

本願の発明は、回転台に装着したフィン群を採用して、
回転台の軸部と軸受本体との間に設けた間隙部へ強制的
に流体例えば空気の供給を実施し、動圧を発生せしめる
と共に、低速回転領域において支持可能となし、軸受剛
性を高く保持することを目的とする。
The invention of the present application employs a group of fins attached to a rotary table,
Fluid, such as air, is forcibly supplied to the gap between the shaft of the rotary table and the bearing body to generate dynamic pressure and support in low-speed rotation areas, maintaining high bearing rigidity. The purpose is to

以下添付図面に基づいて、本願発明の一具体例を説明す
る。回転台2のほぼ中央に軸部4を垂下固定する。軸部
4は軸受本体6に設けた漏斗状溝8に嵌挿され、その下
端部に極性を同一とする永久磁石10 、12を装着す
る。前記漏斗状溝8は入口の傾斜部7と垂直部9とより
なる。軸受本体6の上面と回転台2の下面との間に流体
例えば空気(以下本実施例において流体とは空気をいう
)の吸入口14を又軸受本体6の下面と機台16の間に
流体排出口18をkける。更に前記回転台2の下面には
、軸部4を中心として複数の717群20が円形を形成
するよう下方に向って突設され、吸入口14より供給さ
れた流体は、フィン群20の作動により漏斗状溝8へと
渦巻状をなして送り出されるように構成される。又前記
漏斗状溝8の垂直部9を形成する部分に位置する軸部4
の外周にハ字状の溝群22゜23を穿設する。符号16
は支持台の一部である。尚又永久磁石10 、12の代
わりに電磁石を使用してもよいことは勿論である。
A specific example of the present invention will be described below based on the accompanying drawings. A shaft portion 4 is suspended and fixed approximately at the center of the rotary table 2. The shaft portion 4 is fitted into a funnel-shaped groove 8 provided in the bearing body 6, and permanent magnets 10 and 12 having the same polarity are attached to the lower end thereof. The funnel-shaped groove 8 consists of an inlet inclined part 7 and a vertical part 9. A suction port 14 for a fluid such as air (hereinafter, fluid refers to air in this embodiment) is provided between the upper surface of the bearing body 6 and the lower surface of the rotary table 2, and a fluid inlet 14 is provided between the lower surface of the bearing body 6 and the machine table 16. Close the outlet 18. Further, on the lower surface of the rotary table 2, a plurality of 717 groups 20 are provided to protrude downward to form a circular shape around the shaft portion 4, and the fluid supplied from the suction port 14 is used to activate the fin groups 20. It is configured so that it is sent out into the funnel-shaped groove 8 in a spiral shape. Further, the shaft portion 4 located in the portion forming the vertical portion 9 of the funnel-shaped groove 8
V-shaped groove groups 22 and 23 are bored on the outer periphery of the groove. code 16
is part of the support base. Of course, electromagnets may be used instead of the permanent magnets 10 and 12.

吸入E]14より吸入された空気は、回転台2の下方に
設けたフィン群20の回転に伴い渦巻状を形成しつ\矢
印方向へと移動し、前記フィン群の作動により流体を強
制的に漏斗状溝8の傾斜部7より軸部4の外周の八字状
溝22 、23垂直部9をへて排出口】8より排出され
る。
The air sucked in from the suction E] 14 forms a spiral as the fin group 20 provided below the rotary table 2 rotates and moves in the direction of the arrow, and the fluid is forced through the operation of the fin group. Then, it is discharged from the inclined part 7 of the funnel-shaped groove 8 through the eight-shaped grooves 22 and 23 on the outer periphery of the shaft part 4 through the vertical part 9 and from the outlet 8.

すなわち吸入口14より吸入した流体は、フィン群20
により強制的に第1図に図示の矢印方向vcfm斗状溝
斗状全8内し、その際軸4の外周に設けたハ字状溝群2
2 、23に於て動圧を発生せしめ矢印方向に移動する
。第3図、第4図、第5図は、ハ字状溝群22 、23
において発生する動圧と流体の移動状態を図示するもの
である。第3図は、回転軸4の回転方向とハ字状溝群2
2 、23における流体の移動方向(矢印で示す)との
全体的関係を図示する。
That is, the fluid sucked from the suction port 14 is transferred to the fin group 20.
Forcibly inserts the Vcfm in the direction of the arrow shown in FIG.
At steps 2 and 23, dynamic pressure is generated to move in the direction of the arrow. 3, 4, and 5 show the V-shaped groove groups 22, 23.
This figure illustrates the dynamic pressure generated and the state of fluid movement. Figure 3 shows the rotational direction of the rotating shaft 4 and the V-shaped groove group 2.
2 and 23 illustrate the overall relationship with the direction of fluid movement (indicated by arrows).

第4図は個々の溝における流体の移動方向を示すもので
、流体が溝内に入り込みこの溝から脱出する際、つまり
本図面に図示の符号りの個所において大きい動圧が発生
する。第5図は圧力分布と溝部22 、 (23)にお
ける流体移動の位置関係を図示するものであり、軸部並
に溝部のR方向の回転に対脱出する際に最も大きい有効
動圧をするもので、これを本分布図においては、符号P
で図示しているO 又回転台2の回転と同時に、相反発する同極性永久磁石
10 、12の作用によりこれを容易に浮上さ  □せ
る。従って、低速回転の場合にも回転台の支持は可能で
ある。
FIG. 4 shows the direction of fluid movement in the individual grooves, and when the fluid enters and exits the grooves, that is, at the locations indicated by reference numerals in this figure, a large dynamic pressure is generated. Figure 5 illustrates the positional relationship between pressure distribution and fluid movement in the grooves 22 and (23). In this distribution map, this is represented by the symbol P
Simultaneously with the rotation of the rotary table 2, it is easily levitated by the action of the permanent magnets 10 and 12 of the same polarity, which are emitted in opposition. Therefore, it is possible to support the rotary table even when rotating at low speed.

第2図は本発明に係る別の具体例である。本具体例にお
いては、一対の回転台26f:軸部28の両端部に設け
、この下にそれぞれ相対するようにフィン群30 、3
2を円形に配設し、それぞれのフィン群30.32に接
して、軸受本体34と回転台26との間に一対の吸入口
36 、38を穿設し、前記一対の吸入口のほぼ中間の
軸受本体34に排出口40を設ける。又一対の漏斗状溝
42 、44はそれぞれ軸受本体340両内側に穿設さ
れ、これらの漏斗状溝42 、44によって形成される
垂直溝46内に軸部28が回転自在に嵌挿され、更に回
転台26の下に極性を同一とする磁石48 、50が装
着され又軸部28の外周にハ字状溝群54.56を設け
ることは第一具体例と同一である。
FIG. 2 is another embodiment of the present invention. In this specific example, a pair of rotary tables 26f are provided at both ends of the shaft section 28, and fin groups 30, 3 are provided below, facing each other.
2 are arranged in a circular shape, and a pair of suction ports 36 and 38 are provided between the bearing body 34 and the rotary table 26 in contact with the respective fin groups 30 and 32, and a pair of suction ports 36 and 38 are provided approximately in the middle of the pair of suction ports. A discharge port 40 is provided in the bearing body 34 of the bearing body 34 . Further, a pair of funnel-shaped grooves 42 and 44 are respectively bored inside both sides of the bearing body 340, and the shaft portion 28 is rotatably inserted into the vertical groove 46 formed by these funnel-shaped grooves 42 and 44. The magnets 48 and 50 having the same polarity are mounted below the rotary table 26, and the V-shaped groove groups 54 and 56 are provided on the outer periphery of the shaft portion 28, as in the first embodiment.

符号52は支持台の一部である。同文この別の具体例の
作用はさきに説明した第一具体例と同様であるから説明
を省略する。
Reference numeral 52 is a part of the support base. Same sentence The operation of this other specific example is the same as the first specific example explained earlier, so the explanation will be omitted.

上述のように、本発明の流体軸受は、回転台のフィン群
の作動により、吸入した流体を軸部の外周の溝に強制的
に給気してより大きな動圧効果を発生せしめると共に軸
受剛性を高める作用効果を具えるものである。
As described above, the hydrodynamic bearing of the present invention uses the actuation of the fin group on the rotary table to forcibly supply the sucked fluid into the groove on the outer periphery of the shaft to generate a larger dynamic pressure effect and to improve bearing rigidity. It has the effect of increasing the

【図面の簡単な説明】[Brief explanation of drawings]

第゛1図は本発明の具体例の一部断面で示す路線側面図
。 第2図は別の具体例の一部断面で示す路線側面図。 第3図、第4図、第5図はハ字状溝群において発生する
動圧と流体の移動状態を図示する。 第3図は回転軸の回転方向と八字状溝における流体の移
動方向との状態を図示する斜視図。 第4図は個々の八字状溝における動圧発生個所を図示す
る路線図。 $5図は八字状溝における流体の移動と圧力分布との関
係を示す路線図。 2は回転台、4は軸部、6は軸受本体、8は漏斗状溝、
9は垂直部(漏斗状溝)、10,12は磁石、14は吸
入口、18は排出口、20はフィン群、22 、23は
ハ字状溝群。 特 許 出 願 人 株式会社コパルエレクトラ代 理
 人 弁理士 小   林   栄第  1  図 10 第2図 第3図 47
FIG. 1 is a side view of a route showing a partial cross section of a specific example of the present invention. FIG. 2 is a side view of a route in partial cross section of another specific example. 3, 4, and 5 illustrate the dynamic pressure generated in the V-shaped groove group and the state of fluid movement. FIG. 3 is a perspective view illustrating the rotational direction of the rotating shaft and the moving direction of fluid in the eight-shaped groove. FIG. 4 is a route map illustrating the locations where dynamic pressure is generated in each eight-shaped groove. Figure $5 is a route map showing the relationship between fluid movement and pressure distribution in the eight-figure groove. 2 is a rotary table, 4 is a shaft portion, 6 is a bearing body, 8 is a funnel-shaped groove,
9 is a vertical part (funnel-shaped groove), 10 and 12 are magnets, 14 is an inlet, 18 is an outlet, 20 is a fin group, and 22 and 23 are V-shaped groove groups. Patent applicant Copal Electra Co., Ltd. Agent Patent attorney Eiji Kobayashi 1 Figure 10 Figure 2 Figure 3 Figure 47

Claims (1)

【特許請求の範囲】 ■。回転することにより流体を軸部の溝、軸受本体と軸
部との間隙に強制的に移動し動圧を発生せしめるフィン
部を設けた動圧流体軸受。 2、軸受本体に設けた漏斗状溝に回転台を具えた軸部を
嵌挿支承せしめた特許請求の範囲第1項に記載の動圧流
体軸受。 3、軸部外周にハ字状溝群を設けてなる特許請求の範囲
第1項に記載の動圧流体軸受。 4、軸部の下方に同一極性の一対の磁石を設けた特許請
求の範囲第1項に記載の動圧流体軸受。 5、回転台の下面に漏斗状溝方向へ垂下する如く突設し
た複数のフィンを具えた特許請求の範囲第1項に記載の
動圧流体軸受。
[Claims] ■. A dynamic pressure fluid bearing is equipped with a fin section that generates dynamic pressure by forcibly moving fluid into the groove of the shaft section and the gap between the bearing body and the shaft section as it rotates. 2. The hydrodynamic bearing according to claim 1, wherein a shaft portion provided with a rotary table is inserted into and supported in a funnel-shaped groove provided in the bearing body. 3. The dynamic pressure fluid bearing according to claim 1, wherein a group of V-shaped grooves is provided on the outer periphery of the shaft portion. 4. The dynamic pressure fluid bearing according to claim 1, wherein a pair of magnets of the same polarity are provided below the shaft portion. 5. The dynamic pressure fluid bearing according to claim 1, comprising a plurality of fins projecting from the lower surface of the rotary table so as to hang down in the direction of the funnel-shaped groove.
JP57112076A 1982-06-29 1982-06-29 Dynamic pressure operated hydraulic bearing Pending JPS591808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57112076A JPS591808A (en) 1982-06-29 1982-06-29 Dynamic pressure operated hydraulic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57112076A JPS591808A (en) 1982-06-29 1982-06-29 Dynamic pressure operated hydraulic bearing

Publications (1)

Publication Number Publication Date
JPS591808A true JPS591808A (en) 1984-01-07

Family

ID=14577465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57112076A Pending JPS591808A (en) 1982-06-29 1982-06-29 Dynamic pressure operated hydraulic bearing

Country Status (1)

Country Link
JP (1) JPS591808A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619624U (en) * 1984-06-23 1986-01-21 株式会社島津製作所 oil bearing
JPS6260721U (en) * 1985-10-03 1987-04-15

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619624U (en) * 1984-06-23 1986-01-21 株式会社島津製作所 oil bearing
JPS6260721U (en) * 1985-10-03 1987-04-15

Similar Documents

Publication Publication Date Title
JP4271757B2 (en) Compliant foil fluid film radial bearing
US4320927A (en) Dental drill with magnetic air turbine having magnetic bearings
US6102580A (en) Axial-thrust bearing with improved lubricant flow
CN103375425B (en) Compressor housing bearing and seal
US3930618A (en) Balanced sprinkler impact drive
JP3083364U (en) High-speed radiator
JPS591808A (en) Dynamic pressure operated hydraulic bearing
ATE25751T1 (en) HYDROSTATIC BEARING.
KR20040077882A (en) Compressed air motor
CN107542686B (en) Fan and electronic equipment
KR940021954A (en) Fluid Bearing Device
CN2141619Y (en) Synchronous high power booster
JPS58181573A (en) Impeller device of centrifugal projector
JPH11148453A (en) Wind power generator
US4402353A (en) Log debarker with air-seal cooling fins
JPS6235947Y2 (en)
JP2003042091A (en) Improved lubricating device for regenerative vacuum pump
JPH0765611B2 (en) Hydrodynamic bearing device
JPH09240468A (en) Braking device for rolling stock
US7261526B1 (en) Cylinder for a vane motor
JPH0294917U (en)
JP2001085291A (en) Electron beam exposure system
JP2004156666A (en) Hydrostatic bearing, and air spindle motor using the same
SU1170552A1 (en) Electric machine
JPH0812051A (en) Spherical body arranging device