JPS59180421A - Hybrid navigation apparatus - Google Patents

Hybrid navigation apparatus

Info

Publication number
JPS59180421A
JPS59180421A JP5545483A JP5545483A JPS59180421A JP S59180421 A JPS59180421 A JP S59180421A JP 5545483 A JP5545483 A JP 5545483A JP 5545483 A JP5545483 A JP 5545483A JP S59180421 A JPS59180421 A JP S59180421A
Authority
JP
Japan
Prior art keywords
signal
station
error
navigation device
tacan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5545483A
Other languages
Japanese (ja)
Inventor
Tetsuo Miyake
三宅 鐵夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP5545483A priority Critical patent/JPS59180421A/en
Publication of JPS59180421A publication Critical patent/JPS59180421A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PURPOSE:To combine navigation devices, which can determine a two-dimensional position on a horizontal plane and an inertial navigation device automatically, by measuring a relative range and a bearing with respect to a ground station. CONSTITUTION:A station range and station bearing signal S1 to a station, which is selected by a TACAN device, and an air altitude signal S2 from an air data device 3 are converted into a two-dimensional signal S5 in a horizontal plane by a position computing part 5 based on station position data S4 of a memory 6. A position-error estimating part 7 estimates the position error included in the signal S5, based on the signal S1, i.e., relative positional relationship between the present position of own aircraft and a ground TACAN station, and an estimated position error signal S6 of the TACAN device is outputted. A nearest point detecting part 10 monitors whether the aircraft has passed the nearest point to the ground TACAN station or not based on the signal S5, which represents the present position of the aircraft and the station position data S4 and outputs a combination releasing pulse signal S9 when the aircraft passes the nearest point.

Description

【発明の詳細な説明】 本発明は、地上局との相対距離と方位を測定し、これら
測定値をもとに、水平面での2次元位置全決定する航法
装置と慣性航法装置を組合せる搭載ハイブリッド航法装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an installation that combines a navigation device and an inertial navigation device that measures the relative distance and direction to a ground station and determines the entire two-dimensional position on a horizontal plane based on these measured values. The present invention relates to a hybrid navigation device.

航空機において、自模の位[全決足(徂り位という)す
る場合、TACAN鉄置ある装はVOW/DME装置を
悟滅し、自模の地上局に対する相対距離と方位とを測定
し、これらの測定値と地」三周の位置から自模の水平面
での2次元位置を戊EJ的に決定する方法、つまジP〜
θ法といわれる方法が採用されている。しかし、相対距
離と方位との測定部[は誤差が含互れておジ、綜産解析
によれば、位置誤差は、航空機の地上局に対する最近接
点で最小となp1距雁が大きくなる程増加するし、覆域
には限界がある。
When an aircraft attempts to position itself, a TACAN device detects the VOW/DME equipment, measures the relative distance and bearing of the aircraft to the ground station, and then ``Measurement values and ground'' Method for determining the two-dimensional position on the horizontal plane of the model from the position of three circumferences, Tsumaji P ~
A method called the θ method is used. However, the relative distance and azimuth measurements include errors, and according to integrated analysis, the position error is minimum at the closest point of the aircraft to the ground station, and the larger the p1 range, the smaller the position error is. It will increase, and there is a limit to its coverage area.

=方、慣性航法装置では・ジャイロ、加速度計全便い、
水平面での2次元位置の増分を永め、これを積分するこ
とによジ測位する方法がとら!Lでいるため、位置誤差
は時間の経過とともに畜槓し、増大し、発散する不安定
現尿を待っている。
= On the other hand, inertial navigation devices include gyros and accelerometers,
There is a method for positioning by lengthening the increment of the two-dimensional position on the horizontal plane and integrating it! Since the position is L, the positional error accumulates and increases over time, and we are waiting for the unstable current to diverge.

一般に、TACAN装f6るいl−1:V(J i</
u1aii?g 直と、慣性航法装置とを組合せるノ・
イブリッド航法装置では、組合せがi5工能になるat
域に入った時、組合せモード金設定でさるようにし、こ
のモードでは、慣性航法装置の2次元s装置をρ−θ法
により求めた2次元位置にエジアッグデートすることに
より、慣性航法システムの:fi槓誤差全修正し、覆域
外では組合せkm除する方式かとられている。
In general, TACAN equipment f6 Rui l-1:V(J i</
u1aii? g. Combining direct and inertial navigation equipment
In the hybrid navigation system, the combination is at
When entering the zone, set the combination mode gold setting, and in this mode, the inertial navigation system's 2D s device is edge dated to the 2D position determined by the ρ-θ method. The method is to correct all errors in the :fi range, and to divide the combination by km outside the coverage area.

しかし、この場合、航窒愼がTACAN装置めるいはV
OR/DME装置を利用できる積域内にあり、組会せモ
ードにできる位vIt、におったとしても、ρ−θ法で
求めた2次元位宵に宮まれる誤差が、慣性航法システム
のlf槓誤差より小となる領域にある時しか組合せの効
果が期待できず、この領域外での組合せは、精度を省化
させる”J層性が強い。
However, in this case, the TACAN device is
Even if the OR/DME device is within the area where it can be used and vIt is reached to the extent that it can be set to combination mode, the error in the two-dimensional position determined by the ρ-θ method is the lf of the inertial navigation system. The effect of the combination can only be expected when it is in the region where the error is smaller than the error, and the combination outside this region has a strong "J-layer property" that reduces accuracy.

史に蓄積誤差の餘正効果は、地上局への最近接点で最大
となり、この地点を通過後は、組合せを解除し、1参正
機能を停止することが望ましい。
Historically, the correction effect of accumulated errors is greatest at the closest point to the ground station, and after passing this point, it is desirable to cancel the combination and stop the 1st reference function.

このため、従来のハイブリッド航法装置では、組甘せモ
ードの開始と′!4tIばが手動で行えるようにしてあ
り・このモードの選択と実行はオペレータの判断に藍か
せる侮成になりている。しかし、組合せの開始と屏ばは
、正確且つタイミング艮く夫施する心安がめジ、オペレ
ータのワークロードが大きくなる欠点全行っている〇 本発明の目的は、上記欠点を解決するため、TACAf
’J装置やVOR/DM、E装置の工うな、地上ノ司と
の相対距離と方位を側足し、こnら測定凪をもとlIC
7に平面での2次元位置の天雉ができる飢云鉄直と、慣
性航法装置の組合せを自mE19VC行うハイブリッド
航法装置it’e!供することである。
For this reason, in conventional hybrid navigation devices, the start of the combination mode and ′! 4tI mode can be performed manually - Selection and execution of this mode is at the discretion of the operator. However, the start and end of the combination must be performed accurately and at the right time, which is a disadvantage in that it increases the operator's workload.The purpose of the present invention is to solve the above-mentioned disadvantages.
'Do not modify the J device, VOR/DM, or E device, add the relative distance and direction to the ground station, and use the measured calm to calculate the IC.
It'e is a hybrid navigation device that performs a combination of an inertial navigation device and an inertial navigation device that allows you to locate the pheasant in two dimensions on a plane in 7! It is to provide.

本発明は、地上局との相対距離と方位の測定値からP−
θ法で決定した2次元位*消@iに含捷れる誤差と慣性
航法装置の2次元位置情報に含まれる誤差とを推定し、
それぞれの推定誤差の比軟全行うとともに地上局への最
近接点fi過の監視を行い、推定誤差の比較結果と取近
接点通過噂報f′l:よジ、組合せの開始、y4除の操
作を自動的に行うところに特徴がある〇 次に、本発明の実施例について図面を参照して説明する
The present invention uses P-
Estimate the error included in the two-dimensional position *eli@i determined by the θ method and the error included in the two-dimensional position information of the inertial navigation device,
In addition to calculating the comparison of each estimation error, we also monitor the passage of the closest point fi to the ground station, and compare the estimation errors and the closest point passing rumor f'l: change, start combination, and divide y4. The present invention is characterized in that it automatically performs the following.Next, embodiments of the present invention will be described with reference to the drawings.

図は本発明のハイブリッド航法装置1、並びに本装置と
結合するTACAN装置2、エアデータ装置3及び慣性
航法装置4の関連を示すものであシ、本発明のハイブリ
ッド航法装置lに、位置計算部5、メモリ6、誤差推定
部7と8、比較部9、最近接点恢出部10、誤麦修正イ
g号発生部11から儒成され、更に誤差推定部8はメモ
IJ 12と積分器13から#I成される。図中、点紛
は制御系統をボす〇 矢に本発明のハイブリッド航法装置の動作をj胆紫追っ
て説明する。
The figure shows the relationship between a hybrid navigation device 1 of the present invention, a TACAN device 2, an air data device 3, and an inertial navigation device 4 coupled to the device. 5, memory 6, error estimating sections 7 and 8, comparing section 9, nearest point finding section 10, error correction Ig generation section 11; #I is made from In the figure, the operation of the hybrid navigation system of the present invention will be explained by following the arrows indicating the control system.

本装置の動作開始時、比較部9の出力でめる組会せ許可
スティタス信号S8は非許町の状態にセyト8れ、信号
S 8 Vcj 、!:l、Ig14走信号発生部11
、りJ は誤差1−正信号SIO全出力しない伏厄独立モードに
あるものとし、このモードではTACANil&とエア
データ装置とから得られる2次元位置信号による慣性航
法装置の2次元位置の誤差修正は行われない。史に本装
置の動作開始時、慣性航法装置lfは調整され、誤差は
0となっているものと仮定し、慣性航法装置の誤差推定
部8の出力S7、すなわち積分器13の出力S7はOV
C設定さ几ているものとタ し、本装置を搭載する航窒
磯は離陸後、TACAN局に接近する飛行コースをとる
ものとする。
At the start of the operation of this device, the pairing permission status signal S8 output from the comparator 9 is set to an unauthorized state, and the signal S 8 Vcj, ! :l, Ig14 running signal generator 11
, RiJ is in the error independent mode in which the error 1-positive signal SIO is not fully output, and in this mode, the error correction of the two-dimensional position of the inertial navigation device by the two-dimensional position signal obtained from TACANil & and the air data device is Not done. Historically, when this device starts operating, it is assumed that the inertial navigation device lf is adjusted and the error is 0, and the output S7 of the error estimator 8 of the inertial navigation device, that is, the output S7 of the integrator 13 is OV.
Assuming that the aircraft is set to C, the navigation island on which this device is installed shall take a flight course that approaches the TACAN station after takeoff.

以上の動作開始時の初勘状悪と連用求汁下での本装置の
動作は以下の通ジである。
The operation of this device under the above-mentioned poor initial condition at the start of operation and under continuous use is as follows.

TACAN装f2が装部2ている罰への局距離と燭方位
信号Slと、エアデータ装置3の対気高度1百号S2は
、メモリ6の周位置データS4に基ついて、位置計算部
5で、水平面内での2次元位1直惜号S5に変換される
0位1課差推定部7は信号Slに基づき、つま9、自機
の現在位置とTACAN地上局との相対的位置関係から
信号S51’?:含まれる位ri誤彊を推定し、推定位
f瞑燈イg号86を出力する0また、最近接点債出部1
0は、自模の現在位tを示す信号S5と周位置データS
4に基づいて、自機がTACAN地上局への最近接点?
通過しだかどうか*仇し、厳近接点週過時に組合せ解除
ハルス信号S9’に出力する。
The station distance and direction signal Sl of the TACAN equipment f2 in the equipment part 2 and the air altitude 100 S2 of the air data device 3 are calculated by the position calculation part 5 based on the circumferential position data S4 of the memory 6. Based on the signal Sl, the 0-position and 1-division difference estimating unit 7, which is converted into a two-dimensional position in the horizontal plane, calculates the relative positional relationship between the current position of the own aircraft and the TACAN ground station. to signal S51'? : Estimates the included position ri error and outputs the estimated position f meidan ig No. 86.
0 is the signal S5 indicating the current position t of the model and the circumferential position data S
Based on 4, is your aircraft the closest point to the TACAN ground station?
It determines whether it has passed or not, and outputs the combination cancellation signal S9' when the closest point has passed.

−万、誤差推定部80メしり12には、慣性航法装置の
速瓦哄燈データS11 が記憶式れておジ、積分a=i
:iは組合せ許6丁スティタスfggが非許可の状態の
間、すなわち組合せモードでなく独立モードの間、信号
5iii時間槓分し、慣性航法装置の推定位置誤差信号
S7τ出力する。16号S6と1g号87は、比較部9
でS6、S7の絶対値の大小比較され、信号S7が信号
56jll)小の間は比較部9の出力である組合せ肝可
スティタス1ぎ号88は非許vTの状態となジ、信号S
7が侶ちS6よp犬になれば1ぎ号S8は許可の状態に
なる。
- 10,000, the error estimating unit 80 meter 12 stores the inertial navigation device's speed lantern data S11, and the integral a=i
:i divides the signal 5iii time into an estimated position error signal S7τ of the inertial navigation device while the combination permission status fgg is not permitted, that is, not in the combination mode but in the independent mode. No. 16 S6 and No. 1g No. 87 are in comparison section 9
The magnitudes of the absolute values of S6 and S7 are compared, and while the signal S7 is small, the output of the comparator 9, the combinational status signal 88, is in the prohibited vT state, and the signal S
If 7 becomes p-inu like S6, then S8 will be in a permission state.

本装置の動作開始時、信号S7V!、信号S6より小と
なるため、組合せ許可スティタス信号S8は非粁町の状
態になっており、信号5LOKよる誤差修正機能は糸上
さ几ている。この状態で航空憬はTACAN地上局に接
近するに従って、信号86は除々に減小し、逆に、信号
S7は時間と共VC増加する01g号S7が信号S6よ
り太きくなった時点で、比f都9の出力1g号S8は組
合せIf+−町の状態になり、独立モードから組合せモ
ードVC移行し、匿号S8によジ、誤尭1g号発生部】
1では、=号S5と信号S3の走がとられ、誤麦罎正1
gQS10は、慣性航法装置4. Kフィードバッグき
れ、誤差修正が行われる。誤差修正は、16号S8が組
合せ杆町状悪にらるrstt、cけられるが、この状、
態は酸点接点S過検出部lOが地上局Vこ刈する最点成
点通過時発生する組合せ解除パルス1言号S9で解除さ
n1次のTACAi’J局が違同き扛るまで昶曾ぜは糸
上される。以上の動作原理により、組合せの自動化が可
能となる。
When the device starts operating, the signal S7V! , is smaller than the signal S6, so the combination permission status signal S8 is in an unreliable state, and the error correction function based on the signal 5LOK is disabled. In this state, as the aircraft approaches the TACAN ground station, the signal 86 gradually decreases, and conversely, the VC of signal S7 increases with time.When S7 becomes thicker than signal S6, the signal S7 becomes larger than signal S6. Output No. 1g S8 of f capital 9 enters the state of combination If+- town, transitions from independent mode to combination mode VC, and returns to anonymous No. 1g generating section]
1, the = signal S5 and signal S3 are run, and the error code 1 is
gQS10 is an inertial navigation system 4. K-feedback is completed and error correction is performed. The error correction is done when No. 16 S8 is in a bad combination.
The state is canceled by the combination cancellation pulse 1 word S9 generated when the acid point contact S overdetection unit 10 passes the highest point of the ground station V. Soze is threaded. The above operating principle enables automation of combinations.

以上説明したように、本発明により、9L米オペレータ
の判断によシ手動で行わnでいた一般法装置の組合せに
関する操作か目動化されるのて、以下にボす幼果がある
As explained above, according to the present invention, the operations related to combinations of devices in the conventional method that were previously performed manually according to the judgment of the 9L rice operator can be visualized, and the following young fruits are produced.

(1)誤走比戟戦化によジ、組合せ効米のある時のみ組
合せを火付しそれ以外は、帆曾せ全・b止する操作が、
正面且つタイミング良く、自動的に行われるため、慣性
航法装置への畜槓設差修正鞘要は同上し、慣性航法装置
への恐影11’に防ぐことかできる。
(1) Due to the misrun of Higeki warfare, the operation of igniting the combination only when the combination is effective, and otherwise turning the sails off and on, is
Since it is carried out directly, in a timely manner, and automatically, it is possible to correct the ramming setup difference to the inertial navigation system as described above, and to prevent the shadow 11' on the inertial navigation system.

(21m作が自動化烙れるため、オペレータのワークロ
ードが減る。
(Since 21m production can be automated, the operator's workload will be reduced.

(3)誤差比較結果は故障監視にもオU用0]能であり
、1百頼性の向上が期待できる。
(3) The error comparison results can also be used for failure monitoring, and an improvement in reliability can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示す図である。 1・・・・・・/・イブリッド航法装置、2・・・・・
・TACAN装置、3・・・・・・エアデータ装置、4
・・・・・・慣性航法装置、5〜13は本発明のノ)イ
ブリッド航法装置の構成品であり、5・・・・・・位I
it、ばf勇:部、6・・・・・・メモ1ノ、7と8・
・・・・・位置誤差推定部、9・・・・・・比較部、1
0・・・・・・最近接点恢出部、11・・・・・・誤差
修正16号発生部、12・・・・・・メモリ、13・・
・・・・積分器でろるO81〜S 10  は上記構成
要素間を流れる信号の名称であシ、Sl・・・・・・T
ACAN装置の間距離と14方位信号、S2・・・・・
・エアデータ装置の対気高度イ言号、S3・・・・・・
慣性航法装置の2(K元位置1b号、S4・・・・・・
TACAN地上局位置データ・S5“−=−TACAN
装置とエアデータ装置から得られる2次元位置1言号、
S6・・・・・・TACAN装置の推定位置誤差信号、
S7・・・・・・慣性航法装置の拒定位置誤差伯方、S
8・・・・・・組合せ肝pJスティタス信号、S9・・
・・・・組合せps除パルス1g号、SIO・・・・・
・誤差1し正匍号、Sll・・・・・・慣性@法装皺の
速屁誤差データである。 代理人 升埋士  内  原    君   。 \\J
The figure shows an embodiment of the present invention. 1.../Ibrid navigation device, 2...
・TACAN device, 3... Air data device, 4
. . . Inertial navigation device, 5 to 13 are components of the hybrid navigation device of the present invention, and 5.
it, bafyu: part, 6... memo 1, 7 and 8.
...Position error estimation section, 9...Comparison section, 1
0...Nearest point finding unit, 11...Error correction No. 16 generation unit, 12...Memory, 13...
...Integrator O81 to S10 are the names of the signals flowing between the above components, Sl...T
Distance between ACAN devices and 14 direction signals, S2...
・Air altitude code of air data device, S3...
Inertial navigation device 2 (K original position 1b, S4...
TACAN ground station position data・S5”-=-TACAN
2-dimensional position 1 word obtained from the device and air data device,
S6...Estimated position error signal of TACAN device,
S7... Inertial navigation device rejected position error Hakata, S
8... Combined liver pJ status signal, S9...
...Combination ps removal pulse No. 1g, SIO...
・Error 1, correct number, Sll... This is the fast fart error data of inertia @ method wrinkle. My agent is Mr. Uchihara, a masu burial specialist. \\J

Claims (1)

【特許請求の範囲】[Claims] 地上局との相対距離と方位とを側層する航法装置と慣性
航法装置とを組合せ、前記測定部に丞ういて水平面での
2次元位ti決定し、前記2次元位置を利用し、MJ記
慣性@法装置の2次元位置の誤着を修正するハイブリッ
ド航法装置において、前記航法装置と前g己慣性航法装
置の誤差推だ全行い、それぞれの誤差比板と地上局との
最近接点の通過を監視し、前記誤差比較の結果と前d己
取近接点通過偵報によジ、fgFJ記航法装置と@記慣
性航法装置にの組合せの制御を行うことを特徴とするノ
・イブリッド航法装置。
A navigation device and an inertial navigation device are combined to determine the relative distance and direction to the ground station, and the two-dimensional position ti on the horizontal plane is determined by the measurement unit, and the MJ is recorded using the two-dimensional position. In a hybrid navigation device that corrects a two-dimensional position error of an inertial navigation device, the error estimation between the aforementioned navigation device and the previous inertial navigation device is carried out, and the closest point between each error ratio plate and the ground station is passed. , and controls the combination of the fgFJ navigation device and the inertial navigation device based on the error comparison result and the reconnaissance report of the previous approach point passing. .
JP5545483A 1983-03-31 1983-03-31 Hybrid navigation apparatus Pending JPS59180421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5545483A JPS59180421A (en) 1983-03-31 1983-03-31 Hybrid navigation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5545483A JPS59180421A (en) 1983-03-31 1983-03-31 Hybrid navigation apparatus

Publications (1)

Publication Number Publication Date
JPS59180421A true JPS59180421A (en) 1984-10-13

Family

ID=12999046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5545483A Pending JPS59180421A (en) 1983-03-31 1983-03-31 Hybrid navigation apparatus

Country Status (1)

Country Link
JP (1) JPS59180421A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114689054A (en) * 2022-02-24 2022-07-01 中国电子科技集团公司第十研究所 High-precision navigation method and device for Takang system, flight equipment and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114689054A (en) * 2022-02-24 2022-07-01 中国电子科技集团公司第十研究所 High-precision navigation method and device for Takang system, flight equipment and storage medium

Similar Documents

Publication Publication Date Title
US5184304A (en) Fault-tolerant inertial navigation system
US4608641A (en) Navigational aid
JP2931348B2 (en) Method and system for determining position and velocity of a target in inertial space
US9098083B1 (en) Event sensor
CA1171530A (en) Angle of attack based pitch generator and head up display
US9140802B2 (en) Auxiliary as vehicle speed when difference between auxiliary and propagation above threshold
CN110031019A (en) A kind of skidding detection processing method for automatic driving vehicle
US20100305856A1 (en) Pedestrian navigation device and method using heading information of terminal
EP0253088A1 (en) Method for developing air data for use in flight control systems
JPS59180421A (en) Hybrid navigation apparatus
KR101991703B1 (en) Pedestrian dead-reckoning apparatus and method using thereof
JPS62140017A (en) Present position recognition apparatus for vehicle
BR112013007426B1 (en) CIRCUIT ARRANGEMENT AND PROCESS FOR MONITORING A DSP IN THE FRAMEWORK OF A SAFETY CRITICAL APPLICATION
GB2040454A (en) Doppler log
US20210114602A1 (en) Driving assistance method for a vehicle, control unit, driving assistance system, and vehicle
JPS61193999A (en) Measuring system of quantity of combusion of missile
TWI636236B (en) Method for determining states of a system by means of an estimation filter, device for determining a position of an object and unmanned aerial vehicle
TWI666463B (en) Train speed detection device and method
JPH0785019B2 (en) Heading measurement device
JPS59170910A (en) Highly accurate stopping method of moving equipment
JPS5956108A (en) Navigation device
RU2660043C1 (en) Method of calibrating magnetic field sensor of integrated system of backup devices
Reid et al. Integration of multi-sensor navigation data using optimal estimation techniques
JPH0637286Y2 (en) Combined heading measuring device
JPH0224347U (en)