JPS59180317A - Ultrasonic thickness measuring probe - Google Patents

Ultrasonic thickness measuring probe

Info

Publication number
JPS59180317A
JPS59180317A JP5264483A JP5264483A JPS59180317A JP S59180317 A JPS59180317 A JP S59180317A JP 5264483 A JP5264483 A JP 5264483A JP 5264483 A JP5264483 A JP 5264483A JP S59180317 A JPS59180317 A JP S59180317A
Authority
JP
Japan
Prior art keywords
probe
magnet
piping
contacting
magnetic force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5264483A
Other languages
Japanese (ja)
Inventor
Masayuki Hashiba
羽柴 正之
Shinsuke Nakamura
中村 進祐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5264483A priority Critical patent/JPS59180317A/en
Publication of JPS59180317A publication Critical patent/JPS59180317A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To allow a probe to abut on a body to be measured easily and to reduce a measurement error by inserting a magnet into the outside ring of the probe. CONSTITUTION:The external ring body 12 covers the probe 1 and the magnet 8 is incorporated therein to stick to carbon steel piping by magnetic force when contacting the external surface of the piping. The magnet 8 is surrounded with an extremely light body of resin which is a nonmagnetic body and the magnet is exposed in the surface only where it contacts the piping; and an extremely small step is formed between the terminal surface of the probe 1 and the surface of the magnet 8. When the probe 1 is brought into contact with the piping 7 to be measured, the grip 9 of the probe 3 is operated at an unreachable narrow place to bring the magnet into contact with a necessary measurement place easily, and the probe 1 oscillates, so the contacting direction is made independent of the direction of the grip 9. The contacting surface is attracted to the contacting terminal of the probe 1 by the magnetic force and the magnetic force intensity of the magnet is adjusted to make the contacting force constant.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は発成プラントの配管や熱交換器の外表面に接触
させ管の肉厚や胴体の肉厚を超音波ケ発倍しそのパルス
の反射により測定する探触子において被測定物の外表面
に接触する際肉厚測定では厚さ方向に垂直に探触子音あ
てないと超音波のパルス反射による誤差が生ずるのでこ
の接触子勿被測定物体表面に垂直に当てることを容易に
して測足誤差r低減するに好適な探触子r提供する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention applies ultrasonic waves to the outer surface of the pipes and heat exchangers of a power generation plant by multiplying the wall thickness of the pipes and the wall thickness of the body to generate ultrasonic pulses. When measuring wall thickness with a probe that measures by reflection, when it comes into contact with the outer surface of the object to be measured, if the probe consonant is not applied perpendicular to the thickness direction, an error will occur due to the ultrasonic pulse reflection. To provide a probe r suitable for reducing foot measurement error r by easily applying the probe perpendicularly to the surface of an object.

〔従来技術〕[Prior art]

原子力発電プラント円の配管の中で炭素鋼配管内面には
その流体の温度、湿り度、流れ性状による因子と与られ
る二ローション、コロ−ジョン現象が発生し円曲から肉
厚が減少してくる。時には、看j享方向に貫通するピン
ホールや亀裂まで進展し円部流体が・d外へ漏出するこ
とさえあり優るため健全性をプラント定検時に確認する
目的で配管外表面から超音波発信による肉厚測定器具ケ
使って宮の肉厚測定と実施しそれから得られたデータが
ら當の減肉や寿命(耐用年数)r評価している。
In the circular piping of a nuclear power plant, a corrosion phenomenon occurs on the inner surface of carbon steel piping due to factors such as temperature, humidity, and flow properties of the fluid, and the wall thickness decreases due to circular bending. . In some cases, pinholes or cracks penetrating in the inspection direction may develop, and the fluid in the circular part may even leak out. Therefore, ultrasonic waves are transmitted from the outside surface of the piping to confirm the health of the pipe during periodic plant inspections. We used a wall thickness measuring instrument to measure the wall thickness of the roof, and based on the data obtained, we evaluated its wall thinning and lifespan (service life).

原子炉に使われている純水は他の火力発電所などのボイ
ラーの水質に比べPHが中性であるため配管内面の酸化
皮膜が形成しにくいためにこの減肉現象が比較的発生す
ると言われている。本発明はこの肉厚測定に使われる超
音波測定益共のうち直接物体に接触させ超音波パルスの
反射による肉厚?測定する探触子の構造に関するもので
ある。従来との探触子は肉厚測定のために配管外表面に
探触子の接地面が垂直に当てられるように測定者が探触
子を手作業で配管外表面に押し当てて探、触子の接地面
が管表面に均一になったところ?見はからってから表示
されるデジタル数置?読み取っている。この際探触子?
押しあてる圧力はその作業台の感覚で多少角度が伺いた
り探触子の手の持ち力によっては片押しの状態になった
りして測定データにバラノキがでるので現在数置を読み
とるまでに探触子を物体にめててから周囲に微動させ片
あたシがないと感じた頃にそのデータr採っている。探
触子は一般に使われているものでは直径10.0鵡×扁
さ10.Om前后の金嫡性の本のでりり−f:の内部に
超音波音発生する構造と物体に発信する1辰動子が内t
i、されている。従って作業者が片手で軽く持てる大き
さであシデジタル衣示器具との間lこ:徒1nl程度の
接続ケーブルが付いている。
The pure water used in nuclear reactors has a neutral pH compared to the water quality in boilers at other thermal power plants, so it is difficult to form an oxide film on the inner surface of the pipes, which is why this thinning phenomenon occurs relatively. It is being said. The present invention utilizes the ultrasonic measurement method used to measure wall thickness, which measures wall thickness by directly contacting the object and reflecting ultrasonic pulses. This relates to the structure of the probe used for measurement. With conventional probes, the measurer manually presses the probe against the outside surface of the pipe so that the contact surface of the probe is perpendicular to the outside surface of the pipe to measure wall thickness. Where is the ground plane of the child evenly distributed on the pipe surface? Is it a digital numeral that is displayed after you look at it? reading. A probe at this time?
The pressing pressure may vary depending on the angle of the workbench, or depending on how hard you hold the probe in your hand, it may result in a one-sided push, resulting in irregularities in the measurement data. After placing the child in an object, I let the child move slightly around the object, and when I felt that there was no movement, I collected the data. A commonly used probe is 10.0 mm in diameter x 10.0 mm in width. The story of the book of legitimacy before and after Om - f: The structure that generates ultrasonic sound inside and the one pulse that transmits to the object is inside t.
i, it has been done. Therefore, it is sized so that a worker can easily hold it with one hand, and has a connecting cable of about 1 NL between it and the digital clothing equipment.

一般に発′亀坊内の配管は天井や壁近くに走らせるので
測定用の足’Ah k組み上けて朕近して作業ヶ行って
いるが場所によっては測定作条者がようやく午が届くよ
うな狭い場所や配管全周に対し正面に同けないような所
で測定するところも多い。゛また特に原子力発電所では
ところによっては放射線量が尚くなかなか接近で@ない
状態の配管を測定しなければならない場合もある。この
ように配管の肉厚測定はいろんな塩境条件の中で測定作
業者がその時の姿勢や位置などによって前述した如く探
触子の押し付けの均一性や片あたりの状態があフ傅0の
でその結果のデータも伐る程1度の測定誤差が見込まれ
なければならない。
Generally, the piping inside the factory is run close to the ceiling or wall, so the measuring feet are assembled and work is carried out nearby, but depending on the location, the person making the measurements has finally arrived. There are many places where measurements are taken in narrow spaces such as small spaces, or places where the entire circumference of the pipe is not flush with the front.゛In some cases, especially at nuclear power plants, it may be necessary to measure pipes where radiation levels are very close to each other. In this way, when measuring the wall thickness of a pipe under various salinity conditions, the uniformity of the pressure of the probe and the state of uneven contact may vary depending on the posture and position of the measuring worker at the time, as mentioned above. A measurement error of approximately 1 degree must be expected in the resulting data.

測定された配αや熱交換器の胴体などの表面は探触子t
あてる前に保湿外しや衣lJ]の付着物勿ウェス等で掃
@敗り探触子の接地面とV)間に介在物がないように除
去している。測定は配管の場合は必要とされるデーター
の種類にもよるが50朧ピンチの格子の交点’k !J
lll定したり或いは部分的な詳細な減肉状況?知るた
めにこの格子内?細分割してLOnanピンチでの烙子
伏で測定することもある。
The measured alignment α and the surface of the body of the heat exchanger are measured using the probe t.
Before application, remove moisturizer and remove any adhesion of clothing with a rag or the like to make sure there are no inclusions between the contact surface of the probe and V). In the case of piping, the measurement depends on the type of data required, but the measurement is at the intersection point of the 50-pin grid! J
Is the thinning situation determined or partially detailed? In this grid to know? It can also be measured by dividing it into small pieces and using a LOnan pinch.

探触子の接地端子は1頁径10mTn位である。The ground terminal of the probe has a diameter of about 10 mTn per page.

〔発明の目的〕[Purpose of the invention]

前述したように従来から快われている探触子はその測定
作業者の手の感覚で押しあてられるために押し付ける力
の強さや端子面のあたυの均一性などに′/′i微妙な
差が生じてくる。的”にようやく手の届くような場所で
は手の感覚たけVc頼らさ′るτ得ないような場合もあ
る。本発明は以上述べた探触子の物体へのあて万の差r
なるべく少なくする為の探触子の改良にある。
As mentioned above, the probes that have been popular in the past are pressed against each other by the feeling of the measuring worker's hands, so there are subtle differences in the strength of the pressing force and the uniformity of the heat υ on the terminal surface. A difference will arise. In places where you can barely reach the target, you may not be able to rely on the sensation of your hands.
The aim is to improve the probe in order to reduce the amount of damage as much as possible.

〔発明の概要〕[Summary of the invention]

本発明の概要は肉厚測定用の超音波探触子において発信
体そのものは従来と同じ構成、構造であるが探触子の外
周に探触子會囲うようにした外環ケ付+j4させこの外
環体の中、には全周一様な磁石ケ押入し探触子の接地面
即ち記音などの測定吻に対し磁力線忙発生させたもので
ある。またこの磁力惚紮有する探触子′Lは接続さjL
るケーブルの接続口の部分に角度回転のできる構造にし
たもので作業者が丘fv:+宋触子r手で扱わないで物
体に接地できる様にしたことにらる。
The outline of the present invention is that in an ultrasonic probe for wall thickness measurement, the transmitter itself has the same configuration and structure as the conventional one, but an outer ring surrounds the probe ring around the outer periphery of the probe. Inside the outer ring, a magnet is placed uniformly around the entire circumference to generate lines of magnetic force against the ground surface of the probe, that is, the measuring proboscis of the memo. Also, the probe 'L with this magnetic force is connected
This is because the connection port of the cable has a structure that allows angle rotation, allowing the worker to ground the object without handling it with his/her hands.

ここで磁石により物体に吸漏させるととVrC工り端子
面が均寺に押し付けられる構造となるものである。プラ
ント配管には不銹鋼配官も使われでいるが大半は炭素鋼
管で占めているので磁性体である。不銹鋼管は腐蝕や減
肉現象もあ寸り例がない。
If the magnet is used to absorb and leak from an object, the VrC terminal surface will be pressed against the surface. Although stainless steel pipes are also used for plant piping, the majority of pipes are carbon steel pipes, which are magnetic. Rust-free steel pipes have no problems with corrosion or thinning.

〔発明の笑M例〕[LOL M example of invention]

本発明の実施例?第2図に示す。探触子1は超音波探触
子体でこれは従来のものと全く同一の構成且つ同−構造
である。外用体12が本発明の主体?なすものである。
An embodiment of the invention? Shown in Figure 2. The probe 1 is an ultrasonic probe body, which has exactly the same configuration and structure as a conventional probe. Is the external body 12 the subject of the present invention? It is what you do.

この外環体12は図に示したように探触子lの外周ヶ囲
うようにしkものでその中′/?−(d(6石8を内蔵
されている。この磁石8は永久磁石か゛祇磁石のどちら
でもよいが水平配着′や垂直配管外表面に接地したとき
炭系鋼配看に磁力で吸着するようにしたものである。磁
石8の外側は非磁性体の樹脂、木製またはアルミ装など
極軽量物体のもので囲ってあり物体に接地する而のみ磁
石が表面に露出するようにしておく。また探触子の端子
面と磁石の表面は微小な段差が生じる様に工夫されてい
る。これは被測定物体の外表面が湾曲状(エルボ、チー
ズなど)のものや曲面状の場合りこ磁石側が端子面の接
地に邪まにならないようにするためである。外環体12
ii分割したもので磁石?挾んで組み込む構造にすれば
磁力の強弱や外子面と磁石面との段差の調整、などで磁
石8の交換や調整が容易になる。被測定物体配管71(
にの探触子?接地させる際、作業者の手が届かないよう
な狭い場所では探触体3σ)把手9蛍j東作することに
より所要の測定箇所に探触子?接地容易とな−り探触子
が首振シできるので接地方向も把手9の方向にとられ7
1.ることなく操作できる。朕地囲は磁力によシ探触子
の接地端子が均一に吸着され、且つその接地圧力も磁石
の磁力強度ケ脚偕することにより一定にすることができ
る。磁石8は砥磁石にすれば遠隔にてば源の切り侠えに
工り探触子の移動がよシ簡単になる。
As shown in the figure, this outer ring body 12 is designed to surround the outer circumference of the probe l, and the inside thereof is '/? - (d (6 stones 8 are built in. This magnet 8 can be either a permanent magnet or a magnet, but when it is horizontally installed or grounded on the outer surface of a vertical pipe, it is magnetically attracted to the carbon steel structure. The outside of the magnet 8 is surrounded by an extremely lightweight material such as non-magnetic resin, wood, or aluminum so that the magnet is exposed to the surface only when it is grounded to an object. The terminal surface of the probe and the surface of the magnet are designed to create a minute difference in level.This is because if the outer surface of the object to be measured is curved (elbow, cheese, etc.) or has a curved surface, This is to prevent it from interfering with the grounding of the terminal surface.Outer ring body 12
Is the divided ii a magnet? If the magnet 8 is assembled in a sandwiched structure, it will be easy to replace or adjust the magnet 8 by adjusting the strength of the magnetic force or the level difference between the outer surface and the magnet surface. Measured object piping 71 (
Ni's probe? When grounding, in a narrow place where the operator cannot reach, the probe can be placed at the desired measurement point by using the handle 9). Since the grounding is easy and the probe can swing, the direction of grounding is also in the direction of the handle 9.
1. It can be operated without any trouble. The ground terminal of the probe is uniformly attracted to the surrounding area by the magnetic force, and the ground pressure can be made constant by increasing the magnetic force strength of the magnet. If the magnet 8 is a grinding magnet, it will be easier to move the probe from a remote location.

外環体12?探触体3に敗り付ける方法としては、ネジ
込み方式音用いる。つまシ、外環体12と探触体3の接
触円周面にそれぞれネジ?切シ、沿脱可化とすることに
エリ、外環体12に囲まれて取り付′げられている磁石
8の磁力の強弱や端子面と磁石面との段差のA螢などの
ための磁石8の交換や調整が容易となる。
Outer ring body 12? As a method of defeating the probe 3, a screw-in method sound is used. Screws on the contact circumferential surfaces of the tabs and the outer ring 12 and the probe 3? In order to make it possible to cut and slide it off, there are some considerations such as the strength of the magnetic force of the magnet 8 that is attached surrounded by the outer ring 12, and the difference in level between the terminal surface and the magnet surface. It becomes easy to replace and adjust the magnet 8.

磁石8は、非磁性体の外環体12に囲まれており、被測
定物体に接する側の面の界磁石が表面に露出するように
しておくことにより周辺の塵の中の鉄粉等が、磁石にく
っついて、精確な測定に誤差を生ずるような不具合が解
決できる。
The magnet 8 is surrounded by an outer ring 12 made of a non-magnetic material, and by leaving the field magnet on the side in contact with the object to be measured exposed to the surface, iron powder etc. in the surrounding dust can be removed. This solves problems such as sticking to magnets and causing errors in accurate measurements.

探触子1の端子面と磁石の表面には微小な段差が生すゐ
ように工夫されているが、こnは前述(l)効果以外に
、被測定物体の外辰面にかなシ粗いキズがあった場合、
端子面と磁石面に段差がないと端子面が、測定面に対し
て1頃@勿生して、反射されたパルスを受信で@なかっ
たり、精確な数1直を採取で@ないという不具合を生じ
るが、端子面と磁石面に段差を持たせることにより、こ
の不具合?解決することができる。
The terminal surface of probe 1 and the surface of the magnet are designed to have a minute difference in level, but in addition to the above-mentioned effect (l), this also creates a rough surface on the outer edge of the object to be measured. If there are scratches,
If there is no step difference between the terminal surface and the magnet surface, the terminal surface will be at about 1 level with respect to the measurement surface, resulting in problems such as not being able to receive reflected pulses or not being able to collect accurate numbers. However, by creating a step between the terminal surface and the magnet surface, this problem can be solved. It can be solved.

把手′/cよる遠隔操作の肉厚測定作業実施例と第4図
に示す。探触体3と把手9は、アーム10とビン11ケ
介して一方向のみ回1云(瓢振り)可能となっておシ、
把手9はアーム10に差し込む方式とすることによシ把
手9が取υ換え可能となシ、把手9の長さ?自由に調整
7することができるため、壁際の狭い場所や高所に存在
すめ配管の肉厚測定作業が、把手9を介して遠隔操作可
能となる。
An example of wall thickness measurement work performed by remote control using the handle '/c is shown in FIG. The probe 3 and the handle 9 can be rotated in only one direction via the arm 10 and the bottle 11.
By inserting the handle 9 into the arm 10, the handle 9 can be replaced.What is the length of the handle 9? Since it can be freely adjusted 7, it becomes possible to perform remote control via the handle 9 to measure the wall thickness of piping located in narrow spaces near walls or at high places.

ケーブル5の材質には、柔軟性のあるもの7選足するこ
とによ、す、アーム1oの回4云(首)辰りンに追従可
能である。
By adding seven flexible materials to the cable 5, it is possible to follow the rotation of the arm 1o.

又、把手9r介した遠隔測定では、測定後、探触子の散
り外しに、磁力伊上回るカが必要となるか、磁石8勿区
磁石とすることにょシ遠隔で電源の切り換えケ行い、探
触子の移vJkよシ容易にすることができる。
In addition, in remote measurement using the handle 9r, it is necessary to use a force exceeding the magnetic force to disintegrate the probe after measurement, or it is necessary to use a magnet 8 to remove the probe. The tentacles can be moved more easily.

〔発明の効。果〕[Efficacy of invention. Fruit]

本発明による効果は探触子の外側外項内に嫡石r挿入し
たことにより被測定物の肉厚測定の目的に合った垂直且
つ均等接地が確実定できること。
The effect of the present invention is that vertical and uniform grounding suitable for the purpose of measuring the wall thickness of the object to be measured can be reliably established by inserting the main stone r into the outer outer part of the probe.

またこの磁石の吸着性により作業員の手?この探触子か
ら離脱しても肉厚測定がoT能であること。
Also, due to the attractiveness of this magnet, it may cause damage to workers' hands. Thickness measurement must be possible even if the probe is detached from the probe.

従って壁際の奥側にある配管で作業者がようやく手が入
るような狭い場所や放射能が高くて容易て作業者が直接
I!!I!れたくない箇所や接近が困難な箇所での測定
作業ではこの探触子VC把手?付けたシ吊シ下げたシし
て手の届かない箇所の肉厚測定も可能になる。
Therefore, it is difficult for workers to directly access piping located near walls, in narrow spaces where workers can barely reach their hands, or where radioactivity is high. ! I! Is this probe VC handle suitable for measurement work in areas that you don't want or are difficult to access? It is also possible to measure wall thickness in areas that are difficult to reach by hanging the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超音波肉厚測定探触子の断面図、第2図
は本発明による探触子の断面図、第3図は本発明による
探触子の下面図、第4図は本発明による狭い場所での遠
隔操咋閤厚測定例説明図である。 1・・・探触子、2・・・振動子、3・・・探触体、4
・・・受発1g体、5・・・ケーブル、6・・・カバー
、7・・・被助]定物体、8・・・磁石、9・・・把手
、lo・・・アーム、ii・・・ビン、12・・・外環
体、13・・・デジタル表示器具、第1圀 bZ圀 第り口
FIG. 1 is a cross-sectional view of a conventional ultrasonic wall thickness measuring probe, FIG. 2 is a cross-sectional view of a probe according to the present invention, FIG. 3 is a bottom view of a probe according to the present invention, and FIG. FIG. 4 is an explanatory diagram of an example of remotely operated pitch thickness measurement in a narrow space according to the present invention. 1... Probe, 2... Vibrator, 3... Probe, 4
... Receiving and sending 1g body, 5... Cable, 6... Cover, 7... Assisted object] Fixed object, 8... Magnet, 9... Handle, lo... Arm, ii...・Bin, 12...Outer ring, 13...Digital display device, 1st area bZ area 1st entrance

Claims (1)

【特許請求の範囲】 1、配管の肉厚測定に使用される超音波肉厚測定用探触
子において該探触子の周囲に囲う様にし、円筒形磁石を
介した構造としたことt特徴とする廂音波肉厚測定探触
子。 2、特許請求の範囲第1項において探触子r支持する探
触体に回転i=J能な把手を介した構造としたことr特
許とする超音波肉厚測定探触子。
[Claims] 1. An ultrasonic wall thickness measuring probe used for measuring the wall thickness of piping, which is surrounded by a cylindrical magnet and has a structure. A sonic wall thickness measurement probe. 2. An ultrasonic wall thickness measurement probe as claimed in claim 1, wherein the probe supporting the probe has a structure in which a handle capable of rotation i=J is provided.
JP5264483A 1983-03-30 1983-03-30 Ultrasonic thickness measuring probe Pending JPS59180317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5264483A JPS59180317A (en) 1983-03-30 1983-03-30 Ultrasonic thickness measuring probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5264483A JPS59180317A (en) 1983-03-30 1983-03-30 Ultrasonic thickness measuring probe

Publications (1)

Publication Number Publication Date
JPS59180317A true JPS59180317A (en) 1984-10-13

Family

ID=12920543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5264483A Pending JPS59180317A (en) 1983-03-30 1983-03-30 Ultrasonic thickness measuring probe

Country Status (1)

Country Link
JP (1) JPS59180317A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126516U (en) * 1988-02-19 1989-08-29
JP2012021930A (en) * 2010-07-16 2012-02-02 Chubu Electric Power Co Inc Thickness measuring method
CN105548352A (en) * 2015-11-17 2016-05-04 苏州博昇科技有限公司 Electromagnetic ultrasonic transducer of end portion-free detection blind area
JP2020176920A (en) * 2019-04-18 2020-10-29 大成建設株式会社 Measuring device for measuring wall thickness of piping, and piping wear monitoring system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126516U (en) * 1988-02-19 1989-08-29
JP2012021930A (en) * 2010-07-16 2012-02-02 Chubu Electric Power Co Inc Thickness measuring method
CN105548352A (en) * 2015-11-17 2016-05-04 苏州博昇科技有限公司 Electromagnetic ultrasonic transducer of end portion-free detection blind area
JP2020176920A (en) * 2019-04-18 2020-10-29 大成建設株式会社 Measuring device for measuring wall thickness of piping, and piping wear monitoring system

Similar Documents

Publication Publication Date Title
CA1176367A (en) Ultrasonic thickness measuring apparatus and method
US6497159B1 (en) Bracelet for moving ultrasonic sensors along a pipe
US4106327A (en) Anisotropic determination and correction for ultrasonic flaw detection by spectral analysis
TW201723461A (en) Fiber optic shape sensing technology for encoding of NDE exams
CA1092697A (en) Underwater inspection and communication apparatus
Baker Determination of Far‐Field Characteristics of Large Underwater Sound Transducers from Near‐Field Measurements
JP2021501320A (en) Improved corrosion thinning detectors and methods
JPS59180317A (en) Ultrasonic thickness measuring probe
Wickramanayake et al. Ultrasonic thickness measuring in-pipe robot for real-time non-destructive evaluation of polymeric spray linings in drinking water pipe infrastructure
JPH0399257A (en) Magnetic field intensity indicator
JPH0210261A (en) Measurement of intercrystalline corrosion
KR100358086B1 (en) Wedge Device of Focused Ultrasonic Transducer for Boiler Tube and Pipe
CN210572127U (en) Corrosion imaging detection device
US4238725A (en) Apparatus for checking the direction of polarization of shear-wave ultrasonic transducers
JP2004212308A (en) Method and apparatus for inspecting weld
JPS6190053A (en) Ultrasonic inspecting device
Pechacek Advanced NDE methods of inspecting insulated vessels and piping for ID corrosion and corrosion under insulation (CUI)
JP2888367B2 (en) Measuring method of thickness of deposits in pipe
JPH0148504B2 (en)
JPS5866812A (en) Detector for angle of inclination
RU2114447C1 (en) Process of evaluation of profile of pipe during ultrasonic test
JPH04242109A (en) Method for measuring film thickness with ultrasonic wave
Lahdenperae Acoustical holography in NDT.).
JPS598192Y2 (en) Ultrasonic flaw detector local water immersion probe holder
KR100780709B1 (en) Underwater ultrasonic flaw detection system