JPS59180230A - Temperature control system of water heater - Google Patents

Temperature control system of water heater

Info

Publication number
JPS59180230A
JPS59180230A JP5562983A JP5562983A JPS59180230A JP S59180230 A JPS59180230 A JP S59180230A JP 5562983 A JP5562983 A JP 5562983A JP 5562983 A JP5562983 A JP 5562983A JP S59180230 A JPS59180230 A JP S59180230A
Authority
JP
Japan
Prior art keywords
signal
flow rate
limit value
limiter
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5562983A
Other languages
Japanese (ja)
Inventor
Shuji Moriya
守屋 周次
Shigeru Shiragaki
白垣 成
Yuji Yamamoto
雄二 山本
Hitoshi Tanaka
均 田中
Kentaro Inoue
健太郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP5562983A priority Critical patent/JPS59180230A/en
Publication of JPS59180230A publication Critical patent/JPS59180230A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

PURPOSE:To shorten the setting time at the time when load is changed and consequently improve the controllability by a method wherein the change of flow rate is fed forward to the input side of a limiter and at the same time the limit values of the limiter are changed in accordance with the changed flow rate. CONSTITUTION:A multiplier 7 inserted between a controller 1 and a limiter 2 multiplies the output signal e0 of the controller 1 with the flow rate signal Q to represent the rate of water flowing in a water heater 4 and the resultant signal eo.Q is inputted to the limiter 2. Further, the flow rate signal Q is supplied to the limiter 2 in order to change an upper limit value in accordance with its value and to change a lower limit value in accordance with its inverted value. The change of the upper limit value is performed by multiplying a preset value Kl1 with the flow rate signal Q and that of the lower limit value by multiplying a preset value Kl2 with the inverted flow rate signal -Q respectively. The limiting action against the input signal eo.Q at the limiter 2 is performed based upon the limit values Kl1.Q and -Kl2.Q, both of which are changeable in accordance with the flow rate.

Description

【発明の詳細な説明】 この発明は、出湯温度か常に所望の設定値に一致するよ
うに瞬間湯沸器ケ制御する温度制御方式第1図は、湯沸
器に適用されている従来の温度制御装置の構成を示すも
ので、1はコントローラ、2はリミッタ、3は燃料制御
弁のような操作端、4は湯沸器、5は湯沸器4の出湯温
度を検出1″る検出器である。コントローラ1は、出湯
温、置設定信号e s pと、検出器5の出力である出
湯温度検出信号e との偏差(e、p−epV)を入力
とし、こv の偏差をゼロにするような出カイi号e。を出力するも
ので、PI動作形あるいはPID動作形などの任意の動
作形態をとり得る。なお積分動作機能を有するものであ
る場合には、始動時や設定温度の大幅な変更時などに偏
差が大きい状態が長時間にわたって続いたときに積分成
分が過大になり、偏差の符号が逆転しても出力信号がこ
れに追従しないリセットワインドアップ現象が生じるの
で、この現象を防止Tるためのリセットワインドアップ
防止手段が設けられることが多い。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a temperature control method for instantaneous water heaters so that the hot water temperature always matches a desired set value. This figure shows the configuration of the control device, where 1 is a controller, 2 is a limiter, 3 is an operating end such as a fuel control valve, 4 is a water heater, and 5 is a detector that detects the temperature of hot water from the water heater 4. The controller 1 inputs the deviation (e, p-epV) between the outlet hot water temperature and position setting signal e s p and the outlet hot water temperature detection signal e which is the output of the detector 5, and sets this deviation to zero. It outputs an output such as i and e, and can take any operation form such as PI operation type or PID operation type.If it has an integral operation function, When a large deviation continues for a long time, such as when the temperature changes significantly, the integral component becomes excessive, and a reset windup phenomenon occurs in which the output signal does not follow even if the sign of the deviation is reversed. Reset windup prevention means are often provided to prevent this phenomenon.

コントローラ1の出力信号e。はリミッタ2に入力され
る。このリミッタ2は、信号e。の値があらかじめ設定
した上限リミットKz1よりも太きいときはこの上限リ
ミットKt1に、またあらかじめ設定した下限リミット
Kz2よりも小さいとぎにはこの下限+) ミツトKt
2にそれぞれ制限するが、上限リミットKt1と下限リ
ミットKt2との間にあるときには信号e。をそのまま
通過させるよ5に動作する。そしてリミッタ2の出力信
号〇mが操作端3に加えられる。この操作端3が燃料制
御弁であ1シば、信号emに応じて湯沸器4の発熱量が
制御され、出湯温度の制御がなされる。しがしこの方式
では、王として湯沸器が有している遅れ要素のために制
御性が悪く、負荷急変時に出湯温度が短時間に整定しな
い。
Output signal e of controller 1. is input to limiter 2. This limiter 2 receives the signal e. If the value of is larger than the preset upper limit Kz1, set it to this upper limit Kt1, and if it is smaller than the preset lower limit Kz2, set it to this lower limit +).
2, respectively, and when it is between the upper limit Kt1 and the lower limit Kt2, the signal e. 5 will pass through as is. Then, the output signal 〇m of the limiter 2 is applied to the operating end 3. If this operating end 3 is a fuel control valve, the calorific value of the water heater 4 is controlled in accordance with the signal em, and the temperature of hot water is controlled. However, in this method, controllability is poor due to the delay element that the water heater has, and the temperature of the hot water does not stabilize in a short time when the load suddenly changes.

この方式を改良したものとして第2図のような方式が開
発された。第2図の方式では、出湯温度設定信号e s
 pと、湯沸器4に供給されろ水の温度を示す入水温度
信号ei  との偏差e s p  e 1  が検出
され、この偏差を増幅器6(ゲインKFを有する)で増
幅した信号K p (e s p  e 1)がリミッ
タ2の出力ernに加えられる。この場合には、制御系
にフィードフォワード要素が加味されるので、湯沸器固
有の使い方として生ずる出湯温度の設定値や出湯流量が
大幅に変更された場合には、フィードフォワード要素か
らの制御効果は得られるがコントローラ側からの制御効
果はリミッタ2の出力信号emの値があらかじめ定めた
上限リミット値に71または下限リミット値Kt2に抑
えられてしまうために、操作端への入力信号MVQ値の
変化対が制限され、実際の出湯温度が設定温度に達する
までに要する整定時間はまだ長いという欠点がある。
As an improved version of this method, the method shown in Figure 2 was developed. In the method shown in Fig. 2, the hot water temperature setting signal e s
A deviation e s p e 1 between p and the inlet water temperature signal ei indicating the temperature of the waste water supplied to the water heater 4 is detected, and this deviation is amplified by the amplifier 6 (having a gain KF) to produce a signal K p ( e sp e 1) is applied to the output ern of limiter 2. In this case, a feedforward element is added to the control system, so if the set value of the hot water tap temperature or the hot water tap flow rate, which occurs due to the specific usage of the water heater, is significantly changed, the control effect from the feedforward element will be is obtained, but the control effect from the controller side is that the value of the output signal em of limiter 2 is suppressed to the predetermined upper limit value of 71 or lower limit value Kt2, so the input signal MVQ value to the operating end is There are disadvantages in that the number of changes is limited and the settling time required for the actual tap water temperature to reach the set temperature is still long.

この発明は、上記のような従来の制御方式の欠点を除去
するためになされたもので、設定温度と出湯温度との偏
差にもとづいて操作端の操作量を決定する信号を作成す
るコントローラの出力信号を、湯沸器に流入する(もし
くは湯沸器から取出される)水の流量を示す流量信号に
応じて変化させるとともに、この流量信号に応じてリミ
ッタの上限リミット値および/または下限りミツト値を
変更することにより、負荷変動時における整定時間を大
幅に短縮して制御性を改善し得るようにした制御方式を
提供することを目的としている。この発明の制御方式は
、第1図に示したフィードバックのみの制御系にも、第
2図に示したフィードフォワード要素を加味した制御系
にも同様に適用することが可能である。
This invention was made in order to eliminate the drawbacks of the conventional control method as described above. The signal is varied in response to a flow signal indicating the flow of water into (or removed from) the water heater, and the upper limit and/or lower limit of the limiter is adjusted in response to this flow signal. It is an object of the present invention to provide a control method that can significantly shorten the settling time during load fluctuations and improve controllability by changing the value. The control system of the present invention can be similarly applied to the feedback-only control system shown in FIG. 1 and the control system including feedforward elements shown in FIG. 2.

以下、この発明の一実施例について図面を参照して説明
する。第3図は第1図に示した制御系に対応するもので
、1はコントローラ、2はリミッタ、3は操作端、4は
湯わt器をそれぞれ示し、これらは第1図に示したもの
と同等であるので、その詳細な説明は省略する。
An embodiment of the present invention will be described below with reference to the drawings. Figure 3 corresponds to the control system shown in Figure 1, where 1 is the controller, 2 is the limiter, 3 is the operating end, and 4 is the water heater, which are the same as shown in Figure 1. Since it is equivalent to , detailed explanation thereof will be omitted.

また符号7は、コントローラ1とリミッタ2との間に挿
入された掛算器な示す。この掛算器7は、コントローラ
1の出力信号e。に、湯沸器4に流入する(もしくは湯
沸器4から取出されろう水の流量を示す流量信号Qを来
じる演算を行い、この結果得られたイを号C6−Q が
リミッタ2に入力される。さらに流量信号Qは、その値
に応じて上限リミット値を変更づ−るとともに、その反
転値に応じて下限リミット値を変更′fるためにリミッ
タ2に供給される。上限りミツトイ1.1L0)変更は
、あらかじめ設定した値Kt1に流量信号Qを乗じろこ
とによって、また下限リミット値の変更は、あらかじめ
設定した値Kt2に反転流量信号−Qを乗じろことによ
ってそれぞれ行われ、リミッタ2における入力信号e。
Further, reference numeral 7 indicates a multiplier inserted between the controller 1 and the limiter 2. This multiplier 7 receives the output signal e of the controller 1. Then, a calculation is performed to generate a flow rate signal Q indicating the flow rate of water flowing into the water heater 4 (or being taken out from the water heater 4), and the resultant signal A is sent to the limiter 2. Furthermore, the flow rate signal Q is supplied to the limiter 2 in order to change the upper limit value according to the value and to change the lower limit value according to the inverted value. Mitsutoi 1.1L0) Changes are made by multiplying the preset value Kt1 by the flow rate signal Q, and changes to the lower limit value are made by multiplying the preset value Kt2 by the inverted flow rate signal -Q. , input signal e at limiter 2.

−Qに対1−るリミット動作は、離開。The limit action for -Q is release.

に応じて変更されたリミット値Kt1・Qおよび−KZ
2・Q によって行われる。8ば′1)IL量封有1号
反転させるためのインバータである。
Limit values Kt1・Q and -KZ changed according to
2. Performed by Q. 8B'1) This is an inverter for inverting the IL amount.

さらに第4図は、第2図に示したフィードフォワード制
御系に対応しfここの発明の制御方式を示′fもので、
この場合には、出湯温度設定信号espと入水温度信号
ei との偏差e s p  e r  を増幅する増
幅器6の出力信号K y (e s p  e r )
に対して流電イg号Qを乗する掛算器9が設けられ、こ
の掛算器9の出力信号Q ” Kr(esp  ”r)
が、第3図の場合の流量信号Qの代りとして、上限リミ
ット値および下限リミット値を変更するために使用され
る。
Furthermore, FIG. 4 shows a control system of the present invention corresponding to the feedforward control system shown in FIG.
In this case, the output signal K y (es p e r ) of the amplifier 6 that amplifies the deviation e sp e r between the outlet hot water temperature setting signal es p and the incoming water temperature signal ei
A multiplier 9 is provided which multiplies current current i g by Q, and the output signal of this multiplier 9 is Q ”Kr(esp ”r)
is used in place of the flow rate signal Q in the case of FIG. 3 to change the upper and lower limit values.

また掛算器9の出力信号は、リミッタ2の出ノj(8号
に加算され、その相に対応する信号MVが操作器30入
力信号とされる。
Further, the output signal of the multiplier 9 is added to the output no.

ここで第5図のグラフにしたがって上限リミット値Kt
1の変更動作?説明する。いま、出湯温度設定信号e 
s pおよび入水温度信号e、が一定であるとすると、
掛算器9の出力信号Q−KF(eS、−el)=jのレ
ベルは、流量信号Qに比例する。またリミッタ2の出力
信号en、も、掛算器7の出力信号eo−Q の値が上
限リミット値と下限リミット値との間にあれば、流量信
号Qに比例する。現在の流量信号Qの値がQlで一定し
ているとき、たとえば出湯温度設定信号e 5 pが急
激に高い値に変更されたとすると、その時点では検出器
501111力16号e p vは変化しないので、掛
算器7の出力信号eo−Qは急激に上昇し、io1時に
任’r32il器9の出力@号jも急激に上昇てろので
、十眠リミット値Kz1も上昇し、この1こめリミッタ
2の出力1ぎ吋erTlの値ば、Xjrlこに変更さ几
た;【モい上限リミット値に等しくなる。し1こかって
リミッタ2の出力1ぎ号en、と引算器9の出力信号J
との相eII−t +1で表わされる操作端30入力1
′3号MVは、この流線における上限値MV、  まで
素早く上昇し、この々1果、大きな操作量による急速な
加熱が行われる1−1またこの状態で流量が絞らtてb
It遁信号QがQ2まで小さくなると、信号M Vの1
1p−+工この6舵けQ2での最大値MV2  まで低
下する。
Here, according to the graph of FIG. 5, the upper limit value Kt
1 change behavior? explain. Now, the hot water temperature setting signal e
Assuming that s p and the inlet water temperature signal e are constant,
The level of the output signal Q-KF(eS, -el)=j of the multiplier 9 is proportional to the flow rate signal Q. Further, the output signal en of the limiter 2 is also proportional to the flow rate signal Q if the value of the output signal eo-Q of the multiplier 7 is between the upper limit value and the lower limit value. For example, when the value of the current flow rate signal Q is constant at Ql, if the hot water temperature setting signal e 5 p is suddenly changed to a high value, the detector 501111 force No. 16 e p v will not change at that point. Therefore, the output signal eo-Q of the multiplier 7 rises rapidly, and the output signal j of the input unit 9 also rises rapidly at the time of io1, so the tenth sleep limit value Kz1 also rises, If the output value of erTl is changed to Xjrl, it becomes equal to the upper limit value. Therefore, the output signal 1 of the limiter 2 and the output signal J of the subtracter 9 are
The operating terminal 30 input 1 is represented by the phase eII-t +1.
The No. 3 MV quickly rises to the upper limit value MV on this streamline, and as a result, rapid heating is performed due to a large manipulated variable.
When the It release signal Q decreases to Q2, the signal M V becomes 1
1p-+engine decreases to the maximum value MV2 at 6 steering Q2.

すなわち、流量QをQlからQ2に急激に変更した場合
、信−QMVはフィードフォワード侶号jの効果と、こ
の信号Qによって変更されるリミット値によって制限を
受ける侶喀(・□の効果(上;記Q1からQ2への急変
があってもe。は)!IJ座には応答しないため急変直
後のe。は上記急変の直rjiJと同じ値にある。しか
し、eoQはQの急変に応じて変る。一般には、emは
このe。Qのフィードフォワードの効果、ないし、変更
されたリミット値に制限されることによる効果を受ける
)により望ましい変更を受ける。なお同様の動作は、下
限リミット値K12についても行われろ。
In other words, when the flow rate Q is suddenly changed from Ql to Q2, the signal QMV is limited by the effect of the feedforward number j and the limit value changed by this signal Q (the effect of Even if there is a sudden change from Q1 to Q2, e. does not respond to the IJ locus, so e. immediately after the sudden change is the same value as the above sudden change.However, eoQ does not respond to the sudden change in Q. In general, em undergoes a desired change due to the feedforward effect of e.Q, or the effect of being limited to a changed limit value. Note that the same operation should be performed for the lower limit value K12 as well.

なお、上述の説明では上限および下限リミットの双方を
変更する場合を例示したが、一方のみを変更するように
してもよい。
In addition, although the above-mentioned description illustrated the case where both an upper limit and a lower limit are changed, you may make it change only one.

以上のようにこの発明によれば、流量変化がリミッタの
入力側にフィードフォワードされるとともK、この流量
に応じてリミッタのリミット値が変更されるので、設定
温度、入水温度、入水流量などの負荷が大幅に変更され
た場合でも、所定の出湯温度に達するまでの追従速度が
速く、短時間で贅定する。このため出湯温度とその設定
温度との偏差が長時間にわたって続くことはないので、
リセットワインドアップ現象の影響も大幅に緩和される
As described above, according to the present invention, the change in flow rate is fed forward to the input side of the limiter, and the limit value of the limiter is changed according to this flow rate, so that the set temperature, inlet water temperature, inlet flow rate, etc. Even if the load changes significantly, the follow-up speed until the predetermined hot water temperature is reached is fast, and the temperature is reached in a short time. For this reason, the deviation between the hot water temperature and its set temperature will not continue for a long time.
The influence of the reset windup phenomenon is also greatly alleviated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来の温度制御方式を73e丁ブ
ロック図、第3図および第4し1はそれぞgこの発明の
温度制御方式を示すブロック図、積: 5 klは第4
図の方式の動作を説明するため0)グラフである。 1・・・コントローラ、2・・・リミッタ、3・・・操
作端、4・・・湯沸器、5・・・検出器、6・・・増幅
器、7,9・・・掛算器。
1 and 2 are block diagrams showing the conventional temperature control method, and FIGS. 3 and 4 are block diagrams showing the temperature control method of the present invention, respectively.
0) is a graph to explain the operation of the system shown in the figure. DESCRIPTION OF SYMBOLS 1... Controller, 2... Limiter, 3... Operating end, 4... Water heater, 5... Detector, 6... Amplifier, 7, 9... Multiplier.

Claims (2)

【特許請求の範囲】[Claims] (1)出湯温度信号と出湯温度設定信号との偏差を入力
信号と′1″るコントローラの出力信号に流量信号を乗
じる演算を行い、この演算結果を上限リミット値と下限
リミット値との間に制限するリミッタに導き、このリミ
ッタの出力信号に応じて操作端を制御するとともに、上
記流量信号に応じて上記上限リミット値および下限リミ
ット値の少くとも一方のリミット値を変更することを特
徴とする湯沸器の温度制御方式。
(1) Multiply the flow rate signal by the output signal of the controller, which is the input signal and the deviation between the hot water temperature signal and the hot water temperature setting signal, and the result of this calculation is applied between the upper limit value and the lower limit value. and controlling the operating end according to the output signal of the limiter, and changing at least one of the upper limit value and the lower limit value according to the flow rate signal. Water heater temperature control method.
(2)出湯温度信号と出湯温度設定信号との偏差を入力
信号とするコントローラの出力信号に流量信号を乗じる
演算を行い、この第1の演算結果を上限リミット値と下
限リミット値との間に制限するリミッタに導き、さらに
入水温度信号と上記出湯温度設定信号との偏差に対応す
る信号に上記流量信号を乗じろ演算を行い、この第2の
乗算の結果と上記第1の演算結果との相に応じて操作端
を制御するとともに、上記第2の演算結果に応じて上記
上限リミット値および下限リミット値の少(とも一方の
リミット値を変更することt%似とする湯沸器の温度制
御方式。
(2) Multiply the output signal of the controller, which uses the deviation between the hot water temperature signal and the hot water temperature setting signal as an input signal, by the flow rate signal, and apply this first calculation result between the upper limit value and the lower limit value. Further, a signal corresponding to the deviation between the inlet water temperature signal and the outlet temperature setting signal is multiplied by the flow rate signal, and the result of this second multiplication is combined with the result of the first operation. The operating end is controlled according to the phase, and the upper limit value and the lower limit value are changed according to the second calculation result to make the temperature of the water heater similar to t%. control method.
JP5562983A 1983-03-31 1983-03-31 Temperature control system of water heater Pending JPS59180230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5562983A JPS59180230A (en) 1983-03-31 1983-03-31 Temperature control system of water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5562983A JPS59180230A (en) 1983-03-31 1983-03-31 Temperature control system of water heater

Publications (1)

Publication Number Publication Date
JPS59180230A true JPS59180230A (en) 1984-10-13

Family

ID=13004071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5562983A Pending JPS59180230A (en) 1983-03-31 1983-03-31 Temperature control system of water heater

Country Status (1)

Country Link
JP (1) JPS59180230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250450A (en) * 1985-04-26 1986-11-07 Noritsu Co Ltd Tap-controlled water heater

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582252A (en) * 1978-12-14 1980-06-20 Matsushita Electric Ind Co Ltd Water heater

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582252A (en) * 1978-12-14 1980-06-20 Matsushita Electric Ind Co Ltd Water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250450A (en) * 1985-04-26 1986-11-07 Noritsu Co Ltd Tap-controlled water heater

Similar Documents

Publication Publication Date Title
EP1196833A1 (en) System and method for a variable gain proportional-integral (pi) controller
JPS59180230A (en) Temperature control system of water heater
JP2955728B2 (en) Boiler main steam temperature control method and apparatus
JPH0373889B2 (en)
JPH0410642B2 (en)
JP2849943B2 (en) Power generation control device
JPH0247763B2 (en) SEIGYOSOCHI
JPH07219601A (en) Controller
JP3073090B2 (en) Mixing ratio control method just before re-watering in instantaneous water heater
JPH08320705A (en) Controller of feedback control unit
JPS5813809B2 (en) Combustion control method using low excess air
JP3125807B2 (en) Fuel supply control device for instantaneous water heater
JP2600777B2 (en) Hot water temperature control device
JPS60232425A (en) Combustion control unit
JPS6237721B2 (en)
JP2722651B2 (en) Water heater
JPH029260B2 (en)
JP3320497B2 (en) Temperature control device
JPH06323624A (en) Hot water supply equipment
JPS61228249A (en) Temperature controller
JPH10124104A (en) Control method for semiconductor manufacturing equipment
JPH0659743A (en) Control method of water control valve
JPS61128303A (en) Proportional integrating device
JPS6222383B2 (en)
JPS61250446A (en) Control of hot-water supplier