JPS59180091A - Sludge supplying device for sludge dehydrating device - Google Patents

Sludge supplying device for sludge dehydrating device

Info

Publication number
JPS59180091A
JPS59180091A JP58051608A JP5160883A JPS59180091A JP S59180091 A JPS59180091 A JP S59180091A JP 58051608 A JP58051608 A JP 58051608A JP 5160883 A JP5160883 A JP 5160883A JP S59180091 A JPS59180091 A JP S59180091A
Authority
JP
Japan
Prior art keywords
sludge
pump
hollow part
dewatering
transferred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58051608A
Other languages
Japanese (ja)
Other versions
JPH02119B2 (en
Inventor
Tadao Takeuchi
忠雄 竹内
Chiezou Nagano
長野 千恵三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP58051608A priority Critical patent/JPS59180091A/en
Publication of JPS59180091A publication Critical patent/JPS59180091A/en
Publication of JPH02119B2 publication Critical patent/JPH02119B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • F04C2/1073Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member is stationary while the other member rotates and orbits

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Screw Conveyors (AREA)
  • Rotary Pumps (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To simplify the structure to reduce cost and improve the dehydrating efficiency of the device by a method wherein supply of accumulated sludge from an accumulating tank to respective sludge dehydrating devices is effected by a volume type screw pump. CONSTITUTION:The accumulated sludge is supplied from the accumulating tank 1 to respective dehydrating devices I , II,...n directly and respective sludge supplying tubes 4 are provided with the volume type screw pump 5. The pump 5 is formed between the hollow part of twin-threaded screw of a stator 7 and a single-threaded type rotor 8, penetrated through the hollow part and rotated eccentrically under following the inner configuration of the hollow part. The sludge is transferred by the clearance 6' of a constant volume, which is moving spirally toward the delivery port 9' by the rotation of the rotor 8. According to this method, the transfer may be effected without pulsations and the sludge may be supplied to respective dehydrating devices without collapsing flocculated blocks in the sludge even when the flocculated sludge is transferred since no impact is applied to the substance to be transferred. Medical agent, such as flocculating agent or the like, effects secondary flocculation by aging the sludge under the transfer and reduces the degree of moisture of the sludge. In this device, a sludge supplying pump, a chemical agent pouring pump or the like is not necessitated.

Description

【発明の詳細な説明】 この発明は複数台の汚泥脱水装置に汚泥を供給する汚泥
供給装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sludge supply device that supplies sludge to a plurality of sludge dewatering devices.

汚泥を汚泥脱水装置で脱水するには、ポンプなどを用い
た薬剤注入装置で汚泥に凝集剤などを添加し、凝集槽で
凝集剤の性質に応じ急速、或いは緩速に攪拌して凝集汚
泥を調整し、脱水製置に供給する必要がある。
To dewater sludge in a sludge dewatering device, a flocculant is added to the sludge using a chemical injection device using a pump, etc., and the flocculated sludge is stirred rapidly or slowly in a flocculating tank depending on the properties of the flocculant. It is necessary to adjust and feed it to the dehydration equipment.

ぞして、複数台の汚泥脱水装置を運転して脱水を行う場
合でも、各脱水装置は汚泥供給ポンプ、−2= 薬注装置、凝集槽を付属し、脱水装置ごとに凝集汚泥を
調整するので配線、配管などが複雑になシ、又、設備費
や維持費が嵩み、更に運転管理も繁雑である。勿論、薬
注装置、凝集槽を複数台の汚泥脱水装置に対して一つだ
けにすれば、その様な問題点は解消するが、脱水装置へ
の従来の汚泥の供給方法は凝集槽を脱水装置よシも高位
置に設け、その高低差で凝集槽から脱水装置に供給して
いるため、一つの凝集槽から複数台の脱水装置に汚泥を
供給する様にすると、凝集槽の近くにある脱水装置には
短かい配管で遠くにある脱水装置へは長い配管で供給す
ることが必要になフ、折角凝集槽で大きく形成した汚泥
のフロックが短かい配管の場合は急勾配のため、又、長
い配管の場合は脱水装置に到達する1でに崩壊してしま
い、各脱水装置の脱水効率を同一とすることは困難であ
る。又、凝集槽から汚泥を溢流させて供給するため各々
の脱水装置に均等に分配することが困難である。
Therefore, even when dewatering is performed by operating multiple sludge dewatering devices, each dewatering device is equipped with a sludge supply pump, -2 = chemical injection device, and flocculation tank, and the flocculated sludge is adjusted for each dewatering device. Therefore, wiring, piping, etc. are complicated, equipment costs and maintenance costs are high, and operation management is also complicated. Of course, such problems can be solved by using only one chemical feeding device and flocculating tank for multiple sludge dewatering devices, but the conventional method of supplying sludge to dewatering devices is to use a flocculating tank for dewatering. The equipment is also installed in a high position, and the height difference is used to supply sludge from the coagulation tank to the dewatering equipment, so if you supply sludge from one coagulation tank to multiple dewatering equipment, the sludge will be placed near the coagulation tank. It is necessary to supply short piping to the dewatering equipment and long piping to supply the dehydrating equipment located far away, and the large sludge flocs formed in the flocculation tank are difficult to reach due to the steep slope of the short piping. If the pipe is long, it will collapse before it reaches the dehydrator, and it is difficult to make the dewatering efficiency of each dehydrator the same. Furthermore, since the sludge is supplied by overflowing from the coagulation tank, it is difficult to distribute it evenly to each dewatering device.

つマシ、従来の汚泥の供給方法では一つの凝集−3一 槽から複数台の脱水装置に汚泥を分配、供給することは
困雛であると共に、同じ汚泥を脱水しても凝集槽との距
離の相違によって各脱水装置の脱水効率が一様にならな
いため、止むなく汚泥供給ポンプ、薬注装置、凝集槽を
各脱水装置に付属させ、凝集槽は脱水装置になるべく近
接させ、上述の様な問題点はあるにしてもむしろ各脱水
装置の脱水効率の均一化を主眼にしていたのである。
Unfortunately, with conventional sludge supply methods, it is difficult to distribute and supply sludge from one flocculation tank to multiple dewatering devices, and even if the same sludge is dehydrated, the distance between the flocculation tank and Because the dewatering efficiency of each dewatering device is not uniform due to differences in Although there were some problems, the main focus was on equalizing the dehydration efficiency of each dehydration device.

本発明者等は従来の落差による自然流下方式に代ってフ
ロックを崩壊しないで汚泥を強制移送する方式を研究し
た結果、容積型ネジホンプ(通称スネークポンプ)を使
用すると、管路が長く、その途中に多数の屈曲などがあ
っても配管の出口から排出さ扛る汚泥のフロックは殆ど
崩壊して居らず、その上、都合がよいことに汚泥の含水
率は同長の配管ケ使用して自然流下方式で移送した場合
よシも低くなることを見出した。
The present inventors researched a method for forcibly transferring sludge without collapsing the flocs instead of the conventional gravity flow method using a head, and found that when a positive displacement screw pump (commonly known as a snake pump) is used, the pipe line is long and the Even if there are many bends along the way, the flocs of sludge discharged from the outlet of the piping do not disintegrate, and conveniently, the water content of the sludge is maintained by using pipes of the same length. It was found that when the material was transported using the gravity flow method, the cost was also lower.

そこで本発明は上記知見に基き、薬注した凝集汚泥を一
つの凝集槽から複数台の汚泥脱水装置に供給する様にし
、凝集槽から各汚泥脱水装置への凝集汚泥の供給を容積
型ネジポンプで行い、従来の各汚泥脱水装置に汚泥供給
ポンプ、薬注装置、凝集槽を付属させていた欠点を解消
すると同時に、各汚泥脱水装置の脱水効率をも改善した
のであって、以下、図示の一実施例を参照して説明する
Based on the above knowledge, the present invention is designed to supply chemically injected flocculated sludge from one flocculation tank to multiple sludge dewatering devices, and to supply flocculated sludge from the flocculation tank to each sludge dewatering device using a positive displacement screw pump. In addition to solving the drawbacks of conventional sludge dewatering equipment that included a sludge feed pump, chemical dosing device, and flocculation tank, we also improved the dewatering efficiency of each sludge dewatering equipment. This will be explained with reference to examples.

lは6齋集槽、11 ■・・・nは凝集槽/から凝集汚
泥が供給さ扛る複数の汚泥脱水装置を示す。
1 indicates 6 collection tanks, and 11 .

凝集槽/は全汚泥脱水装置に汚泥を供給することができ
る様に脱水装置の台数に応じて容量を従来のものより大
きく定めである。尚、脱水装置it idペルドブ1ノ
ス型、フィルタプレス型、スクリュープレス型等任童で
あるが、1つの凝集槽から汚泥の供給ケ受ける脱水装置
の全部は同一型式に揃えて置くことが好ましい。
The capacity of the flocculation tank is set to be larger than the conventional one depending on the number of dewatering devices so that sludge can be supplied to all the sludge dewatering devices. Although the dewatering apparatuses may be of different types, such as per-dove type, filter press type, or screw press type, it is preferable that all dewatering apparatuses that receive sludge supplied from one agglomeration tank be of the same type.

凝集槽/と各脱水装置の間は図示の如く凝集槽の排出管
、2をヘッダーに連結し、ヘッダー3に各脱水装置への
給泥管l・・・を分岐状に接続す5− るか、或いは凝集槽lに個々に給泥管を連結して凝集槽
から直接に各脱水装置に凝集汚泥を供給する様にし、い
ずれの場合も各給泥管lに容積型ネジポンプS?設ける
As shown in the figure, between the coagulation tank/and each dewatering device, connect the discharge pipe 2 of the coagulation tank to the header, and connect the slurry supply pipes 1 to each dewatering device to the header 3 in a branched manner. Alternatively, individual sludge supply pipes are connected to the coagulation tank l so that flocculated sludge is directly supplied from the coagulation tank to each dewatering device, and in either case, a positive displacement screw pump S? is connected to each slurry supply pipe l. establish.

第2.3図は容積型ネジポンプの一例全示すもので、合
成ゴム製で長円形ないし小判形断面の二条ネジ形中空部
6を有するステータ7と、ステータの上記中空部甲に通
って偏心回転する金属製の円形断面の一条ネジ形ロータ
gf有し、ステータの中空部内にはロータとの間に一定
容積の空隙6′が形成さnl ロータの回転によりこの
空隙6′が中空部の谷に沿って移動し圧送作用を行い、
ステータの前端に接続した先端筒ワの吐出口9′から吐
出する。
Figure 2.3 shows an example of a positive displacement screw pump, which includes a stator 7 made of synthetic rubber and having a double-threaded hollow part 6 with an oval or oval cross section, and a stator 7 that passes through the hollow part of the stator and rotates eccentrically. The stator has a single threaded rotor gf with a circular cross section, and a gap 6' with a constant volume is formed in the hollow part of the stator between it and the rotor. It moves along the line and performs a pumping action,
It is discharged from the discharge port 9' of the tip pipe connected to the front end of the stator.

ステータの後端には後部筒10が接続し、汚泥は後部筒
にある供給口io’に供給する。又、ロータgを回転す
るためにモータで駆動される駆動軸//は後部筒の後の
軸受相中にある軸受で支持さnて後部筒内に突入し、ユ
ニバーサルジヨイント//a、//bf介しロータの後
端と連結する。
A rear cylinder 10 is connected to the rear end of the stator, and sludge is supplied to a supply port io' in the rear cylinder. In addition, the drive shaft // driven by the motor to rotate the rotor g is supported by a bearing in the rear bearing phase of the rear cylinder and protrudes into the rear cylinder, and the universal joint //a, / Connected to the rear end of the rotor via /bf.

6− 尚、ステータ7は金属製の外管7′の内周に加硫成形し
、外管7′と一体化しである。
6- Note that the stator 7 is vulcanized and molded on the inner circumference of a metal outer tube 7', and is integrated with the outer tube 7'.

この様に容積型ネジポンプはステータの二条ネジ形の中
空部と、そこに通り、中空部の内形に従って偏心回転す
る一条ネジ形のロータとの間に形成され、ロータの回転
で吐出ロタ′に向かって螺旋状に移動する一定容積の空
隙6′で移送を行うため移送に脈動が無いと共に、衝撃
を移送物に加えない。従って、凝集汚泥を移送しても汚
泥中の凝集したフロックを殆ど崩壊することなく各脱水
装置に供給できると共に、薬注装置で予じめ添加した凝
集剤などの薬剤は移送中に熟成して二次凝集を行い汚泥
の含水率を低下させるのである。
In this way, a positive displacement screw pump is formed between a double threaded hollow part of the stator and a single threaded rotor that passes through the hollow part and rotates eccentrically according to the inner shape of the hollow part. Since the transfer is carried out in a gap 6' having a constant volume that moves in a spiral direction, there is no pulsation in the transfer and no impact is applied to the transferred object. Therefore, even if the flocculated sludge is transferred, the flocs in the sludge can be supplied to each dewatering device with almost no disintegration, and the flocculant and other chemicals added in advance by the chemical feeding device will mature during the transfer. Secondary flocculation is performed to lower the water content of sludge.

そして、ネジポンプの吐出口から各脱水装置の給泥部に
開口した給泥管の出口端普ての間にエア溜シがあると、
そこでフロックは崩壊するので、ポンプの吐出口から給
泥管の出口端までの間を水平にするか、上シ勾配にして
エア溜シが生じない様にすることが好ましい。
If there is an air reservoir between the discharge port of the screw pump and the outlet end of the mud supply pipe that opens to the mud supply section of each dewatering device,
Since the flocs will collapse there, it is preferable to make the space from the discharge port of the pump to the outlet end of the slurry supply pipe horizontal or slope upward to prevent air pockets from forming.

−7− こうして本発明によnは汚泥脱水装置の台数に応じて容
量の大きな凝集槽を使用し、一台の汚泥供給ポンプ/、
2で凝集槽lに汚泥を供給すると共tて、添加する凝集
剤の種類数に応じた数の薬剤注入ボ/グ/3、l!で薬
注を行い、凝集汚泥を詞整して70ツ〉を崩壊すること
なく各脱水装置に凝集汚泥を供給することができる。
-7- Thus, according to the present invention, large-capacity coagulation tanks are used according to the number of sludge dewatering devices, and one sludge supply pump/,
At step 2, sludge is supplied to the coagulation tank L, and at the same time, the number of chemical injection ports corresponding to the number of types of flocculants to be added is supplied/g/3, L! The flocculated sludge can be fed to each dewatering device without disintegrating the flocculated sludge.

従って、汚泥脱水装置が例えば回合とすると、容積型ネ
ジポンプは間合必要になるが1、汚泥供給ポンプ、凝集
槽は従来の4つに対して1つで済み、凝集槽が例えば二
種型で二種類の凝集剤を2台の薬注ポンプで添加してい
た場合は従来g台の薬注ポンプと、5台の攪拌器を必要
としたのが薬注ポンプ、攪拌器とも2台で済む。
Therefore, if the sludge dewatering equipment is a combination type, for example, a positive displacement screw pump will be required, but only one sludge supply pump and flocculation tank will be needed compared to the conventional four, and the flocculation tank can be of two types, for example. When two types of flocculants were added using two chemical dosing pumps, the conventional method required g-level chemical dosing pumps and five agitators, but now only two dosing pumps and agitators are needed. .

そして、凝集汚泥を配管中全自然流下で移送してフロッ
クの崩壊が起きないのは精々10mが限度であるが、同
口径(100A )の配管を使用し、途中にエルボを/
り個を用いて屈曲部を形成しても偏心容積型ネジポンプ
で移送した場合は移送距離が21Imでもフロックの崩
壊は殆ど起きていなかった。
Although the maximum length of flocculated sludge that can be transported under natural flow without floc collapse is 10 m at most, pipes of the same diameter (100A) are used, and elbows are installed in the middle.
Even when the bent portion was formed using a number of flocs, when the flocs were transported using an eccentric displacement screw pump, almost no collapse of the flocs occurred even when the transport distance was 21 Im.

又、脱水ケーキの含水率は凝集汚泥を自然流下で移送し
た場合、11%であったのに対して、偏心容積型ネジポ
ンプで移送した場合にはgo%と低い値になった。
In addition, the water content of the dehydrated cake was 11% when the flocculated sludge was transferred by gravity, but it was as low as go% when it was transferred using an eccentric displacement screw pump.

つまシ、凝集槽から各脱水装置に至る給泥管の一つ宛に
容積型ネジポンプを設ける必要はあるが、凝集槽は一つ
で済み、汚泥供給ポンプ、薬注装置のポンプ、攪拌器の
所要台数の著しい減少によって設備費、維持費を大幅に
節減できると共に、簡素な設備となシ、運転管理も著し
く容易になると言う極めて優nた特長を有する。
Although it is necessary to install a positive displacement screw pump for one of the sludge supply pipes leading from the sludge and flocculation tank to each dewatering device, only one flocculation tank is required, and the sludge supply pump, chemical feeder pump, and agitator It has the extremely advantageous feature that equipment costs and maintenance costs can be significantly reduced due to a significant reduction in the number of equipment required, and that the equipment is simple and operation management is also extremely easy.

【図面の簡単な説明】[Brief explanation of the drawing]

聞・1図は本発明の一実施例のフローシート、第2図は
偏心容積型ネジポンプの一例?示す縦断面図、第3図は
第2図のlll−1線の断面図で、図中、I、  If
・・・nは汚泥脱水装置、lは凝集槽、tは給泥管、夕
は容積型ネジポンプを示す。 −に
Figure 1 is a flow sheet of an embodiment of the present invention, and Figure 2 is an example of an eccentric displacement screw pump. The vertical cross-sectional view shown in FIG. 3 is a cross-sectional view taken along the lll-1 line in FIG.
...n indicates a sludge dewatering device, l indicates a coagulation tank, t indicates a sludge feed pipe, and y indicates a positive displacement screw pump. −to

Claims (1)

【特許請求の範囲】[Claims] 複数台の汚泥脱水装置に一つの凝集槽から凝集汚泥を供
給する汚泥供給装置であって、凝集槽からの凝集汚泥を
容積型ネジポンプで各汚泥脱水装置に供給することを特
徴とする汚泥脱水装置への汚泥供給装置。
A sludge supply device that supplies flocculated sludge from one coagulation tank to a plurality of sludge dewatering devices, the sludge dewatering device being characterized in that the flocculated sludge from the coagulation tank is supplied to each sludge dewatering device using a positive displacement screw pump. sludge supply equipment to.
JP58051608A 1983-03-29 1983-03-29 Sludge supplying device for sludge dehydrating device Granted JPS59180091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58051608A JPS59180091A (en) 1983-03-29 1983-03-29 Sludge supplying device for sludge dehydrating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58051608A JPS59180091A (en) 1983-03-29 1983-03-29 Sludge supplying device for sludge dehydrating device

Publications (2)

Publication Number Publication Date
JPS59180091A true JPS59180091A (en) 1984-10-12
JPH02119B2 JPH02119B2 (en) 1990-01-05

Family

ID=12891613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58051608A Granted JPS59180091A (en) 1983-03-29 1983-03-29 Sludge supplying device for sludge dehydrating device

Country Status (1)

Country Link
JP (1) JPS59180091A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010284623A (en) * 2009-06-15 2010-12-24 Justec Co Ltd Flock supply equalization apparatus and solid-liquid separation system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043735A (en) * 1973-08-21 1975-04-19
JPS52139261A (en) * 1976-05-18 1977-11-21 Tomoo Wada Apparatus for separating domestic animal excrement into solid and liquor
JPS53123580U (en) * 1977-03-07 1978-10-02
JPS53123558A (en) * 1977-04-04 1978-10-28 Kurita Water Ind Ltd Sludge dehydration method
JPS5671975U (en) * 1979-11-07 1981-06-13
JPS5717103U (en) * 1980-07-02 1982-01-28
JPS57135096A (en) * 1981-02-12 1982-08-20 Kurita Water Ind Ltd Sludge dewatering method
JPH02119A (en) * 1988-11-10 1990-01-05 Sumitomo Chem Co Ltd Lithium aluminum hydride based asymmetric reducing agent

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043735A (en) * 1973-08-21 1975-04-19
JPS52139261A (en) * 1976-05-18 1977-11-21 Tomoo Wada Apparatus for separating domestic animal excrement into solid and liquor
JPS53123580U (en) * 1977-03-07 1978-10-02
JPS53123558A (en) * 1977-04-04 1978-10-28 Kurita Water Ind Ltd Sludge dehydration method
JPS5671975U (en) * 1979-11-07 1981-06-13
JPS5717103U (en) * 1980-07-02 1982-01-28
JPS57135096A (en) * 1981-02-12 1982-08-20 Kurita Water Ind Ltd Sludge dewatering method
JPH02119A (en) * 1988-11-10 1990-01-05 Sumitomo Chem Co Ltd Lithium aluminum hydride based asymmetric reducing agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010284623A (en) * 2009-06-15 2010-12-24 Justec Co Ltd Flock supply equalization apparatus and solid-liquid separation system

Also Published As

Publication number Publication date
JPH02119B2 (en) 1990-01-05

Similar Documents

Publication Publication Date Title
EP2409956B1 (en) Concentrator-integrated screw press
CN100503491C (en) Device for thickening or dewatering sludge, watery, sediments or the like, espeically surplus sludge in sewage treantment plants
JP4953098B2 (en) Screw press with agglomeration device
JP2013158747A (en) Sludge dehydration system
CN108862996A (en) A kind of Centrifugal sludge dehydration machine having squeeze function
JP2010057997A (en) Sludge dewatering apparatus and method
JPS59180091A (en) Sludge supplying device for sludge dehydrating device
CN218811313U (en) Equipment for separating mud and water
JPS6048199A (en) Sludge dehydrator
CN216141443U (en) Spiral shell sludge dewaterer is folded to efficient centrifugal compression
CN102583946B (en) Efficient laminated sludge dehydrator
CN214717527U (en) Horizontal centrifugal dehydration device
CN210683570U (en) High-efficient flocculation device and sludge dewatering processing system
CN210736454U (en) Device for treating high-salt silica sol-containing wastewater
CN218443029U (en) High-efficient silt dewatering equipment
CN201109207Y (en) Constitution of feeding path of rotary extrusion filtering machine
CN113666606A (en) Rapid reaction device for adding efficient flocculating agent into pipeline
CN218910134U (en) High dry type belt sludge dewaterer compounding system
JPS5823159B2 (en) Sludge dewatering method
CN215327651U (en) Replaceable sludge concentration extrusion die
CN218642618U (en) Material spreading device for ultrahigh-pressure dewatering machine
CN116947282B (en) High-pressure belt type continuous sludge deep dehydration integrated system and process method thereof
CN207918658U (en) Sludge dewatering medicine mixing device
CN215559434U (en) Domestic sewage treatment device
CN220812184U (en) Sludge dewatering system