JPS59179158A - Device for producing catalyst - Google Patents

Device for producing catalyst

Info

Publication number
JPS59179158A
JPS59179158A JP5310783A JP5310783A JPS59179158A JP S59179158 A JPS59179158 A JP S59179158A JP 5310783 A JP5310783 A JP 5310783A JP 5310783 A JP5310783 A JP 5310783A JP S59179158 A JPS59179158 A JP S59179158A
Authority
JP
Japan
Prior art keywords
catalyst
belt
carrier
carriers
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5310783A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Inoue
井上 博愛
Hisashi Kakigi
柿木 寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5310783A priority Critical patent/JPS59179158A/en
Publication of JPS59179158A publication Critical patent/JPS59179158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To produce easily a catalyst for test by packing successively catalysts, which are obtd. by absorbing successively the liquid contg. >=1 kind of effective components in granular carriers supplied at a constant rate on an endless belt and drying the carriers, into a reaction tube. CONSTITUTION:The carriers which are supplied from a constant volume feeder 21 through a conduit 22 fall into the U-groove of a U-shaped belt 23 having a shallow section and absorb the liquid contg. effective components supplied near the falling position. If two kinds of the effective components are used in this case, the one kind is stored and is kept stirred in a reservoir 30 and the other is stored in a reservoir 32 and is successively pumped 29 into the reservoir 30. The compsn. of the effective components in the reservoir 30 changes accordingly with time and is absorbed on the carriers on the belt. The carriers are thereafter dried in a drying chamber 26. The carriers after the drying are dropped and packed as a catalyst via a discharging chute 27 into a reaction tube 11 installed with a net near the bottom. The belt 23 is subjected to washing.

Description

【発明の詳細な説明】 この発明は、粒状触媒(以下単に触媒という)の製造装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for producing a granular catalyst (hereinafter simply referred to as a catalyst).

現今化学工業等において、非常に多種類の触媒が、種々
の化学反応の為に使用されているが、これらの触媒は、
全て多くの研究開発努力の結果として、実用に至ったも
のである。周知のごとく触媒は、多数の種類の金属、無
機化合物、有機化合物等の中から最適な有効成分(多く
の場合に複数の有効成分が使用される)が選択され、更
にこれら有効成分を担持せしめるための担体が、多くの
物質の中から選択され、更に両者の組み合せのものにつ
ぎ、最適な製造条件が検討された後に実用に至るもので
あって、その研究開発には、非常な労力を要するもので
ある。
Currently, in the chemical industry, a wide variety of catalysts are used for various chemical reactions, but these catalysts are
All of these have been put into practical use as a result of extensive research and development efforts. As is well known, catalysts are made by selecting the most suitable active ingredient (in many cases, multiple active ingredients are used) from among many types of metals, inorganic compounds, organic compounds, etc., and then supporting these active ingredients. The carrier for this purpose is selected from among many materials, and the optimal manufacturing conditions for the combination of both materials are studied before it is put into practical use. It is necessary.

この発明は、上記の如ぎ、触媒の研究開発にお【Jる労
力の節減を目的とし、その要旨は、反応管内部の長さ方
向に、組成の異なる触媒を逐次的に充填し、組成の異な
る複数の触媒の充填された反応管に、原料流体を流通せ
しめつつ、且つ該反応管から流出覆る生成流体の組成を
分析しつつ、該反応管触媒充填部の長さ方向の一部を外
部から加熱して、加熱されている反応管の一部分のみの
内部にある触媒を動作状態となし、該反応管の被加熱部
分を移動せしめて組成の異なる触媒を逐次動作状態どじ
、反応管出口流体の継続的分析結果から、組成が既知で
ある触媒層各部分の性能を一挙に知る方法を実施するに
際し、この反応管に充填する為の組成の異なる触媒を、
省力的に製造する為の装置の提供にある。
As mentioned above, the purpose of this invention is to reduce the labor involved in the research and development of catalysts. While flowing the raw material fluid through a reaction tube filled with a plurality of catalysts with different values, and while analyzing the composition of the product fluid flowing out and covering the reaction tube, a part of the lengthwise portion of the catalyst-filled portion of the reaction tube is analyzed. Heat is applied from the outside to bring the catalyst inside only a portion of the heated reaction tube into an operating state, and by moving the heated portion of the reaction tube, catalysts of different compositions are successively brought into the operating state and at the outlet of the reaction tube. When implementing a method of knowing the performance of each part of the catalyst layer whose composition is known from the continuous analysis results of the fluid, it is necessary to use catalysts with different compositions to be filled into the reaction tube.
The purpose is to provide equipment for labor-saving manufacturing.

まず第1図によって、触媒試験方法の原理を説明する。First, the principle of the catalyst testing method will be explained with reference to FIG.

第1図において、11は、組成の異なる触媒が逐次的に
充填された反応管である。この反応管には、原料流体人
口41から生成流体出口42へと、原料流体が、流通せ
しめられている。一方この反応管の触媒充填部の長さ方
向の一部は、加熱器12によって所望の湿度に加熱され
ている。
In FIG. 1, reference numeral 11 denotes a reaction tube filled with catalysts of different compositions sequentially. A raw material fluid is allowed to flow through this reaction tube from a raw material fluid population 41 to a product fluid outlet 42 . On the other hand, a portion of the catalyst-filled portion of the reaction tube in the length direction is heated to a desired humidity by the heater 12.

加熱器12は、リッ1−44に固定されているとどもに
、このナラ1〜44が、ネジ43に嵌合している結果、
ネジ43をモーター10で回転させることにより、加熱
器が反応管の長さ方向に所望の速度で移動出来るように
なっている。従って、反応管中の触媒の一部、即ち加熱
されている部分にある特定組成の触媒のみが、動作状態
にあって、原料流体に反応を生起せしめることとなる。
The heater 12 is fixed to the ribs 1-44, and as a result of the nuts 1-44 fitting into the screws 43,
By rotating the screw 43 with the motor 10, the heater can be moved in the length direction of the reaction tube at a desired speed. Therefore, only a portion of the catalyst in the reaction tube, ie, a catalyst of a specific composition located in the heated portion, is in operation and causes a reaction in the feed fluid.

反応の結果は、生成流体出口42から流出する流体を、
ガスクロマミルグラフあるいは液体クロマトグラフ等周
知の分析手段によって知ることが出来る。この原理の方
法により、反応管の長さ方向の何処に、どの組成の触媒
が充填されていlCのかを、あらかじめ知っておけば、
生成流体の分析結果の時間的変化と加熱器の移動のプロ
グラムから、反応管各部に充填されていた複数の触媒の
性能を一挙に知ることができる。
The result of the reaction is that the fluid exiting the product fluid outlet 42 is
It can be determined by well-known analytical means such as gas chroma mill graph or liquid chromatograph. By using the method based on this principle, if you know in advance where in the length direction of the reaction tube and what composition of catalyst is packed and 1C,
The performance of multiple catalysts filled in each part of the reaction tube can be known at once from the temporal changes in the analysis results of the produced fluid and the heater movement program.

この様な原理に基づく、触媒の試験方法にあっては、反
応%“のどの部分に、どの組成の触媒が充填されていた
力Vを、あらかじめ知ってあく必要がある。従来の触媒
性能試験にあっては、手作業によって所望組成の触媒を
所望狽製造し、一種類づつ反応管に充填して、触媒の性
能試験を行なうのが通常であった。この様な触媒の製造
法は、上記した組成の異なる複数の触媒の性能を、−挙
に試験する方法にあっても使用し得る方法であるが、多
量の労力を必要とする為好ましくない。
In a catalyst testing method based on such a principle, it is necessary to know in advance the force V at which part of the reaction % and which composition of catalyst is packed. In conventional methods, the catalysts with the desired composition were usually manufactured in the desired size by hand, and each type was filled into a reaction tube to test the performance of the catalyst. Although this method can be used to simultaneously test the performance of a plurality of catalysts having different compositions as described above, it is not preferred because it requires a large amount of labor.

この発明は、触媒の研究開発における、触媒製造の為の
労力の節減を目的とした装置の提供である。即15、こ
の発明による触ts製造装置は、有効成分が粒状担体(
以下単に担体という)に担持せしめられた粒状触媒の製
造装置であって、(イ) 担体を、(ロ)1r1記載の
エンドレスベル1〜上に定量供給する為の供給装置、(
ロ) 供給された担体を載架しつつ次記(ハ)、(ニ)
および(ホ)の各装置あるいは工程に逐次移送し、次に
(へ)J3.及び(1〜〉項記載の装置を経て、最終的
に(イ)項による担体の供給位置にまで、繰り返し周回
するエンドレスベル1〜および該ベルトの駆動装置、 くハ) 有効成分含有液の少なくとも一種を、それぞれ
別個に供給量制御しつつ、ベルト上の担体供給位置の下
流側に供給する為の装置、(ニ)  (イ)項および(
ハ)項により該液を含有するに至った担体の乾燥装置、 (ホ) 乾燥によって出来た触媒を、ベルト上から排出
する工程、 〈へ) 触媒が排出された後のベルトを、洗滌する為の
洗滌装置、 (1〜) 工程(へ)において洗滌されたベル1〜の乾
燥装置、 を具備したことを特徴とする触媒の製造装置である。こ
の装置を使用することにより、組成の異なる触媒を、所
望のプログラムに従って、連続的に製造することが出来
、更に製造された触媒を、逐次前記反応管に充填して、
前記の如き触媒の性能試験を実施すれば、触媒の研究開
発にJ3りる労カを大幅に節減!jることが出来る。
The present invention provides an apparatus aimed at reducing labor for catalyst production in catalyst research and development. In other words, 15, the tactile ts manufacturing device according to the present invention is characterized in that the active ingredient is contained in a granular carrier (
An apparatus for producing a granular catalyst supported on a granular catalyst (hereinafter simply referred to as a carrier), comprising: (a) a supplying apparatus for supplying a fixed amount of the carrier onto the endless bells 1 to 1 described in 1r1;
b) While loading the supplied carrier, carry out the following (c) and (d).
and (e) sequentially transferred to each device or process, and then (to) J3. and endless bells 1 to 1 which repeatedly circulate through the devices described in items 1 to 1 to finally reach the carrier supply position according to item (a), and a driving device for the belts; A device for supplying one type of carrier to the downstream side of the carrier supply position on the belt while controlling the supply amount separately, items (d), (b) and (
(c) A drying device for the carrier that has come to contain the liquid according to item (e) A step for discharging the catalyst formed by drying from above the belt; This is a catalyst manufacturing apparatus characterized in that it is equipped with: (1 to 1) a drying device for bells 1 to 1 washed in step (f); By using this apparatus, catalysts with different compositions can be continuously produced according to a desired program, and the produced catalysts are sequentially filled into the reaction tube,
If you conduct the catalyst performance test as described above, you can significantly save J3's labor in catalyst research and development! I can do it.

第2図を使用しく、この発明による装置を詳しく説明す
る。第2図は、選択された担体に、二種の有効成分を担
持ざける場合の例であるが、この発明のqb囲は、この
例によって制限されるものではない。第2図において、
21は、担体の定旭供給器、22は、供給された担体の
導管である。この導管を通過した担体は、断面が浅いU
字形のベルト23の(1字溝内に落下し、この落下位置
近傍に供給される有効成分含有液を吸収する。この場合
の有効成分は二二種あって、その内の一種は溜30に貯
蔵され、マグネヂツクスタラ−31によって撹拌されて
いる。他の有効成分含有液は、a32に貯蔵されている
。溜32内の有効成分含有液は、ポンプ29tこより逐
次溜30に供給される。
The apparatus according to the invention will be explained in detail with reference to FIG. Although FIG. 2 shows an example in which two types of active ingredients are supported on selected carriers, the qb range of the present invention is not limited to this example. In Figure 2,
Reference numeral 21 denotes a carrier feeder, and 22 a conduit for the supplied carrier. The carrier passing through this conduit has a shallow cross section of U
It falls into the (1) groove of the character-shaped belt 23 and absorbs the active ingredient-containing liquid supplied near this falling position. It is stored and stirred by a magnetic stirrer 31.Other active ingredient-containing liquids are stored in a32.The active ingredient-containing liquid in the reservoir 32 is sequentially supplied to the reservoir 30 from the pump 29t. .

従って、溜30内の有効成分の組成は、時間的に変化し
、この組成の変化する溜30内の液がポンプ2つによつ
(、前記ベル1〜の担体落下部下流側近傍のU字溝内に
供給され担体に吸収される。これら両液は、両液の供給
量を独立に制御可能なポンプにより、別々にベルト上に
供給されてもよい。
Therefore, the composition of the active ingredient in the reservoir 30 changes over time, and the liquid in the reservoir 30 whose composition changes is supplied to the two pumps (U near the downstream side of the carrier falling part of the bell 1). The liquids are supplied into the grooves and absorbed by the carrier.The two liquids may be separately fed onto the belt by pumps whose supply amounts can be controlled independently.

かく有効成分を吸収した担体は、ベルトの移動に伴なっ
て、加熱器を内蔵ぜる乾燥室26因に入り乾燥される。
As the belt moves, the carrier that has absorbed the active ingredient enters a drying chamber 26 equipped with a heater and is dried.

乾燥室を出た乾燥担体は、触媒として排出シコー1〜2
7を経て、底部付近に網を設置した反応管11内に落下
充填される。一方ベル1〜は、次にベルト洗滌用水槽2
5において洗滌され、更にベルト乾燥室24にd5いて
乾燥された後、再び、担体の供給位置に戻る。担体の供
給は、定量供給である故、ポンプ29による2種の有効
成分含有液の供給量を、81画された時間表に従って、
別々に調整すれば、2梗の有効成分それぞれの含有量の
異なる触媒の所望量づつを、所望の順序で反応管に充填
することが出来る。有効成分の種類が、3種あるいはそ
れ以上使用される場合にあっても略同様である。反応管
に充填された触媒は、反応管と共に、第1図に記載した
如く、触媒の性能試験装置に組み込まれ、前記の性能試
験に供される。触媒の性能試験を実施するに先立ち、必
要に応じて、反応管内の触媒が、所望の温度および所望
組成のガスの存在上に熱処理おJ−び/または還元町の
予備的処理に(−1されることは、従来からの方法と同
様である。
The dry carrier that has left the drying chamber is discharged as a catalyst and is discharged as a catalyst.
7, it is dropped and filled into a reaction tube 11 with a mesh installed near the bottom. On the other hand, bells 1~ are then placed in the belt washing water tank 2.
After being washed in step 5 and further dried in the belt drying chamber 24 d5, it returns to the carrier supplying position again. Since the supply of the carrier is a fixed quantity supply, the supply amount of the two types of active ingredient-containing liquids by the pump 29 is determined according to the time table marked 81.
If they are adjusted separately, desired amounts of catalysts having different contents for each of the two active ingredients can be filled into the reaction tube in a desired order. The same applies even if three or more types of active ingredients are used. The catalyst filled in the reaction tube is incorporated together with the reaction tube into a catalyst performance testing apparatus as shown in FIG. 1, and subjected to the performance test described above. Prior to carrying out the catalyst performance test, the catalyst in the reaction tube may be subjected to a heat treatment and/or a preliminary treatment (-1) at a desired temperature and in the presence of a gas of a desired composition. What is done is the same as in the conventional method.

この発明に使用する原わ1担体としては、球形あるいは
不規則な形状の粒状物の乾燥したものが良い。例えば、
アルミナボール は軽石の如さ−ものである、、また有効成分としては、
触媒どじで作用する可能性のある全ての化合物、金属、
元素等を、水あるいは有機溶媒を使用した溶液あるいは
懸濁液として使用することが出来る。
The raw material 1 carrier used in this invention is preferably dried spherical or irregularly shaped granules. for example,
Alumina balls are similar to pumice stones, and their active ingredients include:
All compounds, metals,
The elements etc. can be used as a solution or suspension using water or an organic solvent.

多く使用される例とし一Cは、金属の硝酸塩水溶液があ
る。この発明装置にa3りる触媒の乾燥条件は、イ1効
成分の性質によつ一C決定されるが、余り高い温度【ま
好ましくなく、100〜250℃の範囲内から適当な温
磨を選択するのが良い。乾燥に必要な時間は、通常1時
間以内で充分である。必要量の触媒が充填された後の反
応管の触媒層上部には、触媒の反応管外への流出を防止
する為の網を充填しで、第1図に示された如く、触媒試
験装置に組み込み、前記の如く、触媒の性能試験をする
ことが出来る。
A commonly used example of 1C is a metal nitrate aqueous solution. The drying conditions for the catalyst in this inventive device are determined by the properties of the active ingredients; It's good to choose. The time required for drying is usually one hour or less. After the required amount of catalyst has been filled, a net is placed above the catalyst layer of the reaction tube to prevent the catalyst from flowing out of the reaction tube, and the catalyst test apparatus is installed as shown in Figure 1. As mentioned above, the performance of the catalyst can be tested.

この発明装置において、担体に2種以上の有効成分含有
液を吸収せしめ、担体内におけるこれら有効成分含有液
の化学反応の結果として副生じた、溶解性物質を除去す
る為の洗滌装置を付加することが出来る。この洗滌装置
を付加すべき位置は、多くの場合、有効成分含有液の供
給位置と乾燥室入口端との中間がよい。又この発明にお
けるベルトとしては、U字溝内に、(1字溝内にある粒
状担体がベルトの長さ方向に転動するのを防止する為の
突起を有するものを使用すると都合がよい。
In the device of this invention, a carrier is made to absorb two or more types of active ingredient-containing liquids, and a washing device is added to remove soluble substances that are produced as a by-product of the chemical reaction of these active ingredient-containing liquids within the carrier. I can do it. In many cases, the location where this washing device should be added is midway between the supply location of the active ingredient-containing liquid and the entrance end of the drying chamber. It is also convenient to use a belt in the present invention that has projections in the U-shaped groove (for preventing the particulate carriers in the 1-shaped groove from rolling in the longitudinal direction of the belt.

この発明の利点は、前記の通り、触媒の研究開発におり
る労力を節減することにあるが、この発明による装置の
使用により、従来方法の半分以下の工数で、試験用触媒
の製造を行なうことが出来る。
As mentioned above, the advantage of this invention is that it reduces the labor involved in research and development of catalysts, and by using the apparatus according to this invention, test catalysts can be manufactured in less than half the man-hours of conventional methods. I can do it.

実施例 第2図に示した装置により、担体としての球状アルミナ
に、有効成分として鉄およびニッケルを連続的に異なる
比率で担持せしめた触媒を製造して反応管に充填し、こ
の触媒が充填された反応管を第1図の如くに組み付けて
、−酸化炭素と水素を原料とした炭化水素の合成反応実
験を実施した。
EXAMPLE Using the apparatus shown in Figure 2, a catalyst in which iron and nickel as active ingredients were continuously supported in different ratios on spherical alumina as a carrier was manufactured and filled into a reaction tube. A reaction tube was assembled as shown in Fig. 1, and a hydrocarbon synthesis reaction experiment using carbon oxide and hydrogen as raw materials was carried out.

鉄およびニッケルは、それぞれ試薬特級の市販硝酸第2
鉄および硝酸ニッケルを、イオン交換法による純水に溶
解して、1モル/jの有効成分含有液2秤を25 yi
Jづつそれぞれ作成し、硝酸ニッケル溶液を溜30に、
硝酸第2鉄溶液を溜32にそれぞれ投入した。担体とし
ては、直径3mTnの乾燥済アルミナボールを使用した
。担体供給装置と−して使用した電磁フィーダーにより
、アルミナポールを55個/分の速度で導管22経由ベ
ルト上に供給した。ベル1〜は、ゴl\製の深さ5IT
IITlのU字形断面を有するものであって、このベル
トを17CTIl/分の速度で周回させた。ポンプ29
により溜32内の硝酸第2鉄溶液を溜30に移送しつつ
、溜30内の液をポンプ2つによりベルト上に定量供給
した。従って、ベルト上に供給される液は、初めのうち
はニッケルの多い有効成分含有液が供給され、次第に鉄
の多い有効成分含有液が供給されるようになる。その際
溜30内において両液は、マグネヂックスターラーによ
り完全に混合されるので、ベルト上に供給される液中の
ニッケルは指数関数的に減少し、鉄は指数関数的に増加
することになる。この様に供給された液を吸収した各担
体粒は、ベル1〜上に載架されたまま、150℃に保持
された乾燥室内を、2分間の間に通過し、この間に乾燥
された。乾燥された触媒は、逐次、内径10mm、長さ
1300mmのパイレックスガラス製反応管の中央部9
00mynにわたって充填された。
Iron and nickel were prepared using reagent-grade commercially available nitric acid 2
Iron and nickel nitrate were dissolved in pure water using an ion exchange method, and 2 weighs of a solution containing 1 mol/j of active ingredient was prepared for 25 yi.
Prepare nickel nitrate solution in reservoir 30,
The ferric nitrate solution was charged into the reservoirs 32, respectively. As the carrier, dried alumina balls with a diameter of 3 mTn were used. An electromagnetic feeder used as a carrier feeding device fed alumina poles onto the belt via conduit 22 at a rate of 55 pieces/min. Bell 1~ is made by Gol\ and has a depth of 5 IT.
The belt had a U-shaped cross-section of IITl and was rotated at a speed of 17 CTIl/min. pump 29
While the ferric nitrate solution in the reservoir 32 was transferred to the reservoir 30, the liquid in the reservoir 30 was supplied in a fixed amount onto the belt by two pumps. Therefore, the liquid supplied onto the belt is initially a liquid containing an active ingredient with a large amount of nickel, and gradually a liquid containing an active ingredient with a large amount of iron is supplied. At this time, both liquids are completely mixed in the reservoir 30 by a magnetic stirrer, so that nickel in the liquid supplied onto the belt decreases exponentially, and iron increases exponentially. Become. Each of the carrier particles that had absorbed the liquid supplied in this manner passed through a drying chamber maintained at 150° C. for 2 minutes while being placed on the bell 1, and was dried during this period. The dried catalyst was sequentially transferred to the central part 9 of a Pyrex glass reaction tube with an inner diameter of 10 mm and a length of 1300 mm.
It was filled over 00 myn.

上記の如く触媒の充填された反応管を、長さ10010
0Oの電気炉に組み込んで、その内部に先づ空気を流し
つつ3/IO℃の温度における硝酸塩の熱分解を240
分間実施し、次に水素を流しつつ370℃における還元
を300分間実施した。これまでの操作により、反応管
中の触媒には、約5重量%のニッケルおよび/または鉄
が含有されることとなる。
The reaction tube filled with the catalyst as described above has a length of 10010 mm.
The thermal decomposition of nitrates at a temperature of 3/IO°C can be carried out at 240 °C by incorporating it into a 0O electric furnace and by first flowing air inside the furnace.
The reduction was carried out for 300 minutes at 370° C. while flowing hydrogen. As a result of the previous operations, the catalyst in the reaction tube will contain about 5% by weight of nickel and/or iron.

上記によって触媒の還元が終了した反応管を、第1図の
触媒試験装置に組み込んだ。この装置の加熱器は、反応
管の長さ80mynにわたる部分を均一に加熱出来る電
熱器である。反応管に一酸化炭素2311ア/分、水素
70厭/分およびヘリウム20 xi /分を略大気圧
下に混合流通せしめつつ、且つ反応管の加熱部分の温度
を245℃に制卸しつつ、加熱器を4.’3mm/分の
一定速度で反応管の下流から上流に向けて移動し、その
間に反応管から流出するカスを、熱伝導度検知式のガス
クロマトグラフおよび質毘分析訓を使用して分析した。
The reaction tube in which the catalyst had been reduced as described above was installed in the catalyst testing apparatus shown in FIG. The heater of this apparatus is an electric heater that can uniformly heat a portion of the reaction tube over a length of 80 myn. Heating was carried out while flowing a mixture of 2311 am/min of carbon monoxide, 70 m/min of hydrogen, and 20 xi/min of helium into the reaction tube under approximately atmospheric pressure, and controlling the temperature of the heated portion of the reaction tube to 245°C. 4. It moved from downstream to upstream of the reaction tube at a constant speed of 3 mm/min, and the residue flowing out from the reaction tube during that time was analyzed using a gas chromatograph with thermal conductivity detection and a paper towel analysis method.

分析の結果を、第3図に示した。第3図は、横軸に触媒
中に含有されるニッケルおよび鉄の合計モル数に対する
ニッケルのモル%を、縦軸にエチレン、エタン、プ1]
ピレンおよびプロパンに転化された一酸化炭素の供給−
酸化炭素に対するモル%を示ず図である。この図におい
て、曲線Aはエチレンに、Bはプロピレンに、Cはプロ
パンに、DはLタンに転化された供給−酸化炭素のモル
%をそれぞれ示している。この図から、触媒の組成の変
化に従って、各炭化水素の生成量が異なっていること、
即ち触媒の性能を明瞭に知ることが出来る。
The results of the analysis are shown in Figure 3. In Figure 3, the horizontal axis shows the mol% of nickel relative to the total number of moles of nickel and iron contained in the catalyst, and the vertical axis shows ethylene, ethane, and 1].
Supply of carbon monoxide converted to pyrene and propane -
It is a figure which does not show mole % with respect to carbon oxide. In this figure, curve A shows the mole percent of feed carbon oxide converted to ethylene, B to propylene, C to propane, and D to L-tan. This figure shows that the amount of each hydrocarbon produced differs as the composition of the catalyst changes;
In other words, the performance of the catalyst can be clearly known.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、触媒の性能試験の原理を示す図、第2図は、
この発明による触媒の製造装置の例であって、何れも模
式的外観図である。第3図は、実施例に記載した触媒性
能試験における反応管出口ガス流の分析結果である。 記号 1・・・スI〜ツブ弁 2・・・流量調節弁 3・・・流M計 4・・・ガスクロマトグラフ装置 5・・・マススペクトロメーター 6・・・記録削 12・・加熱器 13・・温度検知器 14・・冷却器 15・・巻取機 16・・紐 21・・担体供給機 22・・担体導管 23・・ベルト 2/I・・ベルト乾燥室 25・・ベル1へ洗滌用水槽 26・・乾燥室 27・・JJI出シュート 29・・ポンプ 30・・有効成分含有液溜 31・・マグネチックスタラー 32・・有効成分含有液溜 41・・原料流体入口 42・・生成流体出口 43・・ネジ 44・・ナツト 45・・ガス溜 46・・ガス溜 47・・ガス溜
Figure 1 is a diagram showing the principle of catalyst performance testing, and Figure 2 is a diagram showing the principle of catalyst performance testing.
These are examples of the catalyst manufacturing apparatus according to the present invention, and all are schematic external views. FIG. 3 shows the analysis results of the gas flow at the outlet of the reaction tube in the catalyst performance test described in the Examples. Symbol 1...S I ~ Stub valve 2...Flow control valve 3...Flow M meter 4...Gas chromatograph device 5...Mass spectrometer 6...Record cutter 12...Heater 13・・Temperature detector 14・・Cooler 15・・Rewinder 16・・String 21・・Carrier feeder 22・・Carrier conduit 23・・Belt 2/I・・Belt drying chamber 25・・Washing to bell 1 Water tank 26... Drying chamber 27... JJI output chute 29... Pump 30... Active ingredient containing liquid reservoir 31... Magnetic stirrer 32... Active ingredient containing liquid reservoir 41... Raw material fluid inlet 42... Produced fluid Outlet 43...Screw 44...Nut 45...Gas reservoir 46...Gas reservoir 47...Gas reservoir

Claims (1)

【特許請求の範囲】 有効成分が粒状担体に担持せしめられた粒状触媒の製造
装置において、 (イ) 該担体を、・(ロ)項記載のエンドレスベルト
上に定量供給する為の供給装置、(ロ) 供給された該
担体全載架しつつ次記(ハ)、(ニ)および(ホ)の各
装置あるいは工程に逐次移送し、次に(へ)および(ト
)項記載の装置を経て、最終的に(イ)項による該担体
の供給位置にまで、繰り返し周回するエンドレスベルI
・および該ベルトの駆動装置、(ハ) 該有効成分含有
液の少なくとも一種を、それぞれ別個に供給量制御しつ
つ、該ベルト上の該担体供給位置の下流側に供給する為
の装置、(ニ)  (イ)項および(ハ)項により該液
を含有するに至った担体の乾燥装置、 (ホ) 該乾燥によって出来た触媒を、該ベルト上から
排出する工程、 (へ) 該触媒が排出された後の該ベルトを、洗滌する
為の洗滌装置、 (ト) 工程くべ)において洗滌された該ベル1〜の乾
燥装置、 を具備したことを特徴とするFI!l!媒の製造装置。
[Scope of Claims] An apparatus for producing a granular catalyst in which an active ingredient is supported on a granular carrier, comprising: (a) a feeding device for quantitatively feeding the carrier onto the endless belt according to (b); b) The supplied carriers are all placed on racks and sequentially transferred to each of the devices or processes described in (c), (d), and (e) below, and then passed through the equipment described in (f) and (g). , the endless bell I repeatedly revolves until finally reaching the carrier supply position according to item (a).
- and a drive device for the belt; (c) a device for supplying at least one of the active ingredient-containing liquids to the downstream side of the carrier supply position on the belt while controlling the supply amount separately; ) A drying device for the carrier that has come to contain the liquid according to items (a) and (c); (e) a step of discharging the catalyst formed by the drying from above the belt; (f) a step of discharging the catalyst. An FI characterized by comprising: a washing device for washing the belt after being washed; l! Media manufacturing equipment.
JP5310783A 1983-03-29 1983-03-29 Device for producing catalyst Pending JPS59179158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5310783A JPS59179158A (en) 1983-03-29 1983-03-29 Device for producing catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5310783A JPS59179158A (en) 1983-03-29 1983-03-29 Device for producing catalyst

Publications (1)

Publication Number Publication Date
JPS59179158A true JPS59179158A (en) 1984-10-11

Family

ID=12933564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5310783A Pending JPS59179158A (en) 1983-03-29 1983-03-29 Device for producing catalyst

Country Status (1)

Country Link
JP (1) JPS59179158A (en)

Similar Documents

Publication Publication Date Title
US4990266A (en) Process for removing the nitrite and/or nitrate content in water
Klinghoffer et al. Catalytic wet oxidation of acetic acid using platinum on alumina monolith catalyst
JPS6363017B2 (en)
Robinson et al. Kinetics of the catalytic vapor phase carbonylation of methanol to acetic acid
Agrawal et al. Hydrodemetalation of nickel and vanadium porphyrins. 2. Intraparticle diffusion
Calla et al. Effect of alumina and titania on the oxidation of CO over Au nanoparticles evaluated by 13C isotopic transient analysis
Watano et al. Determination of end-point with a complex granulation applying infrared moisture sensor
Arsenova-Härtel et al. Catalytic and sorption studies related to the para selectivity in the ethylbenzene disproportionation over H-ZSM-5 catalysts
Cofer III et al. The enhanced oxidation of SO2 by NO2 on carbon particulates
JPS59179158A (en) Device for producing catalyst
Arakawa et al. Novel high-pressure FT-IR spectroscopic system combined with specially designed in situ IR cell for studying heterogeneous catalytic reactions
Telkar et al. Platinum catalyzed hydrogenation of 2-butyne-1, 4-diol
Tamaru et al. Dynamic investigation of mechanism of catalytic reactions as revealed by spectroscopic techniques
RU2324173C1 (en) Method of reception of calibration mixes of volatile components and device for its realisation
JPS59178358A (en) Tester of performance of catalyst
US3772847A (en) Method of transferring substances contained in a current of gas to a current of liquid, in which the substances are concentrated
Borman et al. A novel reactor for determination of kinetics for solid catalyzed gas reactions
Falconer et al. Surface interactions on alumina-supported iridium catalysts: Oxygen and carbon monoxide
Fuller et al. The catalytic reduction of nitrous oxide by carbon monoxide over tin (IV) oxide
CN108014853A (en) Catalyst successive impregnation machine and its application and the dipping method of absorbing desulfurization catalyst
Tripathi et al. Pretreatment effect on the catalyst activity and on the enthalpy changes during exposure of Pd/SnO2 and Pd metal to CO, O2, and CO+ O2
Islam et al. Catalytic hydrogenation of various organic substrates using a reusable polymer-anchored palladium (II) complex
Pant et al. Kinetics of o‐Xylene oxidation over sintered vanadium pentoxide in a spinning catalyst basket reactor
EP1138380B1 (en) Method of producing formaldehyde directly from methane
Gambhir et al. Depletion of reactants on a catalytic surface during reaction