JPS59179142A - Method for packing catalyst - Google Patents

Method for packing catalyst

Info

Publication number
JPS59179142A
JPS59179142A JP5244583A JP5244583A JPS59179142A JP S59179142 A JPS59179142 A JP S59179142A JP 5244583 A JP5244583 A JP 5244583A JP 5244583 A JP5244583 A JP 5244583A JP S59179142 A JPS59179142 A JP S59179142A
Authority
JP
Japan
Prior art keywords
catalyst
reactor
reaction
wire netting
packed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5244583A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzumura
洋 鈴村
Masami Kondo
正實 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5244583A priority Critical patent/JPS59179142A/en
Publication of JPS59179142A publication Critical patent/JPS59179142A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/30Loose or shaped packing elements, e.g. Raschig rings or Berl saddles, for pouring into the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30223Cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30257Wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30408Metal

Abstract

PURPOSE:To control exothermic reaction in a reaction vessel by packing metallic wire netting containers contg. hydrogenation catalyst sealed therein in combination with empty metallic wire netting containers in a reaction vessel for a fixed bed catalytic reaction for hydrocarbons. CONSTITUTION:H2 and liquid oil 1 are passed through layers 4 packed with a catalyst and empty spaces 5 and lower mol. wt. oil and H2 are discharged out of the system. Spherical catalyst having 5mm.phi grain size are packed in the catalyst packing layer 4 for the reaction. Preferred mesh of the metallic wire netting constituting a cylindrical wire netting structure body 6 is 3mm.. The catalyst packing layers 4 are constituted of the metallic wire netting structure body 6 packed with 5mm.phi spherical catalyst, and the empty spaces 5 are constituted of the metallic wire netting structure body 6 contg. no catalyst. Said catalyst packing layer 4 and said empty space 5 are arranged alternately in the reaction vessel.

Description

【発明の詳細な説明】 本発明は触媒の存在下で炭化水素油類を水素で処理する
水素化分解反応器における該触媒の充填力法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of loading a catalyst in a hydrocracking reactor for treating hydrocarbon oils with hydrogen in the presence of the catalyst.

更に詳しくは、本発明は重質炭化水素消石の触媒的処理
によって、水素化分解や水素化脱硫を行なう装置におけ
る触媒の充填力法に関する。
More particularly, the present invention relates to a method for loading a catalyst in an apparatus for hydrocracking or hydrodesulfurization by catalytic treatment of heavy hydrocarbon slag.

重質油類の水素化処理は経済的に好ましいにも拘らず、
多くの問題点があった。その7つは、触媒物質上にコー
クを生成し触媒層の閉塞を伴うことであった。第二の問
題は、生起する反応が著しい発熱反応である場合に、安
定でしかも満足な反応温度を保持することが困難なこと
であった。
Although hydroprocessing of heavy oils is economically preferable,
There were many problems. Seven of them were associated with formation of coke on the catalyst material and clogging of the catalyst layer. A second problem is that when the reaction that occurs is significantly exothermic, it is difficult to maintain a stable and satisfactory reaction temperature.

本発明の目的は、固定層反応器において発熱反応を抑制
できかつ簡単に反応器内に充填できるコンパクトな触媒
充填法を提供することにある。
An object of the present invention is to provide a compact catalyst packing method that can suppress exothermic reactions in a fixed bed reactor and can be easily packed into the reactor.

カスと液体を接触させる方法については、米国船許29
87465号明細書に明らかにされている。この方法に
よれば、炭素生成によって生ずる大きな圧力損失や閉塞
の困難さを完全に取り除(・ている。この米国特許29
87465号明細書には、固体が膨張した状態にあり、
塊の静止状態に比して少(とも10%大きな容積を占め
て、ガス−液体系の中で不規則な運転をして(・る状態
で、ガス、液体及び固体を接触させることにつ(・て記
載している。しかし、この方法では、沸騰層すなわち流
動化させているために、流動化させるのに必要な最低速
度以上で液状油を流す必要があるため・、必要以上の動
力を要し、かつ固定層と比較して反応原は明らかに悪い
。さらに流動層の一型式である洲り#層につ(・ては、
その欠点として適切な運転条件が狭いことがあげられ、
誤操作を行うと様々なトラブルを生ずる。以下に水素化
分解反応の一例を示す。
Regarding the method of bringing liquid into contact with waste, please refer to U.S. Shipping License 29.
This is disclosed in the specification of No. 87465. This method completely eliminates the large pressure drop and difficulty of blockage caused by carbon formation.
No. 87465 describes that the solid is in an expanded state,
For bringing gases, liquids and solids into contact in a gas-liquid system in which the mass occupies a volume that is at least 10% larger than its resting state and operates irregularly in a gas-liquid system. (・However, since this method uses a boiling layer or fluidization, it is necessary to flow the liquid oil at a speed higher than the minimum speed necessary for fluidization.・This method uses more power than necessary. , and the reaction source is clearly worse than that of a fixed bed.Furthermore, a type of fluidized bed, a type of fluidized bed,
The disadvantage is that the suitable operating conditions are narrow,
Incorrect operation can cause various troubles. An example of a hydrogenolysis reaction is shown below.

その他の方法としては、球状の触媒を充填した固定層で
のプロセスも考えられてきた。しかし、これらの球状触
媒を充填した固定層を本発明で取り扱う液状油の水素化
に適用すれば、固定層に付着堆積するばいじんによる目
詰りが生起して圧力損失が増大し、円滑な装置の運転に
支障をきたし、実用上好ましくな(、又爆走反応による
局部的な発熱を生せしめ、安定でしかも満足な反応温度
を保持することも細しい。
As another method, a process using a fixed bed filled with spherical catalysts has been considered. However, if a fixed bed filled with these spherical catalysts is applied to the hydrogenation of liquid oil treated in the present invention, the fixed bed will be clogged with soot and dust that accumulates, increasing pressure loss and making it difficult to operate the equipment smoothly. It is difficult to maintain a stable and satisfactory reaction temperature because it causes problems in operation and is not practical (also, it causes localized heat generation due to explosion reaction).

本発明は、これら従来のものの欠点を克服するためにな
さねたもので、経時的圧力損失上昇がなく、かつ温度制
御か可能で、かつコンパクトにパンケージ化された触媒
の充填力法を提供するものである。
The present invention has been made to overcome these drawbacks of the conventional methods, and provides a method for packing a catalyst that does not increase pressure loss over time, allows temperature control, and is compactly packaged. It is something.

すなわち本発明は、 +l)  炭化水素の触媒による固定層反応器にお(・
て、例えば円柱状あるいは直方体状等の金網容器に、例
えば球状又は円柱状又は楕円状等の触媒を封入したもの
と、該金網容器に例も充填しないものとを組合せて、上
記反応器内に充填することを特徴とする触媒の充填方法
、(以下、第一発明という) (2)  炭化水素の触媒による固定層反応器におし・
て、例えば円柱状あるいは直方体状等の金網容器に、例
えは球状、円柱状あるいは楕円状等の触媒乞封入したも
のと、該金網容器に反応に関与しない光填却jを刺入し
たものとを利金せて、上記反応器内に充填することを特
徴とする触媒の充填方法(以下、第二発明という  ) に関するものである。
That is, the present invention provides a fixed bed reactor using a catalyst for +l) hydrocarbons.
For example, a cylindrical or rectangular wire mesh container, for example, in which a spherical, cylindrical, or ellipsoidal catalyst is sealed, and a wire mesh container that is not filled with the catalyst are combined and placed in the reactor. (2) A method for charging a catalyst (hereinafter referred to as the first invention) characterized by charging a fixed bed reactor with a hydrocarbon catalyst.
For example, a cylindrical or rectangular wire mesh container, for example, is filled with a spherical, cylindrical or elliptical catalyst, and the wire mesh container is pierced with a light filler that does not participate in the reaction. This invention relates to a method for charging a catalyst (hereinafter referred to as the second invention), characterized in that the catalyst is charged into the reactor at a rate of interest.

以下に、図面を参照して本発明方法を説明する。The method of the present invention will be explained below with reference to the drawings.

第1図は従来法による球状触媒充填層を、第2図は本発
明の第一発明による触媒層を示す。
FIG. 1 shows a spherical catalyst packed bed according to a conventional method, and FIG. 2 shows a catalyst bed according to the first invention of the present invention.

第1図にお(・て、反応器入口より水素と液状油1が触
媒充填層3へ入り、内部では液状油が触媒上で水素と反
応して後、より分子量の小さい油と水素2として系外に
出る。
In Figure 1, hydrogen and liquid oil 1 enter the catalyst packed bed 3 from the reactor inlet, and inside, the liquid oil reacts with hydrogen on the catalyst, and then becomes oil with a smaller molecular weight and hydrogen 2. Go outside the system.

第2図では同様に反応器入口より水素と液状油1が触媒
充填層4及び空間部5を通過して、より分子量の小さい
油と水素2として糸外に出る。但し反応器には、触媒充
填層4に5uφの球状触媒を充填した。次に、充填方法
を第6図を用(・て述べる。第6図においては、6は円
柱状の金網構造体であり、金網のサイズとしては金網間
隔3mのものを使用した。第2図の触媒充填層4は、こ
の金網構造体6に5簡φの球状触媒を充填したもので構
成され、空間部5は該触媒を充填していない金網jf#
造体6で構成されている。この触媒充填層4と空間部5
を交互に反応器内配置した。
In FIG. 2, similarly, hydrogen and liquid oil 1 pass through the catalyst packed bed 4 and the space 5 from the reactor inlet and exit as oil and hydrogen 2 with smaller molecular weights to the outside of the yarn. However, in the reactor, the catalyst packed bed 4 was filled with a spherical catalyst of 5 uφ. Next, the filling method will be described using Fig. 6. In Fig. 6, 6 is a cylindrical wire mesh structure, and the size of the wire mesh used was one with a wire mesh spacing of 3 m. The catalyst packed bed 4 is composed of this wire mesh structure 6 filled with 5-diameter spherical catalyst, and the space 5 is made of a wire mesh structure 6 that is not filled with the catalyst.
It is composed of 6 structures. This catalyst packed bed 4 and space 5
were arranged alternately in the reactor.

本発明方法による反応器を用いると、従来法による充填
層反応器と比較して、きわめて発熱反応か起りに(く、
かつ充填および除去作業が容易である。
When using the reactor according to the method of the present invention, exothermic reactions are much less likely to occur compared to packed bed reactors according to the conventional method.
In addition, filling and removal operations are easy.

第4図及び第5図に、それぞれ従来法による充填層と本
発明方法による反応器の軸方向温度分布を示す。従来法
の場合は、反応器内部に冷却部分を持た1よいため、発
熱反応が起こると、第4図に示す温度分布のように油の
流れ方向に従って温度が筒(なるため、発熱による温度
上昇によりさらに反応速度が促進され温度がさらに上昇
することになり、ヒートスポットを生じ温度が上昇する
一力の(・わゆる爆走反応となる。
FIGS. 4 and 5 show the axial temperature distributions of the packed bed according to the conventional method and the reactor according to the method of the present invention, respectively. The conventional method has a cooling section inside the reactor, so when an exothermic reaction occurs, the temperature changes in the direction of oil flow as shown in the temperature distribution shown in Figure 4, so the temperature rise due to heat generation. This further accelerates the reaction rate and further increases the temperature, resulting in a so-called explosive reaction that creates heat spots and increases the temperature.

水素化分解反応の一例として、以下に示す7ントラセン
油の水素化分解の場合も、−△H=500kco// 
m N(N2)であり、相当の発熱反応である。
As an example of the hydrocracking reaction, in the case of the hydrocracking of 7-nthracene oil shown below, -ΔH=500kco//
m N (N2), and is a considerably exothermic reaction.

一方、本発明法の場合、光1fj4層4の間に空間部5
が冷却部として存在するので、第5図に示すように反応
部と冷却部が交互に配置され、そのために温度分布が平
均化されて、爆走反応がきわめて起りに(い。
On the other hand, in the case of the method of the present invention, there is a space 5 between the four layers 4 of the light 1fj.
exists as a cooling section, so the reaction section and the cooling section are arranged alternately as shown in Figure 5, which averages out the temperature distribution and makes explosive reactions extremely likely.

次に、従来の充填層を分割した反応器を第6図に示す。Next, FIG. 6 shows a conventional reactor in which a packed bed is divided.

図中、4が触媒充填部であり、5が空間部である。この
反応器の場合、室圧容器であるという制約上、触媒を充
填するには、第6図中のA、B、Cそれぞれの個所から
触媒を供給しなくては1よらず、きわめて充填が難しく
、触媒を完全に満たすことも難しい。
In the figure, 4 is a catalyst filling part, and 5 is a space part. In the case of this reactor, due to the restriction that it is a room pressure vessel, in order to charge the catalyst, it is necessary to supply the catalyst from each of the points A, B, and C in Fig. 6, making it extremely difficult to fill the reactor. It is difficult and difficult to completely fill the catalyst.

これに対し、本発明法の第2図では、触媒充填部4で発
熱が起ったとしても、反応に関与しない空間部5できわ
めてよく混合され、ガス流れ方向の温度分布は小さくな
る。また触媒充填についても、第2図では、反応器上部
より、触媒を金網に充填したものと、何も充填しなし・
ものとを交互に糾合せて反応器内に充填するために、触
媒を充満させることができ、又充填も容易でかつ充填時
の触媒の落・下による割れを防止できる。
On the other hand, in the method of the present invention shown in FIG. 2, even if heat is generated in the catalyst filling section 4, the gases are mixed very well in the space 5 that does not participate in the reaction, and the temperature distribution in the gas flow direction is small. Regarding catalyst filling, Figure 2 shows two types: one in which the catalyst is filled in a wire gauze from the top of the reactor, and one in which the catalyst is not filled in at all.
Since the reactor is filled with the catalyst by combing them together alternately, the catalyst can be filled with the catalyst, and filling is also easy, and cracking due to falling of the catalyst during filling can be prevented.

次に、反応器内の圧力損失の経時変化を第7図に示す。Next, FIG. 7 shows the change in pressure loss within the reactor over time.

通常、液状油中には、不純物(コーキング物)を含み、
かつ水素化反応の過程でコーキング物を生成するため、
第1図のような通常の充填層形状で1.5 Mφ触媒を
充填した反応器を用いる場合は第7図中比較例1に示す
ように、また6緬φ触媒を充填した反応器を用いる場合
は第7図中比較例2に示すように運転時間とともに経時
的に圧力損失が増加するが、本発明方法による第2図の
反応器を用いる場合は第7図中本発明例1に示すように
その傾向は見られなかった。その理由として、触媒部と
触媒部の間に空間部が存在するために、爆走反応を起し
に(く、従って局部的に反応してコーキング物が部分的
に生成するようなことがないことがあげられる。
Usually, liquid oil contains impurities (caulking),
And because coking products are generated during the hydrogenation reaction,
When using a reactor packed with a 1.5 Mφ catalyst in a normal packed bed shape as shown in Figure 1, a reactor packed with a 6 Mφ catalyst is used as shown in Comparative Example 1 in Figure 7. In this case, as shown in Comparative Example 2 in Fig. 7, the pressure loss increases over time with the operating time, but when using the reactor shown in Fig. 2 according to the method of the present invention, as shown in Inventive Example 1 in Fig. 7. No such trend was observed. The reason for this is that because there is a space between the catalyst parts, explosive reactions do not occur (therefore, there is no possibility that a local reaction will occur and a coking substance will be partially formed). can be given.

触媒粒径とコーキング物による付着の関係は、対象とす
る油種によって異なる。第7図に示す結果は、以下の表
1の組成の油を用いた場合である。なお、反応条件は、
水素供給量15m’N/Hr、液状油供給量5.28−
e / Hrとした。また、この時得られた生成物を表
1にあわせて示す。
The relationship between catalyst particle size and adhesion by coking substances differs depending on the target oil type. The results shown in FIG. 7 are obtained when oils having the compositions shown in Table 1 below were used. The reaction conditions are as follows:
Hydrogen supply amount 15m'N/Hr, liquid oil supply amount 5.28-
It was set as e/Hr. The products obtained at this time are also shown in Table 1.

表  1 表1で、BSはベンゼン可溶分、BIはベンゼン不溶分
、  THFSはグトラハイドロフラン可溶分を示す。
Table 1 In Table 1, BS indicates benzene soluble content, BI indicates benzene insoluble content, and THFS indicates gutrahydrofuran soluble content.

次に、本発明方法による反応器は、沸騰床や懸濁床型反
応器と比較して、触媒が固定されているために流体(水
素又は液状油)との相対速度が太き(、従って混合も良
く、同一の水素化分解転化率を得るのに反応器容積がコ
ンパクトで済むという利点かある。
Next, the reactor according to the method of the present invention has a fixed catalyst, so the relative velocity with the fluid (hydrogen or liquid oil) is high (therefore, the mixing It has the advantage that the reactor volume can be compact to obtain the same hydrocracking conversion rate.

なお、以上の説明で用いた触媒は、コバルト・モリブデ
ン・シリカアルミナ系の球状触媒であるが、その細円柱
状、楕円状等の触媒でも同様の結果が得られることが確
認されている。
Although the catalyst used in the above explanation is a cobalt-molybdenum-silica-alumina spherical catalyst, it has been confirmed that similar results can be obtained with thin cylindrical, elliptical, etc. catalysts.

また、触媒の種類としては、このGo−M□−シリカア
ルミナの他に、N1−W−シリカアルミナ、N1−M。
In addition to this Go-M□-silica alumina, the types of catalysts include N1-W-silica alumina and N1-M.

−7/L/ミナ、N1W−シリカアルミナ、N1W−ア
ルミナ、Ni −Co −Mo −フルミナ、Pd−7
/I/々、Pd −Y型ゼオライト、pt−アルミナ、
ZnO1等がある。
-7/L/Mina, N1W-Silica Alumina, N1W-Alumina, Ni-Co-Mo-Flumina, Pd-7
/I/, Pd-Y type zeolite, pt-alumina,
There are ZnO1 and the like.

次に、第8図を用ζ・て、全体のフローを述べる。供給
液状油8と供給水素7を本発明の充填方法による反応器
13に注入し、反応器内で圧力約150〜200気圧、
温度550〜450℃で水素化分解を行なわせ、しかる
後気液混合物14を気液分離装置9へ送入し、ガス生成
物10と液状生成物11と水素循環流12に分離し、水
素循環流12は供給水素7と合流させて再使用する。
Next, the overall flow will be described using FIG. The feed liquid oil 8 and the feed hydrogen 7 are injected into the reactor 13 according to the filling method of the present invention, and the pressure in the reactor is about 150 to 200 atmospheres.
Hydrocracking is carried out at a temperature of 550 to 450°C, and then the gas-liquid mixture 14 is sent to the gas-liquid separator 9, where it is separated into a gas product 10, a liquid product 11, and a hydrogen circulation stream 12. Stream 12 is combined with feed hydrogen 7 and reused.

第9図及び第10図は本発明の第二発明による触媒層を
示す。
9 and 10 show a catalyst layer according to the second aspect of the present invention.

第9図では、反応器入口より水素と液状油1が、触媒充
填層4及び反応に関与しない充填層」15を通過して、
より分子量の小さい油と水素2として系外に出る。但し
、反応器は、触媒充填層4として第6図に示す金網構造
体乙に5恕φの球状触媒を充填したもの、充填剤15と
して金網a造体乙に5鵡φの球状充填Mを元種したもの
を用いたものである。
In FIG. 9, hydrogen and liquid oil 1 pass through the catalyst packed bed 4 and the packed bed 15 that does not participate in the reaction from the reactor inlet.
It exits the system as oil with a smaller molecular weight and hydrogen 2. However, the reactor was constructed using a wire mesh structure A shown in FIG. It is made from original seeds.

第10区では、第6図に示す金網構造体6に触媒粒径3
.0翻φから成る触媒を充填したもの4と、金網構造体
乙に反応に関与しない充填剤を充填したもの15を交互
に配置したものであり、本例では水素及び液状油1の流
れ方向に対して、触媒部の長さ/1.12. /3  
が段々長くなるようにして、発熱反応に対応させたもの
である。又、本例では、上部から、触媒を金網構造体に
充填したもの4と反応に関与しない充填層]を金網構造
体に元種したものとを交互に績み亀ねるため、金網の大
きさを変えることにより、触媒及び充填剤の充填高さを
任意に調節できる利点かある。さらに触媒部をはさむよ
うに充填M15a、15bを設けるため、触媒層へのコ
ーキング物の付着及び付着によって生じる触媒の活性低
下を抑制できる。
In the 10th section, the wire mesh structure 6 shown in FIG.
.. In this example, a structure 4 filled with a catalyst consisting of 0 mm φ and a structure 15 filled with a filler that does not participate in the reaction in a wire mesh structure B are arranged alternately. On the other hand, the length of the catalyst part/1.12. /3
is made gradually longer to accommodate exothermic reactions. In addition, in this example, from the top, the wire mesh structure filled with the catalyst 4 and the wire mesh structure filled with a packed layer that does not participate in the reaction are alternately stacked, so the size of the wire mesh is There is an advantage that the filling height of the catalyst and filler can be adjusted arbitrarily by changing the height of the catalyst and filler. Further, since the packings M15a and 15b are provided to sandwich the catalyst portion, it is possible to suppress adhesion of caulking material to the catalyst layer and a decrease in catalyst activity caused by adhesion.

なお、/1.12.13  と段々長くするのは、通常
、充填層の流れ方向の温度分布は第5図に示すように入
口部に近い所程低く、出口部に近い程高いため、入口部
に近い程充填層高さを短くする方が、充填層畠さを等分
割にするよりも、反応器全体の温度分布がより一層均−
になるためである。
The reason why the temperature distribution is gradually increased to /1.12.13 is because the temperature distribution in the flow direction of a packed bed is normally lower near the inlet and higher near the outlet, as shown in Figure 5. It is better to shorten the height of the packed bed closer to the height of the reactor than to divide the height of the packed bed into equal parts.
This is to become.

以上説明した本発明の第二発明には、MiJ述の第一発
明と同殿の触媒が用いられ、また反応に関与しない充填
剤としては触媒の担体であるシリカアルミナ、アルミナ
、ゼオライト等があげられる。
The second invention of the present invention described above uses the same catalyst as the first invention described by MiJ, and fillers that do not participate in the reaction include silica alumina, alumina, zeolite, etc., which are catalyst carriers. It will be done.

次に、第9図の反応器を用いて表1の原料油の水素化反
応を行った。触媒としては第一発明の実験で用いたもの
と同じco−M。−シリカアルミナを用い、反応に関与
しない充填材としてはシリカアルミナを用い、反応条件
は第一発明の実験と同じとした。この結果、圧力損失は
第7図の本発明例2に示す通りであり、生成物は下表に
示す通りであった。
Next, the raw oils shown in Table 1 were hydrogenated using the reactor shown in FIG. The catalyst used was co-M, the same as that used in the experiment of the first invention. - Silica alumina was used, silica alumina was used as a filler not involved in the reaction, and the reaction conditions were the same as in the experiment of the first invention. As a result, the pressure loss was as shown in Invention Example 2 in FIG. 7, and the products were as shown in the table below.

以上述べたことから明らかなように、本発明方法は、以
下のような効果がある。
As is clear from the above description, the method of the present invention has the following effects.

1)触媒の充填及び抜き出しが容易であり、反応器内を
十分に利用できる。
1) It is easy to charge and remove the catalyst, and the inside of the reactor can be fully utilized.

2)触媒を反応器内に充填する時、金網構造体に元種し
たものを反応器内に設置するため、触媒の落下による割
れを防止できる。
2) When filling the reactor with the catalyst, the metal mesh structure is placed in the reactor, which prevents the catalyst from falling and causing cracks.

3)触媒充填部と未反応部を交互に配置しているために
、未反応部で冷却の効果があり、発熱反応に容易に対応
できる。
3) Since the catalyst-packed parts and unreacted parts are arranged alternately, the unreacted parts have a cooling effect and can easily cope with exothermic reactions.

4)触媒部と反応に関与しない充填剤の配置を容易に変
えることができる。
4) The arrangement of the catalyst part and the filler not involved in the reaction can be easily changed.

5)反応器内の温度分布が比較的均一になるため、局部
的なコーキングの発生が起りにくく、従って反応器内の
経時的な圧力損失の変化がほとんどな(・。
5) Because the temperature distribution within the reactor is relatively uniform, local coking is less likely to occur, and therefore there is little change in pressure loss within the reactor over time.

6)充填層(固定層)であるために、沸騰床や懸濁床と
比較して混合がきわめて良(、水素化分解転化法も高い
。故に、反応器容積もコンパクトで済む。
6) Because it is a packed bed (fixed bed), mixing is extremely good (and the hydrocracking conversion method is also expensive) compared to ebullated beds and suspended beds.Therefore, the reactor volume can be compact.

7)反応に関与しな(・充填剤が入って℃・るために、
コーキング物の触媒付着による活性41下が起りにくい
7) Does not participate in the reaction (due to the presence of fillers,
Activity 41 decrease due to catalyst adhesion of caulking materials is less likely to occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法による充304層を示す図、第2図は本
発明の第一発明の一実施態様例の説明図、第6図は触媒
充填用又は空間を保持するための金網44”fA体を示
す図、第4図は第1図に示す従来の充填層の触媒軸方向
温度分布を示す図、第5図は第2図に示す本発明の反応
器の触媒軸方向温度分布を示す図、第6図は従来法によ
る充填層を多段にした反応器を示す図、第7図は本発明
方法の効果を示すグラフ、第8図は本発明方法による水
素化分解反応器を用いた場合の全体のフローを示す図、
第9図および第1D図は本発明の第二発明の一実施態様
例の説明図である。 復代坤人  内 1)  明 仮代理人  萩 原 亮 − 苓3図 第6図 光7図 第8図
FIG. 1 is a diagram showing a filled 304 layer according to a conventional method, FIG. 2 is an explanatory diagram of an embodiment of the first invention of the present invention, and FIG. 6 is a wire mesh 44'' for catalyst filling or for holding a space. Fig. 4 shows the axial temperature distribution of the catalyst in the conventional packed bed shown in Fig. 1, and Fig. 5 shows the axial temperature distribution of the catalyst in the reactor of the present invention shown in Fig. 2. Figure 6 is a diagram showing a reactor with multiple packed beds according to the conventional method, Figure 7 is a graph showing the effects of the method of the present invention, and Figure 8 is a diagram showing a reactor using a hydrocracking reactor according to the method of the present invention. A diagram showing the overall flow when
FIG. 9 and FIG. 1D are explanatory diagrams of an embodiment of the second invention of the present invention. Fukudaikonjin 1) Meikakari agent Ryo Hagiwara - Rei 3 Figure 6 Light 7 Figure 8

Claims (1)

【特許請求の範囲】 (11炭化水素の触媒による固定層反応器において、金
網容器に、触媒を封入したものと、該金網容器に何も充
填しないものとを組合せて、前記反応器内に充填するこ
とを特徴とする触媒の充填方法。 (2)炭化水素の触媒による固定層反応器において、金
網容器に、触媒を封入したものと、該金網容器に反応に
関与しない充填剤を封入したものとを組合せて、前記反
応器内に充填することを特徴とする触媒の充填方法。
[Claims] (11) In a fixed bed reactor using a catalyst for hydrocarbons, a combination of a wire mesh container filled with a catalyst and a wire mesh container filled with nothing are filled into the reactor. (2) In a fixed bed reactor using a hydrocarbon catalyst, a catalyst is sealed in a wire mesh container, and a filler that does not participate in the reaction is sealed in the wire mesh container. A method for filling a catalyst, comprising filling the reactor with a combination of the above.
JP5244583A 1983-03-30 1983-03-30 Method for packing catalyst Pending JPS59179142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5244583A JPS59179142A (en) 1983-03-30 1983-03-30 Method for packing catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5244583A JPS59179142A (en) 1983-03-30 1983-03-30 Method for packing catalyst

Publications (1)

Publication Number Publication Date
JPS59179142A true JPS59179142A (en) 1984-10-11

Family

ID=12914925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5244583A Pending JPS59179142A (en) 1983-03-30 1983-03-30 Method for packing catalyst

Country Status (1)

Country Link
JP (1) JPS59179142A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103059982A (en) * 2011-10-21 2013-04-24 中国石油化工股份有限公司 Heavy oil hydrogenation method
JP2021030161A (en) * 2019-08-23 2021-03-01 株式会社 イージーエス Portable column unit, water treatment device, and water treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103059982A (en) * 2011-10-21 2013-04-24 中国石油化工股份有限公司 Heavy oil hydrogenation method
CN103059982B (en) * 2011-10-21 2015-07-22 中国石油化工股份有限公司 Heavy oil hydrogenation method
JP2021030161A (en) * 2019-08-23 2021-03-01 株式会社 イージーエス Portable column unit, water treatment device, and water treatment method

Similar Documents

Publication Publication Date Title
US2419245A (en) Regenerating carbon contaminated catalysts
US2440620A (en) Contacting solids and gaseous fluids
US3298792A (en) Apparatus for improved fluidized beds and reactors containing same
US2311564A (en) Handling finely divided materials
US2468508A (en) Conversion processes in the presence of a dense turbulent body of finely divided solid material
US2451619A (en) Catalytic conversion process
US4277444A (en) Apparatus for converting hydrocarbons
US2929774A (en) Conversion process and apparatus therefor
US5958816A (en) Method of presulfiding and passivating a hydrocarbon conversion catalyst
US3151060A (en) Process and apparatus for liquid-gas reactions
US4051019A (en) Method for loading finely divided particulate matter into a vessel
US2447043A (en) Hydroforming process
US2389236A (en) Catalytic conversion system
US3249405A (en) Catalytic reforming apparatus
JP2005509083A (en) Countercurrent hydrotreatment
US2436340A (en) Conversion of hydrocarbons using moving catalysts
IE43034B1 (en) A dispensing apparatus for particulate material
JPS59179142A (en) Method for packing catalyst
US4896704A (en) Loading techniques for downflow reactors
US2449622A (en) Multiple stage regeneration of spent catalysts
US2799359A (en) Contacting solids and gases
US2763595A (en) Heat balanced hydroforming process
US2766186A (en) Conversion of fluid hydrocarbon in the presence of a moving mass of granular catalyst
US2383218A (en) Hydrocarbon conversion
US2900330A (en) Fluidized solids hydrocarbon conversion system with an improved solids transfer between the reaction and stripping zones