JPS59178754A - Heat dissipating member for heat generator - Google Patents

Heat dissipating member for heat generator

Info

Publication number
JPS59178754A
JPS59178754A JP5237883A JP5237883A JPS59178754A JP S59178754 A JPS59178754 A JP S59178754A JP 5237883 A JP5237883 A JP 5237883A JP 5237883 A JP5237883 A JP 5237883A JP S59178754 A JPS59178754 A JP S59178754A
Authority
JP
Japan
Prior art keywords
heat
porous
copper
heat dissipating
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5237883A
Other languages
Japanese (ja)
Inventor
Tetsuo Kumazawa
熊沢 鉄雄
Hiroaki Doi
土居 博昭
Tatsuji Sakamoto
坂本 達事
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5237883A priority Critical patent/JPS59178754A/en
Publication of JPS59178754A publication Critical patent/JPS59178754A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Abstract

PURPOSE:To reduce the thermal stress generated in a semiconductor element by decreasing the thermal resistance by a method wherein junction is performed by interposing an intermediate member made of porosity of good thermal conductivity between said element generating heat and a heat dissipator, when said dissipator is adhered to said element. CONSTITUTION:When the semiconductor element 4 is adhered to the lower surface of a disk 2 surrounding a copper stud 1, the intermediate member made of a porous member 3 such as copper is interposed between the disk 2 and the element 4. This porous member 3 is fabricated by the compression sintering by a copper powder metallurgical method and is made to have a deisred rate of vacancy. Thereafter, the lower surface of the outer periphery of the disk 2 is brazed to a ceramic body 6 surrounding the element 4, and the terminals provided to the element 4 are connected to lead wires 8 by means of fine wires 5. Next, while the outer end of the lead wire 8 is led out, a ceramic body 9 serving as the bottom is fixed to the ceramic body 6 with sealing glass 7, thus sealing the element 4.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体素子などの発熱体に熱的に接合する放熱
体に関し、特に半導体素子などの発熱体に生じる熱応力
を低減し、発熱体の破壊を防止することを目的としてお
り、LSl、IC,ダイオードなどの半導体製品に利用
される。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a heat sink that is thermally bonded to a heat generating body such as a semiconductor element, and in particular reduces the thermal stress generated in the heat generating body such as a semiconductor element, and The purpose is to prevent destruction, and it is used in semiconductor products such as LSIs, ICs, and diodes.

〔発明の背景〕[Background of the invention]

従来のLSI、IC、ダイオードなどの発熱体では、熱
応力によって素子が破壊することを防止するため、その
放熱部材は例えば銅など熱伝−導性のよい部材とモリブ
デン板、あるいはタングステン板などの低膨張率を有す
る中間部材を接合して構成し、素子はこの放熱部材の低
膨張率を有する中間部材に接合される。このように、放
熱部材に中間部材としてモリブデン板を入れることによ
り低膨張の半導体素子と熱膨張の大きい銅部材との整合
がとれる。しかしながら、放熱部材にモリブデン板など
の低膨張率を有する中間部材を用いると、この部材は熱
抵抗が大きいので熱の放散が妨げられること、またモリ
ブデン板などは高価であることなどの欠点がある。
In conventional heat generating elements such as LSIs, ICs, and diodes, in order to prevent the elements from breaking due to thermal stress, the heat dissipating member is made of a material with good thermal conductivity such as copper and a molybdenum plate or a tungsten plate. It is constructed by joining an intermediate member having a low coefficient of expansion, and the element is joined to the intermediate member having a low coefficient of expansion of the heat dissipating member. In this way, by inserting the molybdenum plate as an intermediate member in the heat dissipation member, matching between the semiconductor element with low expansion and the copper member with high thermal expansion can be achieved. However, when an intermediate member with a low expansion coefficient such as a molybdenum plate is used as a heat dissipation member, there are disadvantages such as the high thermal resistance of this member, which hinders heat dissipation, and the fact that molybdenum plates are expensive. .

〔発明の目的〕[Purpose of the invention]

本発明の目的は、半導体素子などの発熱体に生じる熱応
力を低減し、同時に熱抵抗の小さい発熱体用放熱部材を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a heat dissipation member for a heat generating body that reduces thermal stress occurring in a heat generating body such as a semiconductor element and has low thermal resistance.

〔発明の概要〕 半導体素子などの発熱体の接合部では放熱、特性と強度
とは互いに矛循する性質となる。放熱部材の一部にモリ
ブデン板などの低膨張率を有する部材を使用すると、放
熱が悪くなるが素子に生じる応力は低減される。まだ、
放熱部材の一部にモリブデン板などの低膨張率を有する
部材を使用しないと、放熱は良くなるが素子に大きな応
力が生じる。この低熱膨張部材を取り除いて、しかも低
応力となる状況を考察した結果、素子に接合する伝導性
部材を軟弱化すればよいことがわかった。これを実施す
るため、本発明は、熱伝導性部材の少くとも素子接合面
側を多孔質体とし、放熱部材を低熱抵抗でしかも低応力
を有するようにしたものである。
[Summary of the Invention] Heat dissipation, characteristics, and strength are contradictory to each other at the joints of heating elements such as semiconductor elements. If a member having a low expansion coefficient, such as a molybdenum plate, is used as part of the heat dissipating member, heat dissipation will be poor, but stress generated in the element will be reduced. still,
If a member having a low expansion coefficient, such as a molybdenum plate, is not used as part of the heat dissipation member, heat dissipation will be improved, but large stress will be generated in the element. As a result of considering a situation in which this low thermal expansion member was removed and stress was reduced, it was found that the conductive member bonded to the element should be made softer. In order to implement this, the present invention makes at least the element bonding surface side of the thermally conductive member a porous body, so that the heat dissipating member has low thermal resistance and low stress.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の発熱体用放熱体の一実施例を第1図および
第2図によって説明する。
EMBODIMENT OF THE INVENTION Hereinafter, one embodiment of the heat radiating element for a heating element of the present invention will be described with reference to FIGS. 1 and 2.

熱伝導性のよい部材例えば銅スタット1はセラミック体
6にろう付けされた円板2と熱伝導性のよい中間部材と
して例えば銅などの多孔質部材3に銀ろう付けされてお
り、放熱体を形成している。
A member with good thermal conductivity, such as a copper stud 1, is soldered with silver to a disc 2, which is brazed to a ceramic body 6, and a porous member 3, such as copper, as an intermediate member with good thermal conductivity. is forming.

多孔質部材3の内面側には半導体素子4が金シリコン共
晶合金により接合され、この半導体素子4の端子は、リ
ード線5により外部のコバールリード線8に接続してい
る。セラミック体6と封止用セラミック体9とは低融点
ガラス7によって接合され封止している。
A semiconductor element 4 is bonded to the inner surface of the porous member 3 using a gold-silicon eutectic alloy, and a terminal of the semiconductor element 4 is connected to an external Kovar lead wire 8 via a lead wire 5. The ceramic body 6 and the sealing ceramic body 9 are bonded and sealed by a low melting point glass 7.

上記の多孔質部材3は例えば銅粉末冶金法により圧縮焼
結して形成した多孔質の焼結銅が用いられる。焼結銅の
空孔率は加圧圧力を加減して所定の割合とする。均一な
空孔率を有する焼結銅を形成するには、加圧分布、焼結
温度を厳密に制御することが重要となる。放熱体に多孔
質の焼結銅を用いた場合、焼結銅と半導体素子4との接
合は焼結銅表面に金メッキを施し、半導体素子4を金シ
リコン共晶により接合する。この場合、多孔質銅表面の
凹凸がはげしく、金メッキが困難な場合、表面のごく薄
い層のみを潰して空孔率をはヌ零としてからメッキする
かまたは、焼結時に表面のごく薄い皮層のみを空孔率を
零近くに下げて、焼結した放熱体にメッキを施しやすく
して用いることができる。次に粉末冶金法で形成した多
孔質銅の熱伝導率、降伏応力の例を示す。形成した3種
の多孔質銅の空孔率はOチ、13%、30%である。
For the porous member 3, porous sintered copper formed by compression sintering using a copper powder metallurgy method is used, for example. The porosity of the sintered copper is adjusted to a predetermined ratio by adjusting the pressure. In order to form sintered copper with uniform porosity, it is important to strictly control the pressure distribution and sintering temperature. When porous sintered copper is used as the heat sink, the sintered copper and the semiconductor element 4 are bonded by gold plating on the surface of the sintered copper, and the semiconductor element 4 is bonded using gold-silicon eutectic. In this case, if the porous copper surface is extremely uneven and gold plating is difficult, it is necessary to crush only the very thin layer on the surface to eliminate the porosity before plating, or to remove only the very thin skin layer on the surface during sintering. can be used by lowering the porosity to near zero to make it easier to plate the sintered heat sink. Next, examples of the thermal conductivity and yield stress of porous copper formed by powder metallurgy are shown. The porosity of the three types of porous copper that was formed was 0.5%, 13%, and 30%.

これら空孔率0チ、13チ、30q6の多孔質銅をそれ
ぞれレーザフラツンユ法で測定した熱伝導率は400K
cat/m、 h、 C,280Kca7/m、 h、
 C。
The thermal conductivity of these porous coppers with porosity of 0, 13, and 30q6, respectively, measured by the laser flattening method is 400K.
cat/m, h, C,280Kca7/m, h,
C.

150Kc3t/m、h、 cであった。−力量孔率0
%。
It was 150Kc3t/m, h, c. - Power porosity 0
%.

13%、30%の多孔質銅の降伏応力は300MPa 
The yield stress of 13% and 30% porous copper is 300MPa
.

124MP、、42MP、であった。また縦弾性係数は
135000M、P、 、 1010O500,、35
000MP、であった。
It was 124MP, 42MP. Also, the longitudinal elastic modulus is 135000M, P, , 1010O500,,35
It was 000MP.

上記の多孔質銅の場合と同様の方法により測定したモリ
ブデン板の熱伝導率は140 K CatAn 、 h
、t:’であった。モリブデン板を多孔質銅で置き換え
るにはモリブデン板の熱伝導率140K CaL/m、
h 、 Cより大きな熱伝導率を有する多孔質銅を採用
できる。例えば、仝孔率30チの多孔質銅は10KCa
−/%m、h、Cはどモリブデン板の熱伝導率より優れ
ている。空孔率が小さいほど伝熱特性が上がる。一方、
強度の点からはモリブデン板の降伏応力530M、P、
、縦弾性係数35000M、P、であるから、熱膨張の
大きさと縦弾性係数あるいは降伏応力との積の比較で、
この積が小さいほど放熱体から半導体素子がうける応力
は緩和される。ここで多孔質鋼の線膨張係数は空孔率に
関係な(17X10−’t?’。
The thermal conductivity of the molybdenum plate, measured by the same method as for porous copper above, is 140 K CatAn, h
, t:'. To replace a molybdenum plate with porous copper, the thermal conductivity of the molybdenum plate is 140K CaL/m,
h, porous copper having a higher thermal conductivity than C can be employed. For example, porous copper with a porosity of 30 cm is 10 KCa.
-/% m, h, and C are superior to the thermal conductivity of molybdenum plates. The smaller the porosity, the better the heat transfer properties. on the other hand,
In terms of strength, the yield stress of molybdenum plate is 530M, P,
, the longitudinal elastic modulus is 35000M,P, so by comparing the product of the magnitude of thermal expansion and the longitudinal elastic modulus or yield stress,
The smaller this product is, the more the stress applied to the semiconductor element by the heat sink is relaxed. Here, the coefficient of linear expansion of porous steel is related to the porosity (17X10-'t?').

モリブデン板は4.9X10−6r’である。したがっ
て線膨張係数の比4.9/17キ1/3.5  に相当
した強さの低下が必要である。すなわち、焼結銅の縦弾
性値をもつ多孔鋼であればよく、空孔率13チ以上の多
孔質鋼が適応できる。上記例は熱伝導率と強度に関して
一面からの実施方法の例であるが、詳細には熱膨張差に
よる応力分布、放熱構造の違いによる温度分布、接合材
料、多孔質部材の厚さなどにより、空孔率は種々な範囲
が採用でき、その範囲は8チ〜50チの範囲である。
The molybdenum plate is 4.9X10-6r'. Therefore, it is necessary to reduce the strength by a linear expansion coefficient ratio of 4.9/17 x 1/3.5. That is, any porous steel with a longitudinal elasticity value of sintered copper may be used, and porous steel with a porosity of 13 or more is suitable. The above example is an example of an implementation method from one aspect regarding thermal conductivity and strength, but in detail, stress distribution due to thermal expansion difference, temperature distribution due to difference in heat dissipation structure, bonding material, thickness of porous member, etc. Various ranges of porosity can be adopted, and the range is from 8 to 50 inches.

次に本発明の放熱体の他の例を第3図により説明する。Next, another example of the heat sink of the present invention will be explained with reference to FIG.

この例は、第1図、第2図に示す例において、銅スタッ
トと中間部材とを1つの多孔性部材のみで置換える構造
としたものである。
This example has a structure in which the copper studs and the intermediate member in the examples shown in FIGS. 1 and 2 are replaced with only one porous member.

第3図において、放熱体は多孔性部材10例えば多孔質
鋼のみで形成され、セラミック板6にろう付けされた円
板6にろう付けされている。この多孔性部材10の内面
側には、半導体素子4が金ンリコン共晶合金により接合
されている。そして、この半導体素子4の端子はリード
線5により外部のコバールリード線8に接続している。
In FIG. 3, the heat radiator is a porous member 10 made of only porous steel and brazed to a circular plate 6 which is brazed to a ceramic plate 6. In FIG. A semiconductor element 4 is bonded to the inner surface of the porous member 10 using a gold-licon eutectic alloy. The terminals of this semiconductor element 4 are connected to external Kovar lead wires 8 via lead wires 5.

また、セラミック板6と封止用のセラミック板9とは、
低融点ガラス7によって接合され封止している。このよ
うに構成すると、放熱体の一部を形成する低)彫張率を
有する中間部材が不要となり、構造および加工が容易と
なり更に小形化を図ることができる。一般に異種材料の
平板を重ねた構造で板厚方向の熱抵抗Rは板厚tに対す
る熱伝導率(λ)の比を加え合わせた値(R−Σ−)で
決まる。例えλ ば従来の構造においてモリブデン板厚さ0.8 m、=
1.75xl O−’ (m2. h、 C/Kcat
 )である。この重ね構造を空孔率13%の多孔性銅材
料のみとした場合に、熱抵抗が等しくなる板厚は、几=
−よ80 す、t= 4.9 smとなる。すなわちモリブデン板
と銅板の合わせた厚さ5.8■を空孔率13チの焼結銅
単体に置換えるには、厚さを4.9 mnと減少させる
ことが熱放散の点から必要である。このような利用は孕
孔率零の純銅が薄い場合に効果がある。
Furthermore, the ceramic plate 6 and the sealing ceramic plate 9 are
They are bonded and sealed by low melting point glass 7. With this configuration, there is no need for an intermediate member having a low elongation that forms part of the heat radiating body, and the structure and processing become easy, and further miniaturization can be achieved. Generally, in a structure in which flat plates of different materials are stacked, the thermal resistance R in the plate thickness direction is determined by the value (R-Σ-) that is the sum of the ratio of thermal conductivity (λ) to plate thickness t. For example, if λ is a conventional structure, the molybdenum plate thickness is 0.8 m, =
1.75xl O-' (m2.h, C/Kcat
). When this stacked structure is made of porous copper material with a porosity of 13%, the plate thickness at which the thermal resistance becomes equal is 几=
-Yo80, t=4.9 sm. In other words, in order to replace the combined thickness of the molybdenum plate and copper plate, which is 5.8 mm, with sintered copper with a porosity of 13 mm, it is necessary to reduce the thickness to 4.9 mm from the viewpoint of heat dissipation. be. Such use is effective when pure copper with zero porosity is thin.

次に第3図に示すような、放熱体を構成する多孔質部材
を銅粉のみで焼結形成する以外の例について述べる。放
熱体の半導体素子接合面側のみ、空孔率をあげ、他の部
分は空孔率を下げることによって半導体素子との熱膨張
差による熱応力を下げ、同時に熱伝導率を良くすること
ができる。このような構造の放熱体は銅材料上に銅粉末
をのせ焼結することによシ作成することができる。
Next, an example other than the one in which the porous member constituting the heat sink is formed by sintering only copper powder as shown in FIG. 3 will be described. By increasing the porosity only on the semiconductor element bonding surface side of the heat sink and lowering the porosity in other parts, it is possible to reduce thermal stress due to the difference in thermal expansion with the semiconductor element and improve thermal conductivity at the same time. . A heat sink having such a structure can be created by placing copper powder on a copper material and sintering it.

また、焼結体と半導体素子との接合面近傍(あるいは表
面全体)のみにモリブデン粉やクンクステン粉や黒鉛粉
などの低膨張率を有する材料を銅粉に混合して焼結した
放熱体を用いることにより、放熱特性に優れ、しかも半
導体素子に生じる熱応さ 力が/J\い放熱体に提供することができる。 −また
、更に熱伝導性がよい材料を混合して空孔を形成した二
種以上の材料から成る銅焼結体も使用できる。銅粉に5
%の黒鉛を含有させた焼結体を作成した場合、計算で推
定した値と同程度の熱伝導率と強度が得られた。
In addition, a heat dissipation body made by mixing copper powder with a material with a low expansion coefficient such as molybdenum powder, kunksten powder, or graphite powder and sintering it is used only near the joint surface (or the entire surface) between the sintered body and the semiconductor element. As a result, it is possible to provide a heat dissipating body with excellent heat dissipation properties and with a low thermal stress generated in the semiconductor element. - It is also possible to use a copper sintered body made of two or more materials in which pores are formed by mixing a material with better thermal conductivity. 5 for copper powder
When creating a sintered body containing % graphite, thermal conductivity and strength comparable to those estimated by calculation were obtained.

上記の各実施例において、素子はモリブデンなどの低膨
張率を有する中間部材を介在させないで直接に熱伝導率
のよい部材からなる放熱体に接合するため、熱伝導が改
善され、低膨張率の中間部材が無用となることで材料費
が節約される。特にモリブデンなどの低膨張率を有する
材料は高価な材料であり材料費の節約は大きな効果とな
る。また、一般に中間部材は打ち抜きあるいは焼結で作
り板の両面が平行でなくそっているため、1体素子と銅
放熱体とを接合すると薄肉厚の素子が曲がって接合され
る。低膨張率の中間部材を無くすることで素子の接合部
の構造が簡単化され、しかも、モリブデンなどの中間部
材に起因する曲がりが解消される効果がある。またモリ
ブデンなどの中間部材は熱的・機械的性質が定っており
モリブデンなどの中間部材を導入すると素子・中間部材
・銅で形成される半導体部品ではシリコンに生じる応力
は一義的に決まる。しかし焼結多孔質鋼を用いた場合、
空孔率を変えることで熱伝導率・降伏・引張強さ等を目
的に応じて制御することができる。
In each of the above embodiments, the element is directly bonded to a heat sink made of a material with a good thermal conductivity without intervening an intermediate member with a low expansion coefficient such as molybdenum, so heat conduction is improved and the element has a low expansion coefficient. Material costs are saved by eliminating the need for intermediate parts. In particular, materials with a low expansion coefficient such as molybdenum are expensive materials, and saving material costs is a significant effect. Further, since the intermediate member is generally made by punching or sintering and both sides of the plate are not parallel and are not curved, when the one-piece element and the copper heat sink are joined together, the thin-walled element is joined in a curved manner. Eliminating the intermediate member with a low coefficient of expansion simplifies the structure of the joint portion of the element, and has the effect of eliminating bending caused by the intermediate member such as molybdenum. Further, intermediate members such as molybdenum have fixed thermal and mechanical properties, and when an intermediate member such as molybdenum is introduced, the stress generated in silicon in semiconductor components made of elements, intermediate members, and copper is uniquely determined. However, when using sintered porous steel,
By changing the porosity, thermal conductivity, yield, tensile strength, etc. can be controlled depending on the purpose.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、素子に生じる熱
応力を低減し、同時に熱抵抗の小さい放熱体を得ること
ができる。
As described above, according to the present invention, it is possible to reduce thermal stress occurring in an element and at the same time obtain a heat sink with low thermal resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の放熱体の一実施例を説明する平面図、
第2図は第1図のA−A断面図、第3図は本発明の放熱
体の他の実施例を説明する断面図である。 1・・・銅スタット、3・・・多孔管部材、4・・・半
導体素子、6・・・セラミック体、7・・・封止ガラス
、8・・・リード線、9・・・セラミック体、10・・
・多孔質部材。 χ 1  図 第 2 図 闇 3 図
FIG. 1 is a plan view illustrating an embodiment of the heat sink of the present invention;
FIG. 2 is a sectional view taken along the line AA in FIG. 1, and FIG. 3 is a sectional view illustrating another embodiment of the heat sink of the present invention. DESCRIPTION OF SYMBOLS 1... Copper stud, 3... Porous tube member, 4... Semiconductor element, 6... Ceramic body, 7... Sealing glass, 8... Lead wire, 9... Ceramic body , 10...
・Porous member. χ 1 Figure 2 Darkness 3 Figure

Claims (1)

【特許請求の範囲】 1、発熱体と熱的に接合し、発熱体の熱を吸収。 発散させる熱伝導性部材からなる放熱体を見えた発熱体
用放熱部材において、前記放熱体の少くとも発熱体が接
合される面側部に、所定の空孔率を有する多孔質部を形
成したことを特徴とする発熱体用放熱部材。 2、放熱体を、多孔質部材で構成し、この放熱体に発熱
体を接合したことを特徴とする特許請求の範囲第1項記
載の発熱体用放熱部材。 3、放熱体の一面に多孔質部材を接合し、この多孔質部
材に発熱体を接合したこと全特徴とする特許請求の範囲
第1項記載の発熱体用放熱部材。 4、放熱体の発熱体接合面側の空孔率を他の部分より太
きくしたこと′4c%徴とする特許請求の範囲第2項記
載の発熱体用放熱部材。 5、多孔質部は銅粉を焼結して形成した多孔質銅である
ことを特徴とする特許請求の範囲第1項〜第3項のいず
nか1項に記載の発熱体用放熱部材。 6、多孔質部は銅粉と低膨張材料粉とを部分して焼結し
て形成した多孔質銅であることを特徴とする特許請求の
範囲第1項〜第3項のいずれか1項に記載の発熱体用放
熱部材。 7、多孔質部の空孔率を8チ〜50チに選定したことを
特徴とする特許請求の範囲第1項〜第7項のいずれか1
項に記載の発熱体用放熱部材。
[Claims] 1. Thermal connection with the heating element and absorption of the heat of the heating element. In a heat dissipating member for a heat generating element in which a heat dissipating body made of a heat conductive member for dissipating heat is visible, a porous portion having a predetermined porosity is formed at least on a side surface of the heat dissipating body to which the heat generating body is bonded. A heat dissipating member for a heating element characterized by the following. 2. The heat dissipating member for a heat generating body according to claim 1, wherein the heat dissipating body is made of a porous member, and the heat generating body is joined to the heat dissipating body. 3. A heat dissipating member for a heat generating body according to claim 1, characterized in that a porous member is bonded to one surface of the heat dissipating body, and a heat generating body is bonded to this porous member. 4. The heat dissipating member for a heat generating element according to claim 2, wherein the porosity of the heat dissipating body on the side where the heat dissipating element is joined is made larger than that of other parts by '4c%. 5. The heat radiation for a heating element according to any one of claims 1 to 3, wherein the porous portion is porous copper formed by sintering copper powder. Element. 6. Any one of claims 1 to 3, wherein the porous portion is porous copper formed by partially sintering copper powder and low expansion material powder. A heat dissipating member for a heating element according to. 7. Any one of claims 1 to 7, characterized in that the porosity of the porous portion is selected to be 8 to 50 cm.
A heat dissipating member for a heating element as described in 2.
JP5237883A 1983-03-30 1983-03-30 Heat dissipating member for heat generator Pending JPS59178754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5237883A JPS59178754A (en) 1983-03-30 1983-03-30 Heat dissipating member for heat generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5237883A JPS59178754A (en) 1983-03-30 1983-03-30 Heat dissipating member for heat generator

Publications (1)

Publication Number Publication Date
JPS59178754A true JPS59178754A (en) 1984-10-11

Family

ID=12913135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5237883A Pending JPS59178754A (en) 1983-03-30 1983-03-30 Heat dissipating member for heat generator

Country Status (1)

Country Link
JP (1) JPS59178754A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053855A (en) * 1988-10-25 1991-10-01 Mitsubishi Denki Kabushiki Kaisha Plastic molded-type semiconductor device
US6257487B1 (en) 1989-09-06 2001-07-10 Fujitsu Limited Electronic cashless system
US6915951B2 (en) 1989-09-06 2005-07-12 Fujitsu Limited Electronic cashless system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053855A (en) * 1988-10-25 1991-10-01 Mitsubishi Denki Kabushiki Kaisha Plastic molded-type semiconductor device
US6257487B1 (en) 1989-09-06 2001-07-10 Fujitsu Limited Electronic cashless system
US6378775B2 (en) 1989-09-06 2002-04-30 Fujitsu Limited Electronic cashless system
US6915951B2 (en) 1989-09-06 2005-07-12 Fujitsu Limited Electronic cashless system
US6926200B1 (en) 1989-09-06 2005-08-09 Fujitsu Limited Electronic cashless system

Similar Documents

Publication Publication Date Title
JPS5846073B2 (en) Thermal conductive conductive support for supporting semiconductor elements
JP3336982B2 (en) Semiconductor device and method of manufacturing the same
US5760473A (en) Semiconductor package having a eutectic bonding layer
JPH0662344B2 (en) Ceramic and metal joint
JPS59178754A (en) Heat dissipating member for heat generator
GB1588477A (en) Prefabricated composite metallic heat-transmitting plate unit
JPS6318648A (en) Circuit board using aluminum nitride
JPH08222658A (en) Semiconductor element package and production thereof
JPH0883864A (en) Power semiconductor device
EP1601012A2 (en) Microelectronic assembly having variable thickness solder joint
JP2019510367A (en) Circuit carrier manufacturing method, circuit carrier, semiconductor module manufacturing method, and semiconductor module
JPS63174339A (en) Integrated circuit chip packaging construction
JPH0321092B2 (en)
JPH0677678A (en) Heat sink structure
JPS63224242A (en) Heat transfer device
JPS5832423A (en) Semiconductor device
JPH063832B2 (en) Semiconductor device
JPS62136059A (en) Lead frame for resin sealed semiconductor device
JPH056949A (en) Heat sink
JPH03218031A (en) Semiconductor integrated circuit device and preform bonding material used in the same
US3512050A (en) High power semiconductor device
JPH0547953A (en) Package for semiconductor device
JPH01120853A (en) Semiconductor device
JPH05136303A (en) Heat sink for electronic device
JPS6050344B2 (en) Composite terminal for integrated circuits