JPS59178678A - Magnetic bubble device - Google Patents
Magnetic bubble deviceInfo
- Publication number
- JPS59178678A JPS59178678A JP58052621A JP5262183A JPS59178678A JP S59178678 A JPS59178678 A JP S59178678A JP 58052621 A JP58052621 A JP 58052621A JP 5262183 A JP5262183 A JP 5262183A JP S59178678 A JPS59178678 A JP S59178678A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetization
- bubble
- films
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/14—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
Abstract
Description
【発明の詳細な説明】
(技術分野)
本発明は組立が簡単で消費電力が小さく、磁気バブルを
安定に静止、保持できる磁気バブル装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a magnetic bubble device that is easy to assemble, consumes little power, and can stably hold and hold magnetic bubbles stationary.
(背景技術)
従来この種装置の磁気バブル転送方式は、フィールドア
クセス型すなわちバブル磁性膜上に形成L&バーマロイ
ノやターンをX、Yコイルによる回転磁界で磁化し、そ
の漏洩磁界の勾配で磁気バブルを転送させるものがよく
知られているところである。(Background Art) Conventionally, the magnetic bubble transfer method of this type of device is a field access type, that is, magnetizes the L & vermaloids and turns formed on the bubble magnetic film with rotating magnetic fields from X and Y coils, and the magnetic bubble is transferred by the gradient of the leakage magnetic field. What is transferred is well known.
しかしながらこの方式は磁気バブルを移動させている期
間中は磁界勾配を発生させる前記x、yコイル電流を断
つことは当然できない。また磁気バブルをなめらかに移
動させるために前記2つのコイルに流す電流は正弦波に
近い、電気的にπ/2の位相差をもつ電流が望ましく、
このためドライバの半導体素子等はアナログ的な使い方
となりここにおける消費電力が大きい。However, in this method, it is naturally impossible to cut off the x, y coil currents that generate the magnetic field gradient while the magnetic bubble is being moved. In addition, in order to move the magnetic bubble smoothly, the current flowing through the two coils is preferably a current that is close to a sine wave and has an electrical phase difference of π/2.
For this reason, the semiconductor elements of the driver and the like are used in an analog manner, which consumes a large amount of power.
さらに磁気バブルを静止、保持させる磁界障壁は・や−
マロイ膜の存在によるバイアス磁界のわずかな減少分に
だよっておシ、この磁界障壁は磁気バブルを転送する時
の磁界にくらべればほんのわずかな障壁にしかなり得す
、バイアス磁界の不均一による磁界勾配、外部じよう乱
磁界による磁界勾配等で容易に動き得る。Furthermore, the magnetic field barrier that keeps the magnetic bubble stationary is...
Due to the slight decrease in the bias magnetic field due to the presence of the Malloy film, this magnetic field barrier can be only a small barrier compared to the magnetic field when transferring the magnetic bubble, and the magnetic field gradient due to the non-uniformity of the bias magnetic field. , can easily move due to magnetic field gradients caused by external disturbance magnetic fields.
そのためバイアス磁界の均一度をかなシキびしく要求し
、外乱磁界の大きさをきびしく制限しているのが現状で
ある。Therefore, the current situation is that the uniformity of the bias magnetic field is strictly required and the magnitude of the disturbance magnetic field is strictly limited.
(発明の課題)
本発明はこれらの欠点を除去するだめに、バブル磁性膜
上にそれぞれ抗磁力の異なる二種類の矩形半硬質磁性膜
をつき合わせて形成し、これらを一定のげッチをもって
一列に配列したもので6D、磁化のだめのコイルはただ
ひとつよい磁気バブル装置を提供するもので以下詳細に
説明する。(Problems to be solved by the invention) In order to eliminate these drawbacks, the present invention forms two types of rectangular semi-hard magnetic films, each having a different coercive force, on a bubble magnetic film, and then connects them with a certain degree of contact. The 6D magnetized coils arranged in a row provide a unique magnetic bubble device and will be described in detail below.
(発明の構成および作用)
第1図1i本発明の一実施例を示す要部斜視図で、1は
磁気バブルチップ、2は磁化コイルである。(Structure and operation of the invention) FIG. 1I is a perspective view of essential parts showing an embodiment of the present invention, in which 1 is a magnetic bubble chip and 2 is a magnetizing coil.
第2図(a)は磁気バブルチップの一部平面図、(b)
は一部所面図であり、基板21上にバブル磁性膜22を
形成しさらにその上に半硬質磁性材料よシなる矩形磁化
膜23g 、23bを一方をつき合わせるように形成し
たものである。この矩形磁化膜23a、23bは第3図
にB−H特性曲線で示したような磁化特性をもつもので
あシ、たとえば第3図の曲線31が磁化膜23aの曲線
32が磁化膜23bの特性とする。32は第2図のよう
な配列のときの磁化膜の動作直線を示す。1III線3
1の抗磁力Hcaは、曲線32の抗磁力H8,の略半分
となっておシ、磁化の強さがHより大きりHcbより小
さい範囲では曲線31のみが磁化反転し、磁化の強さが
Hcbより大きいときは曲線31.32とも磁化反転す
るような構成である。Figure 2 (a) is a partial plan view of the magnetic bubble chip, (b)
1 is a partial view, in which a bubble magnetic film 22 is formed on a substrate 21, and rectangular magnetized films 23g and 23b made of a semi-hard magnetic material are formed on top of the bubble magnetic film 22 so that one side abuts against the other. These rectangular magnetized films 23a and 23b have magnetization characteristics as shown by the B-H characteristic curve in FIG. 3. For example, curve 31 in FIG. Characteristic. Reference numeral 32 indicates a straight line of motion of the magnetized film in the arrangement shown in FIG. 1III line 3
The coercive force Hca of curve 32 is approximately half of the coercive force H8 of curve 32, and in the range where the magnetization strength is greater than H and smaller than Hcb, only the magnetization of curve 31 is reversed, and the magnetization strength is When it is larger than Hcb, the structure is such that the magnetization of curves 31 and 32 is reversed.
第4図は本実施例の動作を説明する図で、同図(a)の
ように第1図の磁化コイル2によって発生された磁化力
が第3図のHcb以上で磁化方向が第4図(a)の矢印
41のようであったとすると、磁化膜23a 、23b
は図の矢印42 a 、 42 bの向きに着磁される
。なお43はバイアス磁界の方向である。従ってバブル
磁性膜22はバイアス磁界43と同方向に磁化されてお
シ、ただ磁気バブル44のみは当然バイアス磁界43と
逆方向に磁化されている。さて第4図(a)の42 a
、 42 bのような磁化方向では磁気バブル44は
磁化膜23aの一方の端部に吸いよせられる。なんと々
れは磁化42 a 、 4.2 bによるバブル磁性膜
22中の漏洩磁界は、同図に図示した磁気バブル44の
位置が最もバイアス磁界を減じる位置であるから、磁気
バブル44にとってエネルギ的に最小の位置となってい
る。FIG. 4 is a diagram explaining the operation of this embodiment. As shown in FIG. 4(a), when the magnetizing force generated by the magnetizing coil 2 of FIG. 1 is greater than Hcb of FIG. 3, the magnetization direction is as shown in FIG. If it is like the arrow 41 in (a), the magnetized films 23a, 23b
are magnetized in the directions of arrows 42a and 42b in the figure. Note that 43 is the direction of the bias magnetic field. Therefore, the bubble magnetic film 22 is magnetized in the same direction as the bias magnetic field 43, but only the magnetic bubble 44 is naturally magnetized in the opposite direction to the bias magnetic field 43. Now, 42a in Figure 4(a)
, 42b, the magnetic bubble 44 is attracted to one end of the magnetized film 23a. In other words, the leakage magnetic field in the bubble magnetic film 22 due to the magnetizations 42 a and 4.2 b has an energy impact on the magnetic bubble 44 because the position of the magnetic bubble 44 shown in the figure is the position where the bias magnetic field is most reduced. It is the smallest position.
次に第4図(b)のように磁化力41が第3図のHca
とHcbのあいだにあって、同図(a)のときと逆方向
のとき、磁化膜23aのみが磁化反転を起し磁化膜23
bはその”!l:まとなる。従ってバイアス磁界43を
減じる方向の漏洩磁界は同図(b)の磁化M 23 a
と23bとのつき合わせ部分である磁気バブル44の位
置が最も近い位置となる。これによって磁気バブル44
は同図(a)の位置から同図(b)の位置へ移動するこ
ととなる。Next, as shown in FIG. 4(b), the magnetizing force 41 is changed to Hca in FIG.
and Hcb, and when the direction is opposite to that shown in FIG.
b is its "!l: unity. Therefore, the leakage magnetic field in the direction of reducing the bias magnetic field 43 is the magnetization M 23 a in the same figure (b)
The position of the magnetic bubble 44, which is the abutting portion between and 23b, is the closest position. This causes the magnetic bubble 44
will move from the position shown in (a) of the same figure to the position shown in (b) of the same figure.
同様に第4図(c)では磁化力41が同図(a)と大き
さが同じで方向が反対の場合、磁化膜23bが磁化反転
を起し磁化膜23aの磁化方向すなわち磁化力41と同
方向となる。これによシ磁気バブル44は磁化膜23b
の端部に吸いよせられて安定する。Similarly, in FIG. 4(c), when the magnetizing force 41 has the same magnitude as that in FIG. 4(a) but the direction is opposite, the magnetization of the magnetized film 23b causes magnetization reversal, and the magnetization direction of the magnetized film 23a, that is, the magnetizing force 41. They will be in the same direction. As a result, the magnetic bubble 44 becomes the magnetized film 23b.
It is stabilized by being drawn to the edge of the
(5)
次に第4図(d)のように同図(C)と反対方向の磁化
力41を与えた場合、この場合の磁化方向は同図(a)
の場合と全く同じであるが、磁気バブル44は1ピッチ
進んだ位置の磁化膜23aの端部に安定させられること
となる。(5) Next, as shown in Figure 4(d), if a magnetizing force 41 is applied in the opposite direction to that in Figure 4(C), the magnetization direction in this case is as shown in Figure 4(a).
Although it is exactly the same as in the case of , the magnetic bubble 44 is stabilized at the end of the magnetized film 23a at a position one pitch ahead.
このようにして第4図(a)→(b)→(C)→(、)
→・・・のように磁化41を印加すると磁気バブル44
は紙面片から右方向へ転送させられることとなる。In this way, Figure 4 (a) → (b) → (C) → (,)
→ When magnetization 41 is applied as in..., magnetic bubble 44
will be transferred from the paper piece to the right.
第5図は第1図の磁化コイル2に流す電流の模型図であ
り、横軸は時間である。電流51..52゜53の大き
さ及び方向は第4図の(a) 、 (b) 、 (c)
の磁化41にそれぞれ対応している。FIG. 5 is a model diagram of the current flowing through the magnetizing coil 2 of FIG. 1, and the horizontal axis is time. Current 51. .. The size and direction of 52°53 are shown in (a), (b), and (c) in Figure 4.
correspond to the magnetization 41 of .
(発明の効果)
以上説明したように、磁気バブルの転送は・ぐプル磁性
膜−にに形成した抗磁力の異なる二種類の半硬質磁性膜
の磁化方向をそれぞれ選択的に変えることにより達成さ
れるから、磁化コイルの数はひとつで31:<、磁化コ
イルに流す電流は゛14硬質磁性膜の磁化反転するに要
する時間のみでよい。(Effects of the Invention) As explained above, the transfer of magnetic bubbles is achieved by selectively changing the magnetization direction of two types of semi-hard magnetic films with different coercive forces formed on the magnetic film. Therefore, the number of magnetizing coils is one (31), and the current flowing through the magnetizing coil is only the time required to reverse the magnetization of the hard magnetic film.
一般に半硬質磁性材料を磁化反転させるに要す(6)
る時間は電流の立上りを高速にすることによってかなり
小さくできる。Generally, the time required to reverse the magnetization of semi-hard magnetic materials (6) can be considerably reduced by increasing the current rise speed.
また磁気バブルを静止・保持させておく似(界障壁は、
磁気バブルを転送させる磁界と同じ大きさであるからバ
イアス磁界の不均一や外乱磁界によって磁気バブルが勝
手な方向へ移動してしまうことはない。In addition, the field barrier that keeps the magnetic bubble stationary is
Since the magnitude is the same as the magnetic field that transfers the magnetic bubbles, the magnetic bubbles will not move in arbitrary directions due to non-uniformity of the bias magnetic field or disturbance magnetic fields.
従って組立が簡単で、消費電力の小さいしかも耐外乱磁
界に優れた磁気バブル装置が得られる。Therefore, it is possible to obtain a magnetic bubble device that is easy to assemble, consumes little power, and has excellent resistance to disturbance magnetic fields.
第1図は本発明の一実施例を示す要部斜視図、第2図(
a)及び(b)は磁気バブルチップの一部平面図及び断
面図、第3図は実施例における動作説明図、第4図(a
)〜(d)は磁化膜のB−H特性曲線、第5図は磁化コ
イルに流す電流の模型図である。
1・・・磁気バブルチップ、2・・・磁化コイル、21
・・・基板、22・・・バブル磁性膜、23a、23b
・・・矩形磁化膜、41〜44・・・磁化方向を示す矢
印。
(7)FIG. 1 is a perspective view of the main parts showing one embodiment of the present invention, and FIG. 2 (
a) and (b) are a partial plan view and a sectional view of the magnetic bubble chip, FIG. 3 is an explanatory diagram of the operation in the embodiment, and FIG.
) to (d) are B-H characteristic curves of the magnetized film, and FIG. 5 is a model diagram of the current flowing through the magnetized coil. 1... Magnetic bubble chip, 2... Magnetizing coil, 21
... Substrate, 22 ... Bubble magnetic film, 23a, 23b
. . . Rectangular magnetized film, 41 to 44 . . . Arrows indicating magnetization directions. (7)
Claims (1)
半硬質磁性膜を一端をつき合わせて形成し、これらを一
定ピツチをもって一列に配列した磁気バブルチップと、
その磁化方向が前記半硬質磁性膜の配列方向となるよう
にした磁化コイルをもち、該磁化コイルの磁化の大きさ
及び方向によって前記二種類の半硬質磁性膜を選択的に
磁化反転させることによって磁気バブルを転送するよう
にしたことを特徴とする磁気バブル装置。A magnetic bubble chip in which two types of rectangular semi-hard magnetic films, each having a different coercive force, are formed on a bubble magnetic film with one end abutting each other, and these are arranged in a line with a constant pitch;
By having a magnetization coil whose magnetization direction is aligned with the arrangement direction of the semi-hard magnetic films, and selectively reversing the magnetization of the two types of semi-hard magnetic films depending on the magnitude and direction of magnetization of the magnetization coil. A magnetic bubble device characterized by transferring magnetic bubbles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58052621A JPS59178678A (en) | 1983-03-30 | 1983-03-30 | Magnetic bubble device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58052621A JPS59178678A (en) | 1983-03-30 | 1983-03-30 | Magnetic bubble device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59178678A true JPS59178678A (en) | 1984-10-09 |
Family
ID=12919873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58052621A Pending JPS59178678A (en) | 1983-03-30 | 1983-03-30 | Magnetic bubble device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59178678A (en) |
-
1983
- 1983-03-30 JP JP58052621A patent/JPS59178678A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4620459B2 (en) | Multilevel MRAM with improved memory density | |
US7755929B2 (en) | Spin-injection device and magnetic device using spin-injection device | |
US7682840B2 (en) | Magnetic device and method of making the same | |
Coey | Magnetism in future | |
TW330285B (en) | Spin valve magnetoresistive sensor with antiparallel pinned layer and improved exchange bias layer, and magnetic recording system using the sensor | |
JP2002056665A (en) | Magnetically stable magneto-resistive memory element | |
US3691540A (en) | Integrated magneto-resistive sensing of bubble domains | |
Tang et al. | MAGNETIC MEMORY TECHNOLOGY: Spin-transfer-torque Mram and Beyond | |
US20070023807A1 (en) | Magnetic memory | |
US3543249A (en) | High permeability magnetic film structure | |
JPS59178678A (en) | Magnetic bubble device | |
US11309006B2 (en) | Magnetic memory devices including magnetic structure with magnetic domains | |
US4058801A (en) | Field access method for bubble memories | |
US3678478A (en) | Stacking arrangement which provides self-biasing for single wall domain organizations | |
JPH10206513A (en) | Ferromagnetic spin tunnel effect element | |
US3470550A (en) | Synthetic bulk element having thin ferromagnetic film switching characteristics | |
US4171408A (en) | Device operating on the displacement of magnetic domain walls | |
US4042916A (en) | Magnetic bubble track crossover element | |
Honda et al. | Magnetic Domain With Straight Domain Walls Passing Through a Ferromagnetic Insulator for a Continuously Looped Racetrack Memory | |
Druyvesteyn | Thickness and magnetization variation in magnetic bubble materials | |
JP7555120B2 (en) | Magnetization control device and magnetic memory device | |
KR100457158B1 (en) | Magnetic memory cell for symmetric switching characteristics | |
JP3032468B2 (en) | Magnetic circuit and non-reciprocal circuit device having temperature compensation structure | |
US3732550A (en) | Bistable storage element with magnetic data storage | |
Lock et al. | Magnetic bubbles and their applications |