JPS59178416A - Production of color filter - Google Patents

Production of color filter

Info

Publication number
JPS59178416A
JPS59178416A JP58052713A JP5271383A JPS59178416A JP S59178416 A JPS59178416 A JP S59178416A JP 58052713 A JP58052713 A JP 58052713A JP 5271383 A JP5271383 A JP 5271383A JP S59178416 A JPS59178416 A JP S59178416A
Authority
JP
Japan
Prior art keywords
color filter
pattern
dyeing
casein
patterned layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58052713A
Other languages
Japanese (ja)
Inventor
Akira Miura
明 三浦
Kazuchika Oota
和親 太田
Masataka Miyamura
雅隆 宮村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58052713A priority Critical patent/JPS59178416A/en
Publication of JPS59178416A publication Critical patent/JPS59178416A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE:To form a fine color filter having high accuracy with ease in a way as to be advantageous in mass production by subjecting the filter to a stage for a surface treatment with gaseous plasma prior to the dyeing of a patterned layer. CONSTITUTION:Casein contg. dichromate is coated to about 1mum thickness on a silicon substrate on which 0.5mum Al is preliminarily deposited by evaporation. Said casein is exposed through a photomask by a contact exposing system and is developed by water. The pattern is treated with oxygen plasma (standard condition of 150W and 0.5Torr) and thereafter the patterned layer is dyed with an acidic cyan dye. A pattern resolution and dyeability are improved by the plasma treatment of the patterned layer and the formation of the fine color filter having high accuracy is made possible; moreover, the mass productivity is improved.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はカラーフィルターの形成方法に関し。[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a method for forming a color filter.

さらに詳しくは、固体撮像素子上に高精細カラーフィル
ターを形成する工程の改良に係る。
More specifically, the present invention relates to an improvement in the process of forming a high-definition color filter on a solid-state image sensor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

固体撮像素子上にカラーフィルターを形成する方法とし
て、従来、被染色性の感光樹脂全同累子上に設け、露光
現像処理を施して染色所望域全パターン化し、しかる後
該パターン域を各種染料を用いて染色し、フィルタ一層
全形成するという所謂る「染色法」が知られている。こ
の方法は、きわめて単純な方式ながらも現行の要求特性
を十分に満たしたカラーフィルター形成を可能ならしめ
しかも他の方式に比べて低コストてかつより量産性に富
む方式である。このような染色法によるフィルター形成
工程は概路次のような工程を経て行なわれている。即ち
固体撮像素子上に透明な平滑化層を設け、この層上に被
染色性の感光層全スピンコード法により塗布し、該感光
層の所望域全フォトマスク金介して露光したのち、所望
パターンを現像により像出する。(この段階でバクーン
化の工程が終了し、かつ染色受容層が形成されたことに
なる。)該バクーン化層即ち染色受容層は、適宜選択さ
れた染色液、染色条件を用いて処理され染色0着色化が
行なわれる。この工程を2回ないし3回繰返し2色又は
3色のカラーフィルター層が形成される。通常、着色層
間の混色防止のために該層間IL無色透明な中間保護層
を設ける場合が多い。このように染色法においては同一
の樹脂層に対してパターン化と染色化が順次施されるこ
とV−なるため、該樹脂層は優れたパターン形成能と共
に、良好な分光特性を示す染色性能を併せて・11シて
いる必要がある。こnまでカラーフィルター構造工程で
専ら京クロム酸塩等を感光剤としてδむポリビニルフル
コール、ゼラチン等のタンパク’ij カ′パターン化
、染色化層として利用されてきlヒ。これらの材料は、
きわめて慶秀な染色受容制であるが、一方感光材として
見たユ易合には、ネガ型の感光材料に属するものであ、
す、パターン解像力は、必らすしも良好とは言い難い。
Conventionally, as a method for forming a color filter on a solid-state image sensor, the color filter is placed on a photosensitive resin that can be dyed, exposed and developed to form a pattern in the entire desired dyeing area, and then the patterned area is coated with various dyes. A so-called "staining method" is known in which the entire filter is formed in one layer. Although this method is an extremely simple method, it is possible to form a color filter that fully satisfies the current required characteristics, and it is also a method that is lower in cost and more suitable for mass production than other methods. The process of forming a filter using such a dyeing method is generally carried out through the following steps. That is, a transparent smoothing layer is provided on the solid-state image sensor, and a dyeable photosensitive layer is coated on this layer by a spin-coating method, and the desired area of the photosensitive layer is exposed to light through a photomask, and then a desired pattern is formed. is imaged by development. (At this stage, the baking process has been completed and the dye-receiving layer has been formed.) The baking layer, that is, the dye-receiving layer, is treated and dyed using an appropriately selected dye solution and dyeing conditions. Zero coloring is performed. This process is repeated two or three times to form two or three color filter layers. Usually, a colorless and transparent intermediate protective layer is often provided between the layers to prevent color mixing between the colored layers. In this way, in the dyeing method, patterning and dyeing are sequentially applied to the same resin layer, so the resin layer has excellent pattern forming ability as well as dyeing performance that shows good spectral characteristics. In addition, you need to be 11 years old. Up until now, in the color filter construction process, proteins such as polyvinylfluor, gelatin, etc. have been used exclusively as photosensitive agents for patterning and dyeing layers. These materials are
Although it is a very good dye-receptive system, when viewed as a light-sensitive material, it belongs to a negative-type light-sensitive material.
However, the pattern resolution is not necessarily good.

近時、固体撮像素子の小型化、高性能化及び高1i”J
 KAIJ化の要請が一段と高まる中で、カラーフィル
ター画素のパターン寸法は、現行の約10〜20μmか
らさらに一層微細化する傾向にあり、同時に欠陥の少な
いフィルター品質の向上、ピッチ合わせ7哨度の向上及
び分光特性の均−住改善等々についてなすう勢に対応す
るためにはネガ型感光材料を使用するカラーフィルター
形成工程において、微細パターン形成及び染色性の両面
カンら、従来法のフィルター形成プロセスの改良を図っ
てい(ことが高精細カラーフィルター量産化の課題とな
っている。
Recently, solid-state image sensors have become smaller, have higher performance, and have a high 1i"J
As the demand for KAIJ continues to increase, the pattern size of color filter pixels tends to become even finer from the current approximately 10 to 20 μm, while at the same time improving filter quality with fewer defects and improving pitch alignment. In order to respond to the trend toward improving the uniformity of spectral characteristics, etc., in the color filter forming process using negative photosensitive materials, improvements to the conventional filter forming process such as fine pattern formation and double-sided dyeing are required. (This is a challenge for mass production of high-definition color filters.)

〔発明の目的〕[Purpose of the invention]

本発明は、ネガ型感光材を使用してパターン化と染色化
ヲ施す従来の染色法によってカラーフィルターを形成す
る方法において、微細でかつ高精度なカラーフィルター
を簡便に、しかも量産上も有利に形成するという改善さ
れたフィルター形成プロセスを提供するものである。
The present invention is a method for forming color filters by the conventional dyeing method of patterning and dyeing using a negative photosensitive material. The present invention provides an improved filter forming process.

〔発明の概要〕[Summary of the invention]

本発明方法は、染色性に優れた畢クロム酸塩含有ゼラチ
ン、及°びカゼイン等ネガ型材料のパターン形成工程の
あとで該パターン化層全プラズマ雰囲気中で処理するこ
とを特徴とするカラーフィルター製造方法である。即ち
、本発明は、固体撮像素子上にカラーフィルターを形成
する方法において平滑化された固体撮像索子上にネガ型
のred光層を設け%露光現像処理を施してパターン化
する工程と該パターン化層全染色する工程との間にあら
たに、該パターン化層を酸素、窒素、空気等の少なくと
も一成分を含むプラズマガスで表面処理する工程を具備
することを特徴としたカラーフィルターの製造方法であ
る。
The method of the present invention is a color filter characterized in that, after a pattern formation step of a negative-tone material such as gelatin containing chromate having excellent dyeing properties and casein, the patterned layer is treated in a plasma atmosphere. This is the manufacturing method. That is, the present invention provides a method for forming a color filter on a solid-state imaging device, including a step of providing a negative red light layer on a smoothed solid-state imaging element and subjecting it to % exposure and development treatment to form a pattern; A method for producing a color filter, comprising a step of surface-treating the patterned layer with a plasma gas containing at least one component such as oxygen, nitrogen, air, etc. between the step of dyeing the entire patterned layer. It is.

μ下不発明をさらに詳しく説明する。The non-invention under μ will be explained in more detail.

カラーフィルター形成に使用される感光性樹脂層は、前
述の如く、ネガ型の材料に分類されるものであり、こ扛
ら材料のパターン解像性は、材料構成ばかりでな(、そ
の他種々の要因によって左右される。例えば、露光器の
種類や下地基板の種類、基板段差の有無、現像条件、ベ
ーキング条件等々である。これらの要因に加え、パター
ン形成材料自身の膜厚は、解像性に大きく影響すること
−が知られている。とりわけ、ネガ型材料は架橋化を伴
なうパターン形成工程を経ることがら膜厚が厚0と、露
光強度分布の不均一性、現像時の膨潤等を招き易く、又
r値が低いためパターン端部でのスソ引きが著しく大き
くなって、パターン変換差が悪くなってしまう場合が多
い。このためパターン形成上高解像力を得るには、でき
るだけ膜厚全薄(することが望ましい。
As mentioned above, the photosensitive resin layer used to form the color filter is classified as a negative type material, and the pattern resolution of these materials depends not only on the material composition (but also on various other factors). For example, the type of exposure device, type of underlying substrate, presence or absence of substrate steps, development conditions, baking conditions, etc.In addition to these factors, the film thickness of the pattern forming material itself is influenced by the resolution. It is known that negative-tone materials undergo a pattern formation process that involves crosslinking, resulting in a film thickness of 0, nonuniform exposure intensity distribution, and swelling during development. In addition, due to the low r value, the streaking at the edge of the pattern becomes extremely large, which often worsens the pattern conversion difference.For this reason, in order to obtain high resolution in pattern formation, it is necessary to use as much film as possible. Thick/thin (preferably).

しかるにカラーフィルター形成工程が、半導体集積回路
等の製造工程におけるレジスト処理プロセスと比べて特
異な点は、バクーン形成後、所望の分子、t¥f注金示
すように該パターン域に対して染色処理を施すことにあ
る。現行のカラーフィルター製造工程で賞月されている
ゼラチン、カゼインといったきわめて染色性に優れた材
料に36いても。
However, the color filter forming process is unique compared to the resist treatment process used in the manufacturing process of semiconductor integrated circuits, etc., in that after forming the coating, desired molecules are poured and the pattern area is dyed as shown. The goal is to do the following. Even with materials that have excellent dyeing properties, such as gelatin and casein, which are used in the current color filter manufacturing process.

所定の分光特性を得るために、少なくとも1〜2μm厚
に設ける必要がある。このような膜厚において上記材料
が示す解像性は寸法均一性も考慮すればたかだか10μ
m前後にすぎない。勿論、該材料層の染色性を増長すべ
(、染色条件を工夫して(例えば染色温度の上昇9、染
色助剤の添加等々)パターン形成層をできるだけ薄(す
る方法も考えられるが、安定な染色バ/に一層を短時間
で得にくいこと、及び染色液の保存管理が困難になるこ
と等の問題が生ずる。
In order to obtain predetermined spectral characteristics, it is necessary to provide a thickness of at least 1 to 2 μm. At such a film thickness, the resolution exhibited by the above material is at most 10μ, considering the dimensional uniformity.
It is only around m. Of course, it is possible to increase the dyeability of the material layer (or to make the pattern forming layer as thin as possible by devising dyeing conditions (e.g., increasing the dyeing temperature9, adding dyeing aids, etc.), but it is possible to Problems arise such as it is difficult to obtain a single layer of dyeing solution in a short time and storage management of the dyeing solution becomes difficult.

本発明者らは、このような点全解決すべく検討を屯ねた
結果、プラズマ処理を施すことにより、高解像性のパタ
ーン化と所望分光特性全得ることとを同+115に満た
す前述の発明方法を見出すに到ったものである。
The inventors of the present invention have conducted extensive studies to solve all of these problems, and as a result, the above-mentioned method that satisfies the requirements of high-resolution patterning and obtaining all the desired spectral characteristics by performing plasma processing. This led to the discovery of an inventive method.

以丁図面を用いてざらに詳述する。This will be explained in detail using the following drawings.

感光材料である重クロムV塩を含有してなる力士イン全
アルミニウム0.3μmfあらかじめ蒸N被冶したシリ
コン基板上に、種々の膜厚となるように設け、密着露光
方式にてフォトマスク全弁して露光し、水で現像した、
このときバ光強度は特性曲線上の残膜率80チ に相当
するところヲ選んだ。
All-aluminum 0.3 μm thick aluminum containing dichromium V salt, which is a photosensitive material, was prepared in various film thicknesses on a silicon substrate that had been evaporated with nitrogen in advance, and a photomask was fabricated using a contact exposure method. exposed to light and developed with water,
At this time, the light intensity was selected to correspond to a residual film rate of 80 on the characteristic curve.

イ0られたパターン寸法=e lli定しラインアンド
スペースが等間隔になる最小パターン幅で解像度を定義
し、膜厚との関係を調べた。その後酸素プラズマ(標準
条件150W、015Torr)で同パターンを5分間
処理し、同じ(寸法測定を行ない、膜厚との関係を調べ
た。(プラズマ処理層の膜厚は初期値に比べ約0.4μ
m減少していた。)第1図は、11%厚実線(1)は、
プラズマ処理を施ざないカゼインの場合であり、点部(
2)はプラズマ処理した場合のパターン解像度である。
The resolution was defined as the minimum pattern width in which the lines and spaces were equally spaced, and the relationship with the film thickness was investigated. After that, the same pattern was treated with oxygen plasma (standard conditions: 150 W, 0.15 Torr) for 5 minutes, and the same dimensions were measured and the relationship with the film thickness was investigated. 4μ
m was decreasing. ) In Figure 1, the 11% thick solid line (1) is
This is the casein for casein that is not subjected to plasma treatment, and the dotted area (
2) is the pattern resolution when plasma processing is performed.

一方、ガラス基板上に上記例と同様にしてカゼインパタ
ーンを形成し、しかるノチ酸性シアン染料を用いて、こ
のパターン化シた層を種々の条件で染色処理した時の栗
色時間と分光特性(570nmの吸光度に相当する値を
尺度とする)の関係を調べた。第2図はその測定例金示
すものである。図中(11(21はカゼイン膜〕厚1μ
mの場合で(1)は染色温度40℃、(2)は染色温度
80℃の場合である。又(3)は、本発明法に従って形
成したO16μm厚のプラズマ処理カゼインの場合(染
色温度は50℃) 、 (4)は、0.6μmのカゼイ
ン全プラズマ処理しないで染色を80℃で行なった場合
をおよび5は所定吸収強度域をそれぞれ示しである。
On the other hand, a casein pattern was formed on a glass substrate in the same manner as in the above example, and the patterned layer was dyed under various conditions using the acidic cyan dye. The relationship was investigated using the value corresponding to the absorbance of FIG. 2 shows an example of the measurement. In the figure (11 (21 is casein membrane) thickness 1μ
In the case of m, (1) is a case where the dyeing temperature is 40°C, and (2) is a case where the dyeing temperature is 80°C. In addition, (3) is the case of plasma-treated casein with a thickness of 16 μm formed according to the method of the present invention (staining temperature is 50°C), and (4) is the casein of 0.6 μm casein that was dyed at 80°C without plasma treatment. Case 5 and 5 respectively indicate predetermined absorption intensity ranges.

第1図より明らかな如く、パターン解像性は、不発明に
よれば従来法に比べて、大幅に改善されている。パター
ン形成前のカゼイン膜厚は、図中(11(2)とも同じ
であるため、不法による解像性の改善は、主にパターン
端部のスン引@り、1↓域がプラズマ処理により除去さ
れて寸法が狭小化したことによ2)と考えられる。
As is clear from FIG. 1, pattern resolution is significantly improved according to the invention compared to the conventional method. The casein film thickness before pattern formation is the same as in the figure (11 (2)), so the improvement in resolution due to illegal processing is mainly due to the removal of the 1↓ area at the edge of the pattern by plasma treatment. This is thought to be due to the fact that the dimensions have become narrower.

本発明により処理したカゼイン膜厚は初期厚より0.4
μm程減少しているが第2図に示す如<、匠来所定分光
荷性(吸収強度)を得るのに少なくとも1μm以上の膜
ノqが必要で、(0,6μm)1.I−では、たとえ染
色条件(温If )を変えても所望値がイ母られない。
The thickness of the casein film treated according to the present invention is 0.4 from the initial thickness.
However, as shown in Fig. 2, a membrane thickness of at least 1 μm or more is required to obtain a predetermined spectral charge (absorption intensity), and (0.6 μm) 1. For I-, the desired value cannot be achieved even if the staining conditions (temperature If) are changed.

)あったのに対し、06μm厚でも、鎧時間で、かつM
1相な染色条件でも所望分光特性が得られている。第1
図中に所望分光特性を得るときの最小膜厚とそのときの
パターン解像付全図示した。
), even with a thickness of 06 μm, the armor time and M
Desired spectral characteristics were obtained even under single-phase staining conditions. 1st
In the figure, the minimum film thickness for obtaining desired spectral characteristics and the pattern resolution at that time are shown in full.

即ち、従来、最小1μm以上の膜厚が分光特性を満たす
ために必要で、解像性は10μm程度であったのに対し
1本方法によれば0.6μmiで膜N−k減じても分光
特性上問題はな(、シかも解像性も〜4μmと大幅に改
善されることが判る。
In other words, conventionally, a minimum film thickness of 1 μm or more was required to satisfy the spectral characteristics, and the resolution was about 10 μm, but with the single method, the spectral resolution is 0.6 μm even if the film thickness is reduced by N-k. Although there are no problems in terms of characteristics, it can be seen that the resolution is significantly improved to ~4 μm.

本発明のプラズマ処理が、染色性を1曽長していること
は明らかであり、これは、プラズマ処理によってカゼイ
ン表面の組成的な、及び多孔質的な変質が惹起されたさ
れた結果、見かけ上の染料親和性が増大したものと考え
られる。
It is clear that the plasma treatment of the present invention greatly improves the stainability, and this is due to the compositional and porous alteration of the casein surface caused by the plasma treatment. This is thought to be due to the increased affinity for the above dye.

上記酸素プラズマのばかりてなく、空気、窒素’r−含
むプラズマガスにおいても同様の効果が認められ本発明
ではこれらのガスを3栄用することも可能である。
Similar effects are observed not only in the above-mentioned oxygen plasma but also in plasma gases containing air and nitrogen 'r-, and it is also possible to use these three gases in the present invention.

以上詳述した如く、本発明は染色法におけるプロセス上
の改良を図ることにより、従来法では困兵1tであった
高梢細カラーフィルターの形成全可能にし、しかも量産
上もきわめて有利な方法である。
As described in detail above, the present invention improves the process of the dyeing method, thereby making it possible to form a high aperture color filter, which was difficult to achieve with the conventional method, and which is also extremely advantageous in terms of mass production. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、カゼイン膜厚とパターン解像性の1yj係を
示す図、第21凶は1分光特性と染色時間の関係を表わ
す図である。
FIG. 1 is a diagram showing the 1yj relationship between casein film thickness and pattern resolution, and FIG. 21 is a diagram showing the relationship between 1 spectral characteristics and staining time.

Claims (2)

【特許請求の範囲】[Claims] (1)固体撮像素子上にカラーフイノレタ一層全形成す
る方法において該素子上に設けた感光性染色受容層全露
光、現像して所望ノくターンを形成したのち、該バクー
ン化層全染色する工程に先立ち、プラズマガスによって
表面処理する工程を具備せしめたカラーフィルターの製
造方法。
(1) In the method of fully forming a color fin layer on a solid-state image pickup device, the photosensitive dye-receiving layer provided on the device is fully exposed and developed to form a desired number of turns, and then the step of completely dyeing the Bakun coated layer is performed. A method for manufacturing a color filter, which includes a step of first treating the surface with plasma gas.
(2)プラズマガスが少なくとも酸素、空気、窒累のい
ずれかを含むことf;c特徴とする特許請求の範囲m1
項記載のカラーフィルターの製造方法。
(2) Claim m1 characterized in that the plasma gas contains at least one of oxygen, air, and nitrate f;c
2. Method for manufacturing a color filter as described in Section 1.
JP58052713A 1983-03-30 1983-03-30 Production of color filter Pending JPS59178416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58052713A JPS59178416A (en) 1983-03-30 1983-03-30 Production of color filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58052713A JPS59178416A (en) 1983-03-30 1983-03-30 Production of color filter

Publications (1)

Publication Number Publication Date
JPS59178416A true JPS59178416A (en) 1984-10-09

Family

ID=12922541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58052713A Pending JPS59178416A (en) 1983-03-30 1983-03-30 Production of color filter

Country Status (1)

Country Link
JP (1) JPS59178416A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0823644A2 (en) * 1996-08-08 1998-02-11 Canon Kabushiki Kaisha Production processes of color filter and liquid crystal display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0823644A2 (en) * 1996-08-08 1998-02-11 Canon Kabushiki Kaisha Production processes of color filter and liquid crystal display device
EP0823644A3 (en) * 1996-08-08 1998-07-15 Canon Kabushiki Kaisha Production processes of color filter and liquid crystal display device
US6042974A (en) * 1996-08-08 2000-03-28 Canon Kabushiki Kaisha Production processes of color filter and liquid crystal display device

Similar Documents

Publication Publication Date Title
US4979803A (en) Color filter array for area image sensors
JPS58100108A (en) Color filter element
JPS59178416A (en) Production of color filter
JPS6033507A (en) Prodution of color filter
JPH0677083B2 (en) Method for manufacturing color filter
US2214531A (en) Color photography
JPS6315204A (en) Color filter
JPS60118652A (en) Method for forming film
JPS58154808A (en) Color filter
US2018195A (en) Production of photographic and cinematograph mosaic color positives
US2018196A (en) Production of photographic and cinematographic color positives
JP2701896B2 (en) Manufacturing method of color filter
JPS6151286B2 (en)
JP2702266B2 (en) Manufacturing method of color filter
JPS60114807A (en) Production of fine color filter
US1012762A (en) Method of producing printing-plates.
JPS608803A (en) Manufacture of color filter
JPH05119211A (en) Color filter
JPH0746612A (en) Manufacture of solid-state color image pickup device
JP2911041B2 (en) Manufacturing method of color filter
JPS6173103A (en) Manufacture of colored solid-state image pickup device
JPS60126603A (en) Formation of colored pattern
KR930002918B1 (en) Color filter and making method of lcd
JPS61105507A (en) Production of color filter
JPS59182408A (en) Production of optical filter